JP4340750B2 - Good thermal conductor with controlled heat flow rate and method for producing the same - Google Patents

Good thermal conductor with controlled heat flow rate and method for producing the same Download PDF

Info

Publication number
JP4340750B2
JP4340750B2 JP2003026599A JP2003026599A JP4340750B2 JP 4340750 B2 JP4340750 B2 JP 4340750B2 JP 2003026599 A JP2003026599 A JP 2003026599A JP 2003026599 A JP2003026599 A JP 2003026599A JP 4340750 B2 JP4340750 B2 JP 4340750B2
Authority
JP
Japan
Prior art keywords
metal
melting point
alloy
low melting
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003026599A
Other languages
Japanese (ja)
Other versions
JP2004238646A (en
Inventor
慶三 小林
敏幸 西尾
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003026599A priority Critical patent/JP4340750B2/en
Publication of JP2004238646A publication Critical patent/JP2004238646A/en
Application granted granted Critical
Publication of JP4340750B2 publication Critical patent/JP4340750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱流速を制御した良熱伝導体に関すものであり、更に詳しくは、金属繊維を融点が120℃以下の低融点の金属あるいは合金のマトリックスで複合化して金属繊維を配向して分散させた金属繊維−低融点金属あるい合金複合体であって、加熱によってその液相が分離して熱源と接触した時の熱抵抗を低減させることを可能とした新規良熱伝導体及びその製造方法に関するものである。本発明に係る良熱伝導材料は、金属繊維の存在により熱流速の方向が制御され、また、金属繊維の存在による強度の改善が顕著であり、そのために、応力がかかる状態での使用が可能であり、例えば、大型のヒートシンクとの接合部材などへの利用が可能であり、本発明は、そのような熱流速を制御した良熱伝導体とそれを効率良く製造する方法を提供するものとして有用である。
【0002】
【従来の技術】
従来、100℃以下の熱を発生する熱源からの熱を伝導して冷却する熱伝導材料として、例えば、熱伝達を容易にさせる熱伝界面体及びその使用方法(特許文献1参照)、熱可塑性樹脂と絶縁性を有する無機フィラーと補強材を混練した樹脂組成物からなる高熱伝導性樹脂組成物(特許文献2参照)、熱伝導性に優れるセラミックスや金属粒子を樹脂やゴムなどの高分子材料で固めた熱伝導シート(例えば、特許文献3〜4参照)などが利用されている。また、熱伝導性を改善するために、使用時に可塑化して接触する熱源との密着性を改善した熱伝導材が提供されている(例えば、特許文献5参照)。
【0003】
樹脂などの高分子をマトリックスとした複合材料では、熱伝導率が悪いため、高分子の一部を可塑化して密着性を改善しても、熱伝導性の改善には限界がある。そこで、樹脂よりも熱伝導性が高く、120℃以下で液相を生成するような材料の開発が必要であった。このような要求を満たす材料として、例えば、ウッドメタルのような低融点金属や多元素合金の利用が検討されている。しかしながら、これらの材料だけでは熱流速の方向が制御できないため、例えば、応力が発生するような環境下で使用すると、液相が絞り出され、熱流速の制御が必要となる。このように、従来、熱源からの熱を伝導して冷却する熱伝導材料が種々開発されているが、金属繊維と低融点金属を複合化して、熱流速を制御した良熱伝導体については、これまでに開発された例はない。
【0004】
【特許文献1】
特開2001−257298号公報
【特許文献2】
特開平10−139928号公報
【特許文献3】
特開2002−329989号公報
【特許文献4】
特開平6−164174号公報
【特許文献5】
特開2002−176126号公報
【0005】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決することが可能な新しい良熱伝導材料を開発することを目標として鋭意研究を積み重ねた結果、熱の指向性を有効に利用するために、金属繊維を使用してその間隙を120℃以下の融点を有する低融点の金属あるいは合金で充填して、熱源からの熱で低融点の金属あるいは合金の部分を溶融状態にすることにより、良好な熱伝導が達成されることを見出し、本発明を完成するに至った。
すなわち、本発明は、金属繊維の間隙を低融点の金属あるいは合金で充填した良熱伝導体であって、熱源からの熱で低融点の金属あるいは合金の部分を溶融状態として熱源との密着性を改善することで大きな熱伝導を得ることを可能とする新規良熱伝導体及びその製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、以下の技術的手段から構成される。
(1)金属繊維の間隙を低融点の金属あるいは合金で充填して熱流速を制御した良熱伝導体を製造する方法であって、金属繊維を120℃より低温域に融点を有する低融点の金属あるいは合金のマトリックスで複合化して金属繊維を配向して分散させた金属繊維−低融点金属あるいは合金複合体を作製し、上記複合体を任意に成形して均質な液相を迅速に発生させることができる熱抵抗の少ない良熱伝導体とする、ことを特徴とする良熱伝導体の製造方法。
(2)20〜80体積%の気孔率を有する金属繊維の成形体に、溶融させた低融点金属あるいは合金を加圧含浸させて複合化することを特徴する前記(1)記載の良熱伝導体の製造方法。
(3)20〜80体積%の気孔率を有する金属繊維の成形体に、低融点金属あるいは合金の粉末を充填し、加熱して複合化することを特徴とる前記(1)記載の良熱伝導体の製造方法。
(4)20〜80体積%の気孔率を有する金属繊維の成形体に、低融点金属あるいは合金の粉末を充填し、加圧して複合化することを特徴とする前記(1)記載の良熱伝導体の製造方法。
(5)金属繊維の表面に、低融点金属あるいは合金を塗布し、その繊維を加圧で接合して複合化することを特徴とする前記(1)記載の良熱伝導体の製造方法。
(6)金属繊維の表面に、低融点金属あるいは合金を塗布し、その維を加熱で接合して複合化することを特徴とする前記(1)記載の良熱伝導体の製造方法。
(7)金属繊維が、銅繊維であることを特徴とする前記(1)から(6)のいずれかに記載の良熱伝導体の製造方法。
(8)低融点金属あるいは合金の中にインジウムを含有することを特徴とする前記(1)から(6)のいずれかに記載の良熱伝導体の製造方法。
(9)前記(1)から(8)のいずれかに記載の方法で作製された、金属繊維を120℃より低温域に融点を有する低融点の金属あるいは合金のマトリックスで複合化して金属繊維を配向させて分散させた金属繊維−低融点金属あるいは合金複合体からなることを特徴とする、熱流速を制御した良熱伝導体。
(10)前記(9)記載の良熱伝導体を構成要素として含むことを特徴とする高熱伝導性接合部材。
【0007】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、マトリックスに低融点の金属あるいは合金材料を用いて、これを金属繊維と複合化することによって熱流速を制御するとともに、マトリックスが溶解した際の熱源との密着性を向上させて良好な熱伝導を実現することを特徴とするものである。
本願発明に用いる低融点の金属あるいは合金としては、融点が120℃以下のもので熱伝導材の常時使用温度域で溶融しないものであれば適宜の材料を利用することができる。本発明が対象とする熱源は、100℃程度のものが対象であり、融点が120℃を上回るものでは、熱源からの熱でマトリックスを溶解することができない。このような低融点の金属あるいは合金材料としては、例えば、ウッドメタル(50重量%Bi−25重量%Pb−12.5重量%Sn−12.5重量%Cd)やその他の市販合金を利用することができるが、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。
【0008】
本発明では、金属繊維は、20〜80体積%の気孔率を有する多孔質体に成形して使用することが好ましい。金属繊維の多孔質体を作製する方法としては、好適には、例えば、金属繊維をのりで接合した後、加熱することによってのりを除去しながら金属繊維の焼結を行う方法や、低加圧のパルス通電焼結によって金属繊維を溶接・接合する方法などを利用することができるがこれらに制限されない。金属繊維は、熱の流れを制御可能にするために、2次元的な配向を行うことが好ましく、そのために、例えば、プレスなどを利用して多孔質体を作製することが好ましい。金属繊維の多孔質成形体の気孔率が20体積%未満では金属繊維の間に低融点の金属を充填することが難しく、また、80体積%を越える気孔率では金属繊維の配向を制御することが難しく、従って、金属繊維を利用して熱流速の制御を行うことが実現できない。
【0009】
金属繊維から作製した多孔質体に、低融点の金属あるいは合金を充填する方法としては、好適には、例えば、低融点金属を粉末化して繊維の間隙に充填する方法や、低融点金属を溶解して金属繊維の間隙に加圧注入する方法を利用することができる。これらを粉末化して多孔質成形体の間隙を充填した場合には、金属繊維との密着性が悪いため、加熱あるいは加圧によって金属繊維と低融点金属との密着性を改善することが好ましい。
【0010】
金属繊維の多孔質体を作製できない場合には、金属繊維の表面に低融点の金属あるいは合金を塗布して、加圧あるいは加熱によって成形する方法が利用される。金属繊維の表面への低融点の金属あるいは合金を塗布する方法としては、好適には、例えば、金属繊維をたばねて毛細管現象を利用して塗布する方法や、金属繊維の表面に溶解した低融点の金属あるいは合金をスプレーする方法などを利用することができる。金属繊維に低融点金属を塗布した複合繊維は、加圧あるいは加熱によって成形することができる。加圧の手段としては、例えば、一軸加圧や圧延などの方法を利用することができる。
【0011】
金属繊維には、熱源からの熱を成形体全体に均一に広げる機能があり、該金属繊維としては、熱伝導率の高い材料を使用することが好ましい。そのために、金属繊維として銅繊維を使用することが最も好ましい。金属繊維の太さは特に指定されないが、好適には、100μm以下の金属繊維が利用できる。その形状は断面が円形のものが好ましく、矩形断面の繊維も利用できるが、これらに制限されない。繊維は連続的な繊維でも切断した繊維でも良い。しかし、熱流を制御するには、アスペクト比が1以上の繊維を利用することが好ましい。また、低融点の金属あるいは合金材料としては、例えば、ウッドメタルなどの材料が利用できるが、環境への負荷が高いカドミウムや鉛が使用されているものが多く、好適には、インジウムを主成分とした低融点の金属あるいは合金材料を使用することが望ましい。この場合は、インジウムの量によって融点を容易に変化させることができ、また、カドミウムや鉛を使用せずに120℃以下の融点を実現することができる。これらの具体例としては、例えば、In−Bi−Sn合金においてインジウムが60重量%で73℃、50重量%で83℃、40重量%で88℃の融点を持つ合金を作製できることが例示される。
【0012】
加熱によって低融点の金属あるいは合金を溶解する場合の雰囲気は、特に制限されないが、金属繊維の酸化あるいは低融点の金属あるいは合金の酸化を防止するために、不活性ガス雰囲気が好ましい。真空雰囲気も利用できるが、この場合、低融点の金属あるいは合金に含まれる成分が変化する可能性があるので、真空度を高くしないなどの注意が必要である。
【0013】
加圧によって低融点の金属あるいは合金と金属繊維の密着性を改善する場合の処理雰囲気は、特に制限されないが、低融点の金属あるいは合金の酸化あるいは金属繊維の酸化を防止するために、不活性ガスなどの雰囲気が好ましい。本発明の対象とする熱源としては、例えば、半導体素子、コンピューター用のCPUや画像処理用のチップなどが例示されるが、これらに制限されない。
【0014】
本発明の方法により、熱伝導性の高い金属繊維を配向させてマトリックス中に充填することで、金属繊維の長手方向に熱が拡散する構造の良熱伝導体が得られる。それにより、熱源に接触させた場合には、金属繊維の間に存在する低融点の金属あるいは合金が、急速、かつ均一に溶解し、それにより、熱源との密着性を改善することができる。また、金属繊維の長さによって成形体の機械的強度を改善することが可能であり、長い繊維を用いるほど成形体の強度を高くすることができる。
【0015】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
繊維径50μmの銅繊維((株)ベキニット製)を、低圧のパルス通電焼結により気孔率が50体積%の多孔質体に加工した。得られた成形体の大きさは、40mm×40mm×2mmであり、これに、低融点合金であるIn−42質量%Bi―5質量%Snを100℃に加熱溶解したものを含浸させて、加圧鋳造した。なお、上記合金の融点は85℃であった。
【0016】
得られた複合体を、ロール圧延機によって室温で0.05mmの厚さに成形した。圧延で得られたシートには、銅繊維が平面的に配向されていた。このシートを熱源の上に置いたところ、85℃を越えると均一に液相の生成が認められた。また、本シートの液相生成時の熱抵抗は0.08℃/Wであり、良熱伝導体であることが分かった。
【0017】
得られた成形体のX線回折による構成相を図1に示す。銅は、低融点金属と反応せず、銅の状態で分散していることが確認された。また、図2に、低融点金属のみからなる約0.05mm厚みのシート(左)と銅繊維を含む低融点金属のシート(右)の上に85℃に加熱したステンレスボールを置き、約5秒後の温度を赤外線温度計により測定した結果を示す。銅繊維を分散させたシートの方が熱の拡散が速く、繊維が並んでいる方向(手前〜奥)へ熱が良く伝導していることが確認された。なお、シートの大きさは、10mm×20mmであった。
【0018】
実施例2
繊維径100μmの銅繊維((株)ベキニット製)を、低圧のパルス通電焼結により気孔率が50体積%の多孔質体に加工した。得られた成形体の大きさは、50mmΦ×2mmであり、これに、In−42質量%Bi―5質量%Snからなる100ミクロン以下の合金粉末を界面活性剤とともにエチルアルコールに分散して注入した。これを乾燥後、銅繊維の間隙に合金粉末が分散した成形体を、真空中で30MPaの加圧下で、87℃まで加熱して、1mm厚みの成形体を作製した。
【0019】
得られた成形体は、銅繊維が平面的に配向した複合材料であり、85℃で液相が生成した。この成形体を、更に、ロール圧延機により0.2mmの厚さに成形したところ、割れなどは生成せず、シート状の成形体を得ることができた。このシートを100℃の熱源に接触させたところ、均一に液相が生成して熱源との密着性が改善され、良熱伝導体として作用した。液相生成時の熱抵抗は0.08℃/Wであった。
【0020】
実施例3
繊維径100μmの銅繊維((株)ベキニット製)を、40mmの長さに切断し、これを200本を束ねて、In−42質量%Bi−5質量%Snを溶解したルツボ中に浸した。繊維に100Hz程度の振動を付与することによって、低融点金属の液体が繊維の表面を覆い、銀色を呈する繊維の束が得られた。なお、In−42質量%Bi−5質量%Snの溶解は、大気中で100℃まで加熱することにより行い、上記ルツボとしては、酸化アルミニウムを用いた。
【0021】
得られた低融点金属の付着した銅繊維の束を、そのままロール圧延機で圧延することにより、0.2mm厚みの成形体を作製した。圧延時に低融点金属が変形するため、端部以外は割れのない成形体を作製することができた。このシート状の成形体は、銅繊維が一方向に配向しており、85℃で液相が均一に生成した。液相生成時の熱抵抗は0.08℃/Wを示した。
【0022】
【発明の効果】
以上詳述したように、本発明は、熱流速を制御可能にした良熱伝導体及びその製造方法に係るものであり、本発明により、以下のような効果が奏される。
(1)熱流速を制御して良熱伝導体内での温度のばらつきを防止し、均質な液相を迅速に発生させることができる熱抵抗の少ない良熱伝導体が得られる。
(2)本発明の良熱伝導体を用いて、微小部分から発生する熱を大きな冷却モジュールに伝えることで効率的に放熱させることが可能となる。
(3)合金組成により液相を生成させる従来のものに比べ、熱伝導性の高い金属繊維を配向させることによって熱伝導体内に発生する温度のむらを防止し、均質に液相を生成させることができる。
(4)本発明の良熱伝導体を構成する低融点金属と金属繊維は、お互いに反応することがないため、本発明の良熱伝導体を使用後に回収する際には、繊維と金属を容易に分解・分離することができる。
(5)金属繊維に長い繊維を用いることで、シート状に成形した良熱伝導体の強度と耐久性を飛躍的に向上させることができる。
(6)本発明の良熱伝導体は、熱源から発生する熱を指向的に伝達するため、限られたスペースでの冷却が可能となり、冷却機構の設計に対する自由度が増加する。
【図面の簡単な説明】
【図1】銅繊維を混合した低融点金属シートのX線回折を示す。
【図2】80℃のステンレス球を低融点金属シート(左)と銅繊維を含む低融点金属シート(右)の上に設置したときの温度分布を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a good heat conductor with a controlled heat flow rate. More specifically, the metal fiber is compounded with a matrix of a low melting point metal or alloy having a melting point of 120 ° C. or lower to align the metal fiber. Dispersed metal fiber-low melting point metal or alloy composite, a novel good heat conductor capable of reducing thermal resistance when the liquid phase is separated by heating and brought into contact with a heat source, and the same It relates to a manufacturing method. The heat-conductive material according to the present invention is controlled in the direction of the heat flow rate by the presence of metal fibers, and the improvement in strength due to the presence of metal fibers is remarkable, so that it can be used in a state where stress is applied. For example, the present invention can be used for a joining member with a large heat sink, and the present invention provides a good thermal conductor with such a controlled heat flow rate and a method for efficiently manufacturing the same. Useful.
[0002]
[Prior art]
Conventionally, as a heat conductive material that conducts and cools heat from a heat source that generates heat of 100 ° C. or less, for example, a heat transfer interface that facilitates heat transfer and a method for using the same (see Patent Document 1), thermoplasticity High thermal conductive resin composition comprising a resin composition obtained by kneading a resin, an insulating inorganic filler and a reinforcing material (refer to Patent Document 2), ceramic and metal particles having excellent thermal conductivity, polymer materials such as resin and rubber A heat conductive sheet (see, for example, Patent Documents 3 to 4) that has been hardened in step 1 is used. Moreover, in order to improve heat conductivity, the heat conductive material which improved the adhesiveness with the heat source which plasticizes and contacts at the time of use is provided (for example, refer patent document 5).
[0003]
A composite material using a polymer such as a resin as a matrix has poor thermal conductivity. Therefore, even if a part of the polymer is plasticized to improve adhesion, there is a limit to improving the thermal conductivity. Therefore, it has been necessary to develop a material that has higher thermal conductivity than a resin and generates a liquid phase at 120 ° C. or lower. As materials satisfying such requirements, for example, the use of low melting point metals such as wood metal and multi-element alloys has been studied. However, since the direction of the heat flow rate cannot be controlled only with these materials, for example, when used in an environment in which stress is generated, the liquid phase is squeezed out and the heat flow rate needs to be controlled. As described above, various heat conductive materials that conduct and cool heat from a heat source have been developed in the past, but for good heat conductors in which metal fibers and low melting point metals are combined to control the heat flow rate, No examples have been developed so far.
[0004]
[Patent Document 1]
JP 2001-257298 A [Patent Document 2]
Japanese Patent Laid-Open No. 10-139928 [Patent Document 3]
JP 2002-329989 A [Patent Document 4]
JP-A-6-164174 [Patent Document 5]
Japanese Patent Laid-Open No. 2002-176126
[Problems to be solved by the invention]
Under such circumstances, the present inventors have eagerly aimed at developing a new heat-conducting material capable of drastically solving the problems in the prior art in view of the prior art. As a result of accumulated research, in order to effectively use the directivity of heat, the gap between the fibers is filled with a low melting point metal or alloy having a melting point of 120 ° C. or less, and the heat from the heat source is used. It has been found that good heat conduction can be achieved by bringing a low melting point metal or alloy part into a molten state, and the present invention has been completed.
That is, the present invention is a good heat conductor in which a gap between metal fibers is filled with a metal or alloy having a low melting point, and the low melting point metal or alloy part is melted by the heat from the heat source, and the adhesion to the heat source is achieved. It is an object of the present invention to provide a novel good heat conductor and a method for producing the same which can obtain a large heat conduction by improving the above.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises the following technical means.
(1) A method for producing a good thermal conductor in which the gap between metal fibers is filled with a low melting point metal or alloy and the heat flow rate is controlled, and the low melting point metal metal fiber having a melting point in a temperature range lower than 120 ° C. metal fibers and composite dispersed oriented metal fibers in a matrix of metal or alloy - to prepare a low-melting metal or alloy composite, upper Symbol quickly generate a homogeneous liquid phase optionally formed complexes A method for producing a good heat conductor , characterized in that the good heat conductor has low thermal resistance .
(2) Good heat conduction as described in (1) above, wherein a compacted metal fiber having a porosity of 20 to 80% by volume is compressed and impregnated with a molten low melting point metal or alloy. Body manufacturing method.
(3) Good heat conduction as described in (1) above, wherein a metal fiber compact having a porosity of 20 to 80% by volume is filled with a powder of a low melting point metal or alloy and heated to form a composite. Body manufacturing method.
(4) A good heat according to (1) above, wherein a metal fiber molded body having a porosity of 20 to 80% by volume is filled with a powder of a low melting point metal or alloy and pressed to form a composite. A method for manufacturing a conductor.
(5) The method for producing a good heat conductor according to the above (1), wherein a low melting point metal or alloy is applied to the surface of the metal fiber, and the fiber is joined by pressurization to form a composite.
(6) The method for producing a good heat conductor according to the above (1), wherein a low melting point metal or alloy is applied to the surface of the metal fiber, and the fibers are joined by heating to form a composite.
(7) The method for producing a good heat conductor according to any one of (1) to (6), wherein the metal fiber is a copper fiber.
(8) The method for producing a good thermal conductor according to any one of (1) to (6) above, wherein indium is contained in the low melting point metal or alloy.
(9) The metal fiber produced by the method according to any one of (1) to (8) is compounded with a matrix of a low melting point metal or alloy having a melting point in a temperature range lower than 120 ° C. A good thermal conductor with controlled heat flow rate, characterized by comprising an oriented and dispersed metal fiber-low melting point metal or alloy composite.
(10) A highly heat-conductive joining member comprising the good heat conductor according to (9) as a constituent element.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The present invention uses a low-melting-point metal or alloy material for the matrix and controls the heat flow rate by combining it with metal fibers and improves the adhesion with the heat source when the matrix is dissolved. It is characterized by realizing a good heat conduction.
As the low melting point metal or alloy used in the present invention, any suitable material can be used as long as it has a melting point of 120 ° C. or lower and does not melt in the normal use temperature range of the heat conducting material. The heat source targeted by the present invention is about 100 ° C., and if the melting point exceeds 120 ° C., the matrix cannot be dissolved by the heat from the heat source. As such a low melting point metal or alloy material, for example, wood metal (50 wt% Bi-25 wt% Pb-12.5 wt% Sn-12.5 wt% Cd) and other commercially available alloys are used. However, the present invention is not limited to these, and can be used similarly as long as they have the same effect.
[0008]
In the present invention, the metal fiber is preferably used after being formed into a porous body having a porosity of 20 to 80% by volume. As a method for producing a metal fiber porous body, for example, after joining metal fibers with a paste, heating the metal fibers while removing the paste by heating, or low pressure A method of welding and joining metal fibers by pulsed electric current sintering can be used, but is not limited thereto. The metal fibers are preferably two-dimensionally oriented so that the heat flow can be controlled. For this purpose, for example, it is preferable to produce a porous body using a press or the like. If the porosity of the metal fiber porous molded body is less than 20% by volume, it is difficult to fill a metal with a low melting point between the metal fibers, and if the porosity exceeds 80% by volume, the orientation of the metal fiber is controlled. Therefore, it is not possible to control the heat flow rate using metal fibers.
[0009]
As a method of filling a porous body made of metal fiber with a low melting point metal or alloy, for example, a method of powdering a low melting point metal and filling the gap between fibers, or dissolving a low melting point metal is preferable. Thus, it is possible to use a method of pressure injection into the gap between the metal fibers. When these are pulverized and the gaps between the porous molded bodies are filled, the adhesion between the metal fibers and the low melting point metal is preferably improved by heating or pressing because the adhesion with the metal fibers is poor.
[0010]
When a metal fiber porous body cannot be produced, a method of applying a metal or alloy having a low melting point to the surface of the metal fiber and molding it by pressing or heating is used. As a method for applying a metal or alloy having a low melting point to the surface of the metal fiber, preferably, for example, a method of applying the metal fiber by using a capillary phenomenon and a low melting point dissolved on the surface of the metal fiber. A method of spraying a metal or an alloy can be used. A composite fiber obtained by applying a low melting point metal to a metal fiber can be formed by pressing or heating. As the pressurizing means, for example, a method such as uniaxial pressing or rolling can be used.
[0011]
The metal fiber has a function of uniformly spreading heat from a heat source over the entire molded body, and it is preferable to use a material having high thermal conductivity as the metal fiber. Therefore, it is most preferable to use copper fiber as the metal fiber. The thickness of the metal fiber is not particularly specified, but preferably a metal fiber of 100 μm or less can be used. The shape is preferably circular in cross section, and fibers having a rectangular cross section can also be used, but are not limited thereto. The fiber may be a continuous fiber or a cut fiber. However, in order to control the heat flow, it is preferable to use fibers having an aspect ratio of 1 or more. In addition, as a low melting point metal or alloy material, for example, a material such as wood metal can be used, but many of them use cadmium and lead which have a high environmental load, and preferably contain indium as a main component. It is desirable to use a low melting point metal or alloy material. In this case, the melting point can be easily changed depending on the amount of indium, and a melting point of 120 ° C. or less can be realized without using cadmium or lead. Specific examples thereof include, for example, that an In—Bi—Sn alloy having an indium melting point of 60% by weight at 73 ° C., 50% by weight at 83 ° C., and 40% by weight at 88 ° C. can be produced. .
[0012]
The atmosphere in which the low melting point metal or alloy is dissolved by heating is not particularly limited, but an inert gas atmosphere is preferable in order to prevent oxidation of metal fibers or low melting point metal or alloy. A vacuum atmosphere can also be used, but in this case, since the components contained in the low melting point metal or alloy may change, care must be taken not to increase the degree of vacuum.
[0013]
The treatment atmosphere for improving the adhesion between the low melting point metal or alloy and the metal fiber by pressurization is not particularly limited, but it is inert to prevent oxidation of the low melting point metal or alloy or metal fiber. An atmosphere such as gas is preferred. Examples of the heat source targeted by the present invention include, but are not limited to, semiconductor elements, CPUs for computers, and chips for image processing.
[0014]
According to the method of the present invention, a good heat conductor having a structure in which heat is diffused in the longitudinal direction of the metal fiber is obtained by orienting the metal fiber having high heat conductivity and filling the matrix in the matrix. Thereby, when brought into contact with the heat source, the low melting point metal or alloy existing between the metal fibers dissolves rapidly and uniformly, thereby improving the adhesion to the heat source. Further, the mechanical strength of the molded body can be improved by the length of the metal fiber, and the strength of the molded body can be increased as the longer fiber is used.
[0015]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
A copper fiber having a fiber diameter of 50 μm (manufactured by Bequinit Co., Ltd.) was processed into a porous body having a porosity of 50% by volume by low-pressure pulse current sintering. The size of the obtained molded body is 40 mm × 40 mm × 2 mm, and impregnated with a low melting point alloy In-42 mass% Bi-5 mass% Sn heated to 100 ° C., Pressure cast. The melting point of the alloy was 85 ° C.
[0016]
The obtained composite was formed into a thickness of 0.05 mm at room temperature using a roll mill. The copper fiber was planarly oriented in the sheet obtained by rolling. When this sheet was placed on a heat source, the formation of a liquid phase was observed uniformly above 85 ° C. Moreover, the thermal resistance at the time of liquid phase production | generation of this sheet | seat was 0.08 degreeC / W, and it turned out that it is a good heat conductor.
[0017]
FIG. 1 shows a constituent phase by X-ray diffraction of the obtained molded body. It was confirmed that copper did not react with the low melting point metal and was dispersed in the state of copper. Further, in FIG. 2, a stainless ball heated to 85 ° C. is placed on a sheet (left) made of only a low melting point metal and having a thickness of about 0.05 mm and a sheet of low melting point metal containing copper fibers (right). The result of having measured the temperature after 2 second with the infrared thermometer is shown. It was confirmed that the sheet in which the copper fibers are dispersed has faster heat diffusion, and the heat is well conducted in the direction in which the fibers are lined up (front to back). The sheet size was 10 mm × 20 mm.
[0018]
Example 2
Copper fiber (manufactured by Bequinit Co., Ltd.) having a fiber diameter of 100 μm was processed into a porous body having a porosity of 50% by volume by low-pressure pulse current sintering. The size of the obtained molded body is 50 mmΦ × 2 mm, and an alloy powder of 100 μm or less composed of In-42 mass% Bi-5 mass% Sn is dispersed in ethyl alcohol and injected with a surfactant. did. After drying this, the molded body in which the alloy powder was dispersed in the gaps between the copper fibers was heated to 87 ° C. under a pressure of 30 MPa in vacuum to produce a 1 mm thick molded body.
[0019]
The obtained molded body was a composite material in which copper fibers were planarly oriented, and a liquid phase was generated at 85 ° C. When this formed body was further formed to a thickness of 0.2 mm by a roll mill, no cracks were generated, and a sheet-like formed body could be obtained. When this sheet was brought into contact with a heat source at 100 ° C., a liquid phase was uniformly formed to improve adhesion with the heat source, and acted as a good heat conductor. The thermal resistance during liquid phase generation was 0.08 ° C./W.
[0020]
Example 3
Copper fiber (manufactured by Bequinit Co., Ltd.) having a fiber diameter of 100 μm was cut into a length of 40 mm, and 200 pieces thereof were bundled and immersed in a crucible in which In-42 mass% Bi-5 mass% Sn was dissolved. . By applying vibration of about 100 Hz to the fiber, a low melting point metal liquid covered the surface of the fiber, and a bundle of fibers exhibiting a silver color was obtained. In-42 mass% Bi-5 mass% Sn was dissolved by heating to 100 ° C. in the atmosphere, and aluminum oxide was used as the crucible.
[0021]
The obtained bundle of copper fibers to which the low melting point metal was adhered was rolled as it was with a roll mill to produce a 0.2 mm-thick shaped body. Since the low melting point metal was deformed during rolling, it was possible to produce a molded body having no cracks except at the end. In this sheet-like molded body, the copper fibers were oriented in one direction, and the liquid phase was uniformly generated at 85 ° C. The thermal resistance during liquid phase generation was 0.08 ° C./W.
[0022]
【The invention's effect】
As described above in detail, the present invention relates to a good heat conductor that can control the heat flow rate and a method for manufacturing the same, and the following effects are exhibited by the present invention.
(1) It is possible to obtain a good heat conductor with low thermal resistance that can control the heat flow rate to prevent temperature variation in the good heat conductor and can quickly generate a homogeneous liquid phase.
(2) Using the good heat conductor of the present invention, heat generated from a minute portion is transmitted to a large cooling module, so that heat can be efficiently radiated.
(3) Compared to the conventional one that generates a liquid phase by alloy composition, by aligning metal fibers having high thermal conductivity, it is possible to prevent uneven temperature generated in the heat conductor and generate a liquid phase uniformly. it can.
(4) Since the low melting point metal and the metal fiber constituting the good heat conductor of the present invention do not react with each other, when collecting the good heat conductor of the present invention after use, the fiber and metal It can be easily disassembled and separated.
(5) By using a long fiber as the metal fiber, the strength and durability of the good heat conductor formed into a sheet shape can be dramatically improved.
(6) Since the good heat conductor of the present invention transmits heat generated from the heat source in a directional manner, cooling in a limited space is possible, and the degree of freedom in designing the cooling mechanism is increased.
[Brief description of the drawings]
FIG. 1 shows X-ray diffraction of a low melting point metal sheet mixed with copper fibers.
FIG. 2 shows the temperature distribution when an 80 ° C. stainless steel sphere is placed on a low melting point metal sheet (left) and a low melting point metal sheet containing copper fibers (right).

Claims (10)

金属繊維の間隙を低融点の金属あるいは合金で充填して熱流速を制御した良熱伝導体を製造する方法であって、金属繊維を120℃より低温域に融点を有する低融点の金属あるいは合金のマトリックスで複合化して金属繊維を配向して分散させた金属繊維−低融点金属あるいは合金複合体を作製し、上記複合体を任意に成形して均質な液相を迅速に発生させることができる熱抵抗の少ない良熱伝導体とする、ことを特徴とする良熱伝導体の製造方法。A method for producing a good thermal conductor in which a gap between metal fibers is filled with a low melting point metal or alloy to control a heat flow rate, and the metal fiber has a low melting point metal or alloy having a melting point at a temperature lower than 120 ° C. matrix metal fibers were dispersed in composite oriented metal fibers - to prepare a low-melting-point metal or alloy composite, may be arbitrarily shaped on SL complex generates a homogeneous liquid phase rapidly A method for producing a good heat conductor , characterized in that the good heat conductor has a low thermal resistance . 20〜80体積%の気孔率を有する金属繊維の成形体に、溶融させた低融点金属あるいは合金を加圧含浸させて複合化することを特徴とする請求項1記載の良熱伝導体の製造方法。  2. The production of a good heat conductor according to claim 1, wherein a compacted metal fiber having a porosity of 20 to 80% by volume is compressed and impregnated with a molten low melting point metal or alloy. Method. 20〜80体積%の気孔率を有する金属繊維の成形体に、低融点金属あるいは合金の粉末を充填し、加熱して複合化することを特徴とする請求項1記載の良熱伝導体の製造方法。  2. A good thermal conductor according to claim 1, wherein a metal fiber molded body having a porosity of 20 to 80% by volume is filled with a powder of a low melting point metal or an alloy and heated to be compounded. Method. 20〜80体積%の気孔率を有する金属繊維の成形体に、低融点金属あるいは合金の粉末を充填し、加圧して複合化することを特徴とする請求項1記載の良熱伝導体の製造方法。  2. A good thermal conductor according to claim 1, wherein a metal fiber compact having a porosity of 20 to 80% by volume is filled with a powder of a low-melting-point metal or an alloy and pressed to form a composite. Method. 金属繊維の表面に、低融点金属あるいは合金を塗布し、その繊維を加圧で接合して複合化することを特徴とする請求項1記載の良熱伝導体の製造方法。  2. The method for producing a good heat conductor according to claim 1, wherein a low melting point metal or alloy is applied to the surface of the metal fiber, and the fiber is joined by pressure to form a composite. 金属繊維の表面に、低融点金属あるいは合金を塗布し、その繊維を加熱で接合して複合化することを特徴とする請求項1記載の良熱伝導体の製造方法。  2. The method for producing a good heat conductor according to claim 1, wherein a low melting point metal or alloy is applied to the surface of the metal fiber, and the fiber is joined by heating to form a composite. 金属繊維が、銅繊維であることを特徴とする請求項1から6のいずれかに記載の良熱伝導体の製造方法。  The method for producing a good heat conductor according to any one of claims 1 to 6, wherein the metal fibers are copper fibers. 低融点金属あるいは合金の中にインジウムを含有することを特徴とする請求項1から6のいずれかに記載の良熱伝導体の製造方法。  The method for producing a good heat conductor according to any one of claims 1 to 6, wherein the low melting point metal or alloy contains indium. 請求項1から8のいずれかに記載の方法で作製された、金属繊維を120℃より低温域に融点を有する低融点の金属あるいは合金のマトリックスで複合化して金属繊維を配向させて分散させた金属繊維−低融点金属あるいは合金複合体からなることを特徴とする、熱流速を制御した良熱伝導体。  A metal fiber produced by the method according to any one of claims 1 to 8 is compounded with a matrix of a low melting point metal or alloy having a melting point in a temperature range lower than 120 ° C, and the metal fiber is oriented and dispersed. A good heat conductor having a controlled heat flow rate, comprising a metal fiber-low melting point metal or alloy composite. 請求項9記載の良熱伝導体を構成要素として含むことを特徴とする高熱伝導性接合部材。  A highly heat-conductive joining member comprising the good heat conductor according to claim 9 as a constituent element.
JP2003026599A 2003-02-04 2003-02-04 Good thermal conductor with controlled heat flow rate and method for producing the same Expired - Lifetime JP4340750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026599A JP4340750B2 (en) 2003-02-04 2003-02-04 Good thermal conductor with controlled heat flow rate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026599A JP4340750B2 (en) 2003-02-04 2003-02-04 Good thermal conductor with controlled heat flow rate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004238646A JP2004238646A (en) 2004-08-26
JP4340750B2 true JP4340750B2 (en) 2009-10-07

Family

ID=32954553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026599A Expired - Lifetime JP4340750B2 (en) 2003-02-04 2003-02-04 Good thermal conductor with controlled heat flow rate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4340750B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595085B2 (en) * 2005-03-10 2010-12-08 独立行政法人産業技術総合研究所 Heat sink for controlling heat flux and manufacturing method thereof
WO2016132453A1 (en) * 2015-02-17 2016-08-25 株式会社日立製作所 Semiconductor device
CN105177473A (en) * 2015-07-18 2015-12-23 广西大学 ZA27-alloy metal-matrix composite material with Al2O3 short fibers as wild phase
US10777483B1 (en) * 2020-02-28 2020-09-15 Arieca Inc. Method, apparatus, and assembly for thermally connecting layers
CN113106359A (en) * 2021-05-19 2021-07-13 武汉德而诗新材料有限公司 Composite material for oil cylinder and preparation method thereof

Also Published As

Publication number Publication date
JP2004238646A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5427462B2 (en) Thermoelectric conversion module
Xia et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications
Zhao et al. Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
JP2008004651A (en) Bonding material using anisotropic fine particles
JP6222666B2 (en) Mg-Si-based thermoelectric conversion material and manufacturing method thereof, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
CN109590636B (en) High-retention-rate nano composite brazing filler metal and preparation method thereof
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP4340750B2 (en) Good thermal conductor with controlled heat flow rate and method for producing the same
Gu et al. Thermomigration and electromigration in Sn58Bi solder joints
JP5363418B2 (en) Method for producing high thermal conductive composite material
JP2009091605A (en) Diamond particle dispersion type metal-matrix composite material and producing method therefor
JP4584034B2 (en) Thermoelectric module
TW201934766A (en) Clad material and method for producing same
CN103193499B (en) A kind of method of attachment of carbon-carbon composites
Wang et al. Development of sandwich joining piece to fabricate segmented half-Heusler/skutterudite thermoelectric joints
JP2010202902A (en) Metallic composite material and method of manufacturing the same
CN106180721A (en) CIGS target material metal layer preparation method
WO2004038049A1 (en) Composite material, method for producing same and member using same
CN104582446B (en) A kind of heat-conducting pad of composite construction
TW201111524A (en) Special alloy complex
CN101338181A (en) Thermal interfacial material doped by diamond granules and method for preparing same
CN102564198B (en) Metal wiredrawing type radiation composition structure and manufacturing method and manufacturing system thereof
JP2006120973A (en) Circuit board and manufacturing method thereof
JPH11177156A (en) Machining method for thermoelectric conversion material and production of thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4340750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term