JP2762704B2 - Circuit breaker - Google Patents

Circuit breaker

Info

Publication number
JP2762704B2
JP2762704B2 JP2134482A JP13448290A JP2762704B2 JP 2762704 B2 JP2762704 B2 JP 2762704B2 JP 2134482 A JP2134482 A JP 2134482A JP 13448290 A JP13448290 A JP 13448290A JP 2762704 B2 JP2762704 B2 JP 2762704B2
Authority
JP
Japan
Prior art keywords
movable contact
contact
circuit breaker
connection conductor
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2134482A
Other languages
Japanese (ja)
Other versions
JPH0419938A (en
Inventor
淳 小山
直司 内田
誠 鵜沼
龍典 高橋
久次 篠原
健之 神達
浅川  浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27459396&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2762704(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to DE19914103584 priority Critical patent/DE4103584A1/en
Priority to KR1019910002119A priority patent/KR910016028A/en
Publication of JPH0419938A publication Critical patent/JPH0419938A/en
Application granted granted Critical
Publication of JP2762704B2 publication Critical patent/JP2762704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • H01H1/5833Electric connections to or between contacts; Terminals comprising an articulating, sliding or rolling contact between movable contact and terminal
    • H01H2001/5838Electric connections to or between contacts; Terminals comprising an articulating, sliding or rolling contact between movable contact and terminal using electrodynamic forces for enhancing the contact pressure between the sliding surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/10Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
    • H01H77/102Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by special mounting of contact arm, allowing blow-off movement
    • H01H77/104Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by special mounting of contact arm, allowing blow-off movement with a stable blow-off position

Landscapes

  • Breakers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

この発明は、配線用遮断器や漏電遮断器などの小形の
回路遮断器に関し、更に詳しくは開閉機構に駆動されて
開閉運動をする可動接触子とケースに固定された接続導
体とを電気的に接続するための構成に関する。
The present invention relates to a small circuit breaker such as a wiring circuit breaker or an earth leakage circuit breaker, and more specifically, electrically connects a movable contact that is driven by an opening / closing mechanism to perform an opening / closing motion and a connection conductor fixed to a case. Related to a configuration for connection.

【従来の技術】[Prior art]

第16図及び第17図は3極構成の従来の回路遮断器(配
線用遮断器)の一例を示す中央極部分の縦断面図で、第
16図は閉路状態を、また第17図は開路状態を示してい
る。 第16図において、1は樹脂成形品のケース、2は同じ
くカバー、3は電源側の端子3aと一体構成され図示しな
いねじでケース1に締め付けられた固定接触子、4は固
定接触子3に設けられた固定接点、5は樹脂成形品のホ
ルダ6に軸7を介して回動可能に保持された可動接触
子、8は固定接点4と対向して可動接触子5に設けられ
た可動接点、9はバイメタル9a、これに溶接されたL形
の固定導体9b、バイメタル9aを囲んで配置された固定マ
グネット9c、これと対向して回動可能に設けられたアー
マチュア9dなどからなる過電流引外し装置、10は固定導
体9bと重ねてねじ11でケース1に締め付けられた接続導
体、12は両端が可動接触子5及び接続導体10にそれぞれ
ろう付けにより接続された可撓導体、13はねじ14でケー
ス1に締め付けられた負荷側の端子、15は両端がバイメ
タル9a及び端子13にそれぞれ接続された可撓導体であ
る。 16は詳細には説明しないが可動接触子5をホルダ6と
一緒に開閉駆動する開閉機構で、常時は各極に跨がって
延びるクロスバー17を含む引外し機構18でラッチされて
いる。19は図の左右方向に揺動可能に支持されたハンド
ルレバーで、開閉機構16との間に開閉ばね20が掛け渡さ
れ、頭部に操作ハンドル21が装着されている。ホルダ6
と可動接触子5との間には接触ばね22が挿入され、可動
接触子5が固定接触子3に向かって付勢されている。 可動接触子5の左右には図示しない左右極の可動接触
子が並べて配置され、これらの可動接触子も図示のホル
ダ6と同様のホルダに軸を介して回動可能に保持されて
いるが、これら3極のホルダは一体成形された図示しな
い開閉軸で互いに連結され、全体が開閉軸を介してケー
ス1の図示しない相間隔壁の軸受溝に回動可能に支持さ
れている。なお、23は可動接点8の移動軌跡を囲んで配
置された消弧室である。 このような構成において、電流は固定接触子3から、
固定接点4、可動接点8、可動接触子5、可撓導体12、
接続導体10、固定導体9b、バイメタル9a、及び可撓導体
15を経て端子13に流れる。その場合、定格電流の10倍程
度の過負荷電流が流れると、バイメタル9aが図の左方向
に湾曲してクロスバー17を押す。これにより引外し機構
18による開閉機構16のラッチが崩れ、可動接触子5は開
閉ばね20の力で撥ね上げられてホルダ6と一緒に回動
し、固定接触子3から急速開離する。その際、固定接点
4と可動接点8との間に発生したアークは電磁力により
消弧室23に引き込まれ、ここで冷却されて消弧される。 更に、短絡電流などの大電流が流れると、固定マグネ
ット9cがアーマチュア9dを吸引して、バイメタル9bの湾
曲を待たずに瞬時にクロスバー17を叩き、可動接触子5
を開離させる。また、第17図に示すように、操作ハンド
ル21を図の右方向に開操作すると、開閉機構16がラッチ
されたままで、やはり開閉ばね20のばね力で可動接触子
5が撥ね上げられて図示の通り開離する。
16 and 17 are longitudinal sectional views of a central pole portion showing an example of a conventional circuit breaker (wiring breaker) having a three-pole configuration.
FIG. 16 shows a closed state, and FIG. 17 shows an open state. In FIG. 16, reference numeral 1 denotes a resin molded case, 2 denotes a cover, and 3 denotes a fixed contact formed integrally with the terminal 3a on the power supply side and fastened to the case 1 with screws (not shown). The fixed contact 5 provided is a movable contact that is rotatably held on a holder 6 of a resin molded product via a shaft 7. The movable contact 8 is provided on the movable contact 5 so as to face the fixed contact 4. , 9 is a bimetal 9a, an L-shaped fixed conductor 9b welded to the bimetal 9a, a fixed magnet 9c disposed around the bimetal 9a, and an overcurrent draw comprising an armature 9d rotatably provided opposite to the bimetal 9a. A disconnecting device, 10 is a connection conductor that is overlapped with the fixed conductor 9b and fastened to the case 1 with screws 11, 12 is a flexible conductor whose both ends are respectively connected to the movable contact 5 and the connection conductor 10 by brazing, and 13 is a screw. Load-side end fastened to case 1 at 14 The child 15 is a flexible conductor whose both ends are connected to the bimetal 9a and the terminal 13, respectively. Reference numeral 16 denotes an opening / closing mechanism which opens and closes the movable contact 5 together with the holder 6, although not described in detail. The opening / closing mechanism 16 is normally latched by a tripping mechanism 18 including a cross bar 17 extending over each pole. Reference numeral 19 denotes a handle lever which is swingably supported in the left and right directions in the figure. An open / close spring 20 is hung between the handle lever and the open / close mechanism 16, and an operation handle 21 is mounted on the head. Holder 6
A contact spring 22 is inserted between the movable contact 5 and the movable contact 5, and the movable contact 5 is urged toward the fixed contact 3. On the left and right sides of the movable contact 5, left and right pole movable contacts (not shown) are arranged side by side, and these movable contacts are also rotatably held by a holder similar to the illustrated holder 6 via a shaft. These three-pole holders are connected to each other by an integrally formed opening / closing shaft (not shown), and the whole is rotatably supported in a bearing groove (not shown) of the case 1 via the opening / closing shaft. Reference numeral 23 denotes an arc-extinguishing chamber arranged so as to surround the movement locus of the movable contact 8. In such a configuration, the current flows from the fixed contact 3
Fixed contact 4, movable contact 8, movable contact 5, flexible conductor 12,
Connection conductor 10, fixed conductor 9b, bimetal 9a, and flexible conductor
It flows to terminal 13 via 15. In this case, when an overload current of about 10 times the rated current flows, the bimetal 9a curves to the left in the figure and pushes the crossbar 17. This enables the trip mechanism
The latch of the opening / closing mechanism 16 is broken by 18, and the movable contact 5 is repelled by the force of the opening / closing spring 20, rotates together with the holder 6, and is quickly separated from the fixed contact 3. At this time, the arc generated between the fixed contact 4 and the movable contact 8 is drawn into the arc extinguishing chamber 23 by the electromagnetic force, where it is cooled and extinguished. Further, when a large current such as a short-circuit current flows, the fixed magnet 9c attracts the armature 9d, hits the crossbar 17 instantly without waiting for the bimetal 9b to bend, and the movable contact 5
Is separated. As shown in FIG. 17, when the operating handle 21 is opened rightward in the figure, the movable contact 5 is repelled by the spring force of the opening / closing spring 20 while the opening / closing mechanism 16 remains latched. Separate as shown.

【発明が解決しようとする課題】[Problems to be solved by the invention]

さて、上に説明した従来の回路遮断器において、開閉
機構16に駆動されて開閉運動する可動接触子5とケース
1に固定された接続導体10とは可撓導体12を介して電気
的に接続されている。可撓導体12は一般に細い銅線を少
量ずつ束にして編み合わせものが使用されている。とこ
ろが、このような構成には次のような欠点がある。 (1) 可動接触子5の開閉運動に伴って可撓導体12も
揺動するが、可動接触子5の開離距離を大きくしようと
するとこの揺動も大きくなり、金属疲労の蓄積による可
撓導体12の断線の危険が生じる。 (2) 可撓導体12の断線を防止するためには、上記揺
動時の可撓導体12の変形に無理が生じないようにその収
容スペースにゆとりを持たせる必要がある。そのため、
定格電流が大きくなり、それに応じて可撓導体12が太く
なると、その収容のためにケース1が大きくなり、回路
遮断器の小形化を困難にする。 (3) 可動接触子5は開閉運動時に可撓導体12から抵
抗力を受け、この抵抗力は可撓導体12の両端と相手部材
との接合状態や回路遮断器の開閉回数によっても変化す
るので、この抵抗力の影響を受けて接点4,8間の接触圧
力や可動接触子5の開閉速度にばらつきが生じる。 そこで、この発明は、可撓導体を用いることなく可動
接触子と固定側の接続導体とを電気的に接続するように
して上記欠点を排除した回路遮断器を提供することを目
的とするものである。 また、この発明は、上記回路遮断器において上記電気
的な接続をより確実にした回路遮断器を提供することを
目的とするものである。 更に、この発明は、上記回路遮断器において、ホルダ
への可動接触子の装着を容易にした回路遮断器を提供す
ることを目的とするものである。 更にまた、この発明は、上記回路遮断器において、上
記電気的接続部分の長寿命化を図った回路遮断器を提供
することを目的とするものである。
Now, in the conventional circuit breaker described above, the movable contact 5 driven by the opening / closing mechanism 16 to open and close and the connection conductor 10 fixed to the case 1 are electrically connected via the flexible conductor 12. Have been. In general, the flexible conductor 12 is formed by knitting a thin copper wire in small bundles. However, such a configuration has the following disadvantages. (1) The flexible conductor 12 also oscillates with the opening and closing movement of the movable contact 5, but when the separation distance of the movable contact 5 is increased, the oscillating becomes large, and the flexibility due to accumulation of metal fatigue is increased. There is a risk of the conductor 12 breaking. (2) In order to prevent disconnection of the flexible conductor 12, it is necessary to allow sufficient space in the accommodation space so that the deformation of the flexible conductor 12 at the time of the above-mentioned swinging will not be excessive. for that reason,
If the rated current becomes large and the flexible conductor 12 becomes thick accordingly, the case 1 becomes large for accommodating the same, making it difficult to miniaturize the circuit breaker. (3) The movable contact 5 receives a resistance force from the flexible conductor 12 at the time of the opening and closing movement, and this resistance force varies depending on the joining state between both ends of the flexible conductor 12 and the partner member and the number of times of opening and closing of the circuit breaker. Under the influence of the resistance, the contact pressure between the contacts 4 and 8 and the opening / closing speed of the movable contact 5 vary. Therefore, an object of the present invention is to provide a circuit breaker in which the above-mentioned disadvantages are eliminated by electrically connecting a movable contact and a fixed-side connection conductor without using a flexible conductor. is there. Another object of the present invention is to provide a circuit breaker in which the electrical connection is made more reliable in the circuit breaker. A further object of the present invention is to provide a circuit breaker in which the movable contact is easily mounted on the holder in the circuit breaker. Still another object of the present invention is to provide a circuit breaker having a longer life in the electrical connection portion in the circuit breaker.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、この発明は、開閉軸を介
してケースに回動自在に支持された絶縁物のホルダに可
動接触子が保持され、この可動接触子は開閉機構に駆動
されて前記ホルダと一緒に前記開閉軸のまわりに開閉運
動する回路遮断器において、可動接触子とケースに固定
した接続導体とを摺動接触により電気的に接続する。 そして、上記摺動接触を行わせるために、上記接続導
体の可動接触子との接続端に対向する一対の腕を形成し
て前記可動接触子を弾性的に挟ませ、かつこの腕と前記
可動接触子との接触部を通して軸を挿通し、前記可動接
触子を前記腕に回動可能に連結するとともに、この軸の
両端に前記腕を前記可動接触子の側面に圧接する圧縮コ
イルばねを挿入するものとする。 その場合、接続導体の腕の可動接触子との接触部の近
傍に対向間隔が前記接触部よりも狭い部分を設けること
により、電磁力をより有効に利用して接触圧力を高める
ことができる。 可動接触子を係合片を切り曲げ形成した薄板からなる
取付金具に取り付け、この取付金具を前記係合片と対応
する係合段部を有する凹部を形成したホルダに圧入して
前記可動接触子をホルダに保持させれば組立が容易とな
る。 上記摺動接触において、接触部は摺動による摩擦熱や
通電によるジュール熱のために加熱されるが、通常の導
電材料である銅や銅合金は前記加熱のために酸化し、接
触抵抗が増加して通電容量が低下する。このような酸化
を防止して摺動接触部の通電容量を安定に維持させるた
めの通常の手段としては、摺動接触面に銀(Ag)めっき
を施すことが考えられる。 しかし、発明者等の実験によれば、無負荷開閉(この
場合は接触部は無通電状態で摺動する。)を繰り返す
と、Agめっき層が磨耗して銅素地が露出し、また大電流
を遮断(この場合は接触部は通電状態で摺動する。)を
すると、Agめっき層が溶融してやはり銅素地が露出す
る。 そこで、この発明においては、可動接触子及び接続導
体の少なくとも一方の摺動接触面に、銀と炭素との複合
材料による被膜処理を施すものとする。 更に、一定以上の大電流により可動接触子と接続導体
との間の摺動接触部の温度が上昇し、軟化、溶融あるい
は溶着などの現象が心配される場合には、可動接触子と
接続導体とをこれらの間の摺動接触部に対して並列回路
を構成するようにリード線で接続するとよい。
In order to achieve the above object, according to the present invention, a movable contact is held by an insulator holder rotatably supported by a case via an opening / closing shaft, and the movable contact is driven by an opening / closing mechanism to move the movable contact. In a circuit breaker that opens and closes around the opening / closing axis together with a holder, a movable contact and a connection conductor fixed to a case are electrically connected by sliding contact. Then, in order to perform the sliding contact, a pair of arms facing the connection end of the connection conductor with the movable contact is formed to elastically sandwich the movable contact, and the arm and the movable contact are formed. A shaft is inserted through a contact portion with the contact, the movable contact is rotatably connected to the arm, and a compression coil spring that presses the arm against a side surface of the movable contact is inserted into both ends of the shaft. It shall be. In this case, the contact pressure can be increased by providing more effective use of the electromagnetic force by providing a portion in the vicinity of the contact portion between the arm of the connection conductor and the movable contact, the gap being smaller than the contact portion. The movable contact is mounted on a mounting bracket made of a thin plate formed by cutting and bending an engaging piece, and the mounting bracket is press-fitted into a holder having a concave portion having an engaging step corresponding to the engaging piece. If the holder is held, assembly becomes easy. In the above sliding contact, the contact portion is heated due to frictional heat due to sliding and Joule heat due to energization, but copper or copper alloy, which is a normal conductive material, is oxidized due to the heating and the contact resistance increases. As a result, the current carrying capacity decreases. As a usual means for preventing such oxidation and stably maintaining the current carrying capacity of the sliding contact portion, silver (Ag) plating may be applied to the sliding contact surface. However, according to the experiments conducted by the inventors, when the no-load switching (in this case, the contact portion slides in a non-energized state) is repeated, the Ag plating layer is worn out, the copper base is exposed, and a large current is applied. (In this case, the contact portion slides in an energized state), the Ag plating layer is melted and the copper base is also exposed. Therefore, in the present invention, at least one of the sliding contact surfaces of the movable contact and the connection conductor is subjected to a coating treatment with a composite material of silver and carbon. Further, when the temperature of the sliding contact portion between the movable contact and the connection conductor rises due to a large current exceeding a certain level, and a phenomenon such as softening, melting or welding is concerned, the movable contact and the connection conductor are connected. May be connected to each other by a lead wire so as to form a parallel circuit with respect to a sliding contact portion therebetween.

【作用】[Action]

可動接触子と接続導体とを直接摺動接触させて両者を
電気的に接続することにより、可撓導体が不要となり、
ケース内にその収容スペースを確保する必要もなくな
る。その場合、可動接触子の開閉運動(ホルダを連結す
る連結軸のまわりの回転運動)に伴って接続導体から可
動接触子に働く制動トルクは、摺動接触面の摩擦力と小
面積の接触範囲の平均的な回転半径との積で生じ、この
回転半径に比べてはるかに長い可動接触子の先端部に設
けられた可動接点の接触圧力や開閉速度に与える影響は
小さい。、また、上記摩擦力は摺動接触面に齧りや溶着
が生じない限りほとんど変化しないから、上記制動トル
クの変動も小さい。 接続導体の可動接触子との接続端に対向する一対の腕
を形成して可動接触子を挟ませれば、可動接触子の一方
の面でのみ接触させる場合に比べて接触面積が2倍とな
り、更に接続導体の対向する腕をそれぞれ同方向に流れ
る電流の間に互いに働く電磁吸引力により腕が可動接触
子に押しつけられ接触圧力が高まることになる。。その
場合、接続導体の腕の可動接触子との接触部の近傍に対
向間隔が前記接触部よりも狭い部分を設ければ上記電磁
吸引力がをより有効に利用して接触圧力を高めることが
できる。また、その腕を可動接触子の側面に圧接するば
ねを両側に設ければ常時の接触圧力を確保することがで
きる。 可動接触子をホルダに保持させる構造として、可動接
触子を係合片を切り曲げ形成した薄板からなる取付金具
に取り付け、この取付金具を前記係合片と対応する係合
段部を有する凹部を形成したホルダに圧入してするよう
にすれば、可動接触子を一動作でホルダに装着でき、組
立作業が簡単となる。 ところで、発明者等の考察によれば、可動接触子と接
続導体とを摺動接触させた場合に、無負荷開閉でAgめっ
きが磨耗して銅素地が露出するのは、可動接触子及び接
続導体の双方のAgめっき層に齧りが生じるためである。
また、大電流遮断で銅素地が露出するのは、双方のAgめ
っき層が互いに溶着するためで、その際、溶着部が摺動
の過程で破断するとその部分が肌荒れを起こし、電気的
接触が悪くなって通電による発熱が増え、益々溶融、溶
着しやすくなる。 このような問題は、Agめっきに代えて、銀マトリック
ス中に炭素(C)粒を分散させた複合材料よりなる被膜
処理を摺動接触面に施すことにより解決できる。炭素は
周知の通り優れた潤滑性を持つが銀とは全く溶け合わな
い。そのため、銀−炭素複合材は無負荷開閉時の齧りを
防止できると同時に、大電流通電時に発熱により溶融し
ても溶着し合うことが少なく、いずれの場合にも摺動接
触面は平滑に保たれ、安定した通電容量を維持できる。 また、摺動接触部に対して並列回路を構成するよう
に、可動接触子と接続導体とをリード線で接続すること
によって、短絡電流などの大電流が流れた場合に、この
電流を摺動接触部とリード線とに分流させて摺動接触部
の熱負荷を減少させ、その分、電流容量を増やすことが
できる。
By making the movable contact and the connection conductor directly in sliding contact with each other and electrically connecting them, a flexible conductor becomes unnecessary,
There is no need to secure the accommodation space in the case. In this case, the braking torque acting on the movable contact from the connection conductor in accordance with the opening and closing movement of the movable contact (rotational movement about the connecting shaft connecting the holder) is determined by the frictional force of the sliding contact surface and the contact area of the small area. , And has a small effect on the contact pressure and switching speed of the movable contact provided at the distal end of the movable contact, which is much longer than this rotational radius. Further, the frictional force hardly changes unless the sliding contact surface is squeezed or welded, so that the fluctuation of the braking torque is small. If a pair of arms facing the connection end of the connection conductor with the movable contact is formed and the movable contact is sandwiched, the contact area is doubled as compared with a case where only one surface of the movable contact makes contact with the movable contact. Furthermore, the arms are pressed against the movable contact by the electromagnetic attraction force acting between the opposing arms of the connection conductor during the current flowing in the same direction, so that the contact pressure increases. . In that case, if a portion where the facing interval is smaller than the contact portion is provided in the vicinity of the contact portion of the arm of the connection conductor with the movable contact, the electromagnetic attraction force more effectively utilizes the electromagnetic attraction force to increase the contact pressure. it can. If springs are provided on both sides for pressing the arm against the side surface of the movable contact, a constant contact pressure can be ensured. As a structure for holding the movable contact in the holder, the movable contact is attached to a mounting bracket made of a thin plate formed by cutting and bending an engaging piece, and the mounting bracket is provided with a recess having an engaging step corresponding to the engaging piece. By press-fitting the formed holder, the movable contact can be mounted on the holder in one operation, and the assembling work is simplified. By the way, according to the considerations of the inventors, when the movable contact and the connection conductor are brought into sliding contact, the Ag plating is worn out by the no-load opening and closing, and the copper base is exposed. This is because the Ag plating layer on both sides of the conductor is bitten.
In addition, the reason why the copper base is exposed when a large current is interrupted is that the two Ag plating layers are welded to each other. At this time, if the welded portion breaks during the sliding process, the portion becomes rough and the electrical contact is lost. As the temperature worsens, the heat generated by energization increases, and melting and welding become easier. Such a problem can be solved by applying a coating treatment made of a composite material in which carbon (C) particles are dispersed in a silver matrix to the sliding contact surface instead of the Ag plating. As is well known, carbon has excellent lubricity, but does not dissolve at all with silver. Therefore, the silver-carbon composite material can prevent squealing at the time of no-load opening and closing, and at the same time, hardly weld together even if it is melted by heat generation when a large current is applied. In any case, the sliding contact surface is kept smooth. It is possible to maintain stable current carrying capacity. In addition, when a large current such as a short-circuit current flows by connecting the movable contact and the connection conductor with a lead wire so as to form a parallel circuit with the sliding contact portion, the current is slid. By dividing the current into the contact portion and the lead wire, the thermal load on the sliding contact portion can be reduced, and the current capacity can be increased accordingly.

【実施例】【Example】

以下、図に基づいてこの発明の実施例を説明する。な
お、実施例を示す図において従来例と実質的に同一の部
分には同一の符号を付けるものとする。 まず、第1図はこの発明を原理的に示す第1の実施例
の中央極の可動接触子部分の斜視図である。可動接触子
31は銅帯から所定の形状に打ち抜かれて構成され、先端
に可動接点32がろう付けされている。接続導体33はバイ
メタル9aと一体構成されており、穴34を通る図示しない
ねじによりケース1に締め付けられる。この場合、バイ
メタル9aを固定するための固定導体9b(第16図)は不要
となっている。接続導体33には対向する一対の腕33aが
折り曲げ形成されており、この腕33aは可動接触子31の
端部を弾性的に挟み、開閉運動をする可動接触子31と摺
動接触する。図示しないが、可動接触子31と腕33aには
共通の穴があけられ、図示の通り軸35が挿通されてい
る。 一方、樹脂成形品のホルダ36には可動接触子31を受け
入れる凹部36aが形成されており、その両端の壁に軸35
の両端がそれぞれ嵌め込まれている。また、その際、腕
33aの両側で軸35にコイルばねからなる圧縮ばね37が挿
入され、ホルダ36との間で腕33aの内壁面を可動接触子3
1の側面に圧接させている。38はホルダ36と図示しない
その両側の左右極のホルダとを連結する一体成形された
開閉軸で、ホルダ36は開閉軸38を介してケース1に回動
自在に支持される。可動接触子31は開閉機構16で駆動さ
れると開閉軸38のまわりに開閉運動し、図示しないホル
ダに同様に保持された左右極の可動接触子も一体に開閉
運動する。 第16図の従来例、及び第1図の実施例の過電流引外し
装置9はバイメタル9a自身に電流を流す直熱型のもので
あるが、ヒータ導体に電流を流して発熱させ、これに結
合したバイメタルに熱を伝達させる傍熱型のものがあ
る。第2図はそのような過電流引外し装置を用いた回路
遮断器における原理的な実施例で、この場合は接続導体
33はヒータ導体39と一体に構成されている。それ以外の
構成については第1図の実施例と同じなので説明を省略
する。 第3図及び第4図は、第1図の実施例に示した可動接
触子31と接続導体33とを備えた回路遮断器の縦断面図
で、第3図は閉路状態、また第4図は開路状態を示して
いる。図において、固定接触子3から固定接点4、可動
接点8を経て可動接触子31に流れた電流は、可動接触子
31の側面と腕33aの内壁面との摺動接触により直接接続
導体33に流れ、バイメタル9a、可撓導体15を経て端子13
に至る。40は可動接触子31とケース1との間に挿入され
た圧縮ばねからなる接触ばねで、これにより可動接触子
31は固定接触子3に向かって付勢され適切な接触圧力が
与えられている。その他の構成、動作については従来例
と同じなので説明を省略する。 次に、第5図〜第9図はこの発明の実際的な第3の実
施例を示すものである。以下、これについて詳細に説明
する。 まず、第5図は固定接触子と、これと摺動接触する接
続導体とを組み合わせた状態を示すもので、第5図
(A)は取付金具44(後述)の上部板を部分的に取り除
いた平面図、同(B)は取付金具44の手前側の側板を部
分的に取り除いた側面図、同(C)は背面図である。図
において、41は銅帯から図示形状に打ち抜かれた可動接
触子、42はその先端にろう付けされた可動接点、43は銅
板から折り曲げ形成された接続導体、44はばね性の大き
い薄鋼板から門形に折り曲げ形成された取付金具、45は
限流機構を構成する鋼板からなる限流ラッチである。 接続導体43は穴46を通るねじで回路遮断器のケース1
(第3図)に締め付けられる基部43aから、対向する一
対の腕43bが立ち上げられたもので、腕43bは可動接触子
41の板厚よりやや狭い間隔まで図示形状に折り曲げら
れ、これを押し広げて挿入された可動接触子41の後端部
を弾性的に挟んで、その側面と摺動接触するようになっ
ている。また、第5図(A)に示すように、基部43aに
は中心線に沿って左端から穴46の手前までスリット43c
が切り込まれており、腕43bが横方向に弾性変形し易い
ようになっている。 可動接触子41と腕43bとの摺動接触部には共通の貫通
穴があけられ、軸47が若干の隙間を介して挿入されてい
る。そして、腕43bの両側でワッシャ48を挟んで軸47に
圧縮コイルばねからなるばね49が挿入され、軸47の両端
は取付金具44の側板にかしめ付けにより結合されてい
る。これにより、可動接触子41は軸47のまわりに回動可
能であり、また腕43bはばね49により可動接触子41に圧
接され適度の接触圧力が与えられている。 ここで、第9図(A)に接続導体43の側面図、同
(B)はそのB−B線に沿う断面図である。第9図に示
すように、軸47を通す貫通穴50を囲んで、腕43bの内側
には環状凸部43cが形成され、この部分で可動接触子41
に接触するようになっている。これにより可動接触子41
と腕43bとの接触範囲が小さな平均半径の範囲内に特定
され、摩擦力による可動接触子41への制動トルクを小さ
く抑え得るとともに接触圧力が向上し、更に開閉運動を
繰り返しても接触面が一定して安定した接触が維持され
るようになる。 再び第5図に戻って、取付金具44には、その側板に軸
47と同様に両端が固着された別の軸51により、限流ラッ
チ45が回動可能に支持されている。限流ラッチ45は軸51
が貫通する部分でU字形に折り曲げられた二股状の硬質
部材で、軸47に対向する側に変曲点Vを挟んで、ほぼ垂
直な通常面45aと、これに対して図の反時計方向に傾斜
した限流面45bとが設けられている。そして、この限流
ラッチ45は、通常の開閉状態では通常面45aで、可動接
触子41に左右に突出するように植え込まれた限流ピン52
と係合し、その上端と取付金具上部との間に掛け渡され
た左右一対の限流ばね53により限流ピン52に押圧されて
いる。一方、可動接触子41は、限流ばね53により限流ピ
ン52を介して軸47のまわりに第5図(B)の反時計方向
に回動するトルクを与えられている。このトルクは後述
するように回路遮断器に組み込まれた際に、可動接点42
を固定接点4に向かって押圧する接触圧力を発生させ
る。つまり、限流ばね53は接触ばねの作用を持ってい
る。 取付金具44の上部板及び側板下部にはそれぞれ外側に
張り出すように係合片44a及び44bが切り曲げにより形成
されている。図示可動接触子41と接続導体43との組立体
は係合片44a,44bを用いてホルダに固定されるが、次に
そのホルダについて説明する。 第6図はホルダの平面図、第7図はそのVII-VII線に
沿う断面図である。第6図に示すように、モールド樹脂
からなる各極のホルダ54は開閉軸55により互いに結合さ
れている。55aは開閉軸55と一体形成された相間バリヤ
である。ホルダ54は連結軸55が二点鎖線で示したケース
1の相間隔壁1aに形成された図示しない軸受溝に嵌め込
まれることにより回動自在に支持される。なお、中央極
のホルダ54の左右の側面には開閉機構のリンクを連結す
るための切欠54aが形成されている。 第5図の組立体は、第7図に示すようにホルダ54に装
着される。すなわち、ホルダ54にはその背面から上記組
立体を挿入する凹部56が形成され、また前面の壁には可
動接触子41を開閉運動可能に挿通する窓57があけられて
いる。凹部56の左右の壁には、取付金具44の幅に合わせ
て嵌合面56aが形成され、その前縁56bは取付金具44の前
面の輪郭に形取られている。また、凹部56の天井壁には
係合片44aに対応して段部56cが設けられ、更に左右の壁
には嵌合面前縁56bの下部に沿って、係合片44bに対応す
る段部56dが設けられている。 このようなホルダ54に、取付金具44の係合片44a及び4
4bを内側に弾性変形させながら第5図の組立体を押し込
むと、取付金具44の前面が左右の壁の嵌合面前縁56bに
突き当たったところで停止し、同時に係合片44a及び44b
が弾性力により復帰してそれぞれ段部56c及び56dに係合
し、第7図に示した状態で固定される。第8図はそのよ
うにして可動接触子41が固定されたホルダ54を示す斜視
図である。なお、54bは開閉機構のリンクを連結するピ
ンを挿入する貫通穴である。 第14図は第5図の組立体を保持したホルダ54が組み込
まれた回路遮断器の中央極部分の縦断面図で、図は閉路
状態を示している。接続導体43は基部43aがバイメタル9
aと重ねて一緒にケース1に締め付けられている。図示
状態で可動接触子41は固定接触子3に押圧されて、軸47
のまわりに図の時計方向にわずかに回動し、それに伴っ
て限流ピン52を介して限流ラッチ45を限流ばね53に抗し
て軸51のまわりに反時計方向に回動させている。その結
果として、可動接触子41は限流ばね53から逆に図の反時
計方向に回転モーメントを受け、接点4,42間の接触圧力
を得ている。 ホルダ54及び可動接触子41は開閉運動をする際に、第
7図における開閉軸55の軸心A点のまわりに回動する
か、軸47の軸心B点はA点から図示のとおり距離rだけ
ずれており、軸47はA点のまわりに半径rの回動を行
う。そのため、第9図(A)に示すように軸47を挿通す
る貫通穴50を長穴として、その回動を妨げないようにし
てある。このように可動接触子41を支持する軸心B点を
開閉軸55の軸芯A点からずらせるのは、ホルダ54の回動
と共に可動接触子41を前後方向(第14図の左右方向)に
僅かに移動させ、接点4,42間を摺動させて接触面の酸化
被膜を取り除くためである。 次に限流ラッチ45の作用による限流遮断について説明
する。第14図において、固定接触子3には可動接触子5
の導体と平行に位置する導体部分3bが設けら、接点4,42
を経て導体部分3b及び可動接触子31を流れる電流は矢印
で示すようにその方向が互いに逆になっている。そのた
め、これらの電流間に働く電磁反発力により可動接触子
31は常に開離方向に力を受けている。 このような回路遮断器に短絡電流などの大電流が流れ
ると、可動接触子41は極めて大きな駆動力を受け、限流
ばね53の力に抗して限流ラッチ45を押し退けて軸47のま
わりに時計方向に回動する。その結果、限流ピン52は限
流ラッチ45の通常面45a上を滑って変曲点Vを越え、限
流面45b上に乗り上げる。 限流ラッチ45における通常面45aと限流面45bの角度
は、限流ピン52が通常面45aと接触しているときは、限
流ばね53のばね力に基づいて限流ラッチ45から限流ピン
52に作用する力は可動接触子41を図の反時計方向に回動
させるように働き、限流ピン52が限流面45bに移ると、
その力は可動接触子41を時計方向に回動させるように働
くように設定してある。そのため、上に述べたように可
動接触子41がある開極距離以上に回動して変曲点Vを越
えると、可動接触子41は上記電磁反発力に加えて限流ば
ね53による回動力を受け、開閉機構16の動作による開離
に先立って急速開離する。これによりアーク電圧が急速
に高まり、いわゆる限流遮断が実行される。 第7図はそのような限流遮断が行われた結果を示して
いる。限流ラッチ45のリセットは、第14図において、過
電流引外し装置9の指令により上記限流動作に引き続い
て行われる開閉機構16のトリップ動作の際に、可動接触
子41がカバー2に一体形成されたストッパ2aに突き当た
ったまま、ホルダ54が図の時計方向の強制回動させられ
ることにより行われ、限流ピン52は変曲点Vを逆方向に
越えて再び通常面45aと係合する。 第10図は上に述べた限流動作時における力関係を明ら
かにする説明図で、第10図(A)は回路遮断器の閉路状
態を示し、同図(B)は開極直後の状態を示している。
また、第11図は限流動作時に限流ばね53のばね力に基づ
いて可動接触子41に作用するトルクと可動接触子41の開
離距離との関係を線図で示したものである。 まず、第10図(A)において、閉路状態では限流ばね
53のばね力P1とピン52からの距離L1とにより、限流ラ
ッチ45にはP1×L1のトルクが作用する。このトルク
は、ほぼ垂直な通常面45aにおけるピン51からL2の距離
の点で限流ピン52に対してP2の力を与え(P1×L1
2×L2)、この力P2は限流ピン52から軸47までの距
離L3により、可動接触子41に対して反時計方向にP2×
3のトルクを与える。このトルクにより、可動接点42
と固定接点4との間の接触圧力が生じる。 一方、変曲点Vを越えた第10図(B)の状態では、限
流ばね53からのばね力P3に基づいて限流ラッチに作用
するトルクにより、限流面45bにおけるピン51から距離
4の点で限流ピン52に対して力P4が生じる。この力P
4は限流面45bの傾斜角の関係から、軸47の図の上方を通
って軸47までの距離L5により可動接触子41にP4×L5
の時計方向のトルクを与えてその開離動作を促進する。 第11図は電磁反発力により限流ピン52が通常面45a上
を滑って変曲点Vを越えた途端に可動接触子41に作用す
るトルクの向きが逆転する様子を示したもので、トルク
の+側は反時計方向を、また一側は時計方向を表してい
る。ところで、大電流が流れて電磁反発力が接触圧力を
越えたら、できるだけ短い時間で上記トルクの逆転が発
生することが望まれる。そのためには、限流ピン52が閉
路位置から変曲点Vまで移動する間の+方向トルクの増
加を抑え、また第10図(A)における限流ピン52と限流
ラッチ45との掛合量L6をできるだけ少なくする必要が
ある。 +方向のトルクの上記増加を小さくするためには、通
常面45aと限流面45bとの角度差を小さくすればよい。し
かし、この角度差が小さくなると力P2の向きが軸47側
に寄り、距離L3も小さくなって接触圧力が低下する。
また、上記掛合量L6が余り小さくなると、遮断器投入
時の接点バウンスによって限流ピン52が変曲点を越えて
しまう危険が生じる。したがって、これらの兼ね合いを
考慮して、通常面45aの角度及び掛合量L6を適切に決定
する。 電磁反発力で可動接触子を固定接触子から開離させる
ように構成した回路遮断器の場合、単に接触ばねを変形
させるだけでは、可動接触子の開離と共に接触ばねの反
力が増大して可動接触子の運動が阻害される。これに対
して、図示の限流機構は限流効果が大きく、例えばAC46
0V,42kAの電流を遮断した場合に、通過電流のピーク値
が従来の約33kAから約26kAに低下することが確認されて
いる。 次に、第12図(A)は摺動接触する可動接触子41と接
続導体43の要部を示し、同図(B)はそのB部を拡大し
たものである。図に示すように、電流は接触範囲内のい
くつかの接触点Pを通して流れる。この電流は第12図
(B)に矢印iで示すように接触点Pに向かって集ま
り、接触点Pを通過すると同時に拡散するため、接触点
Pの前後で電流の向きが逆になり、可動接触子41と接続
導体43の腕43bとの間には電磁反発力が作用する。 この電磁反発力の大きさF1は一つの接触点Pの通過
電流をIK(kA)とすると、接触点Pの数をnとして、 F1=Σ51j 2×10-2(kg)(j=1〜n) で与えられる。この電磁反発力F1は回路遮断器の通過
電流が大きくなり、したがって個々の接触点Pを通過す
る電流が大きくなると加速度的に大きくなる。その結
果、ばね49の力が減殺されて接触点Pの数が減り、残り
の接触点Pの通過電流が過大となって、その部分で発弧
もしくは溶着が発生する可能性が出てくる。 このようなことから、可動接触子41と接続導体43とを
摺動接触(面接触)で接続する場合、適用可能な短絡電
流定格に限界が生じる。この限界値を高くするためにば
ね49の力を大きくすると、今度は摩擦力が大きくなり可
動接触子41の常時の開閉速度が低下するという問題が生
じる。この問題を解決する手段として、第5図(C)及
び第9図(B)に示すように、腕43bの可動接触子41と
の接触部の近傍に腕43bの対向間隔が前記接触部よりも
間隔の狭い部分58を設ける。以下、その作用について第
12図(A)を参照して説明する。 いま、上記部分58での腕43bの長さをl、その対向間
隔をS、各腕43bに分流する電流をI〔kA〕とすれば、
電流Iは各腕43bを同方向に流れるから、腕43b間には次
の電磁吸引力F2が生じる。 F2=2.04kl/S・I2(k:定数) そこで、この電磁吸引力F2が上述の電磁反発力F1
り大きくなるように上記間隔Sを定めれば、ばね49の力
を大きくすることなく適用可能な短絡電流定格を向上さ
せることができる。第17図に上記電磁反発力F1及び電
磁吸引力F2が回路遮断器を通過する短絡電流とともに
変化して行う様子を示す。また、図の接触力はばね49及
び接続導体43の弾性によって得られる力である。 また、第9図(B)に示すように、腕43bの接触部に
設けた環状凸部43cは、その外側で腕43bと可動接触子41
との間の距離を隔て、接触部の前後で互いに逆方向に流
れる電流の間隔を大きして上記電磁反発力F1を小さく
する作用をする。 更に、可動接触子及び接続導体の少なくとも一方の摺
動接触面に銀(Ag)と炭素(C)の複合材料による被膜
処理を施すことにより、回路遮断器の無負荷開閉の繰り
返しや大電流遮断に伴う接触面の齧りや溶着を防止し、
通電性能を大幅に向上させることができる。 そこで、第5図に示す構造の可動接触子41及び接続導
体43に上記被膜処理を施した実施例について、以下に試
験結果を説明する。 まず、可動接触子41及び接続導体43にそれぞれAg−6
%C(体積%)の被膜を厚さ7μmに電気めっきした。
その際、Ag中に分散させるC粒は長径0.5〜2μm、短
径0.2〜0.5μmの片状のものを使用した(実験例1)。 同様に、可動接触子41及び接続導体43にそれぞれAg−
3%C(体積%)の被膜を厚さ7μmに電気めっきし
た。その際、Ag中に分散させるC粒は長径0.8〜5μ
m、短径0.3〜1μmの片状のものを使用した(実験例
2)。 また、比較例として、Agめっき7μmを施した同様の
可動接触子及び接続導体を用意した。 これらの可動接触子及び接続導体を回路遮断器に組み
込み、無負荷開閉試験及び大電流遮断試験を実施した結
果を第1表に示す。これによれば、Ag−C複合材料のめ
っきを施したものは、通常のめっきのものに比べて銅素
地が露出しにくいことが分かる。 上記実験例では2つの例を示したが、この発明の効果
はCの性質に依存しているので、C%やC粒の大きさは
これらに限ったものではない。また、摺動接触部の齧り
易さや溶融し易さは接触部の広さや面圧力によっても影
響されるので、C%やC粒の大きさはこれらを総合して
決める。ただ、Cは導電性を有するものの電気抵抗がAg
の数百倍〜数千倍である。したがって、いたずらにC%
を大きくしたり、めっき厚さを貫通するような大きなC
粒を使用することは、摺動接触部の発熱を増加させ、回
路遮断器の端子部温度を上げることになるので好ましく
ない。 上記実験例では電気めっき被膜の場合を示したが、被
膜がAgとCとの複合材であることが重要であり、被膜形
成方法は電気めっきに限られるものではない。 齧り防止あるいは溶着防止に寄与しているのは摺動接
触面におけるCの存在であるから、可動接触子と接続導
体のいずれか一方にのみAg−C被膜を形成しても効果が
ある。その場合、他方の部品はAgめっきをすることが望
ましいが、Cは酸化防止作用があるので、銅のままでも
ある程度の通電特性は得られる。なお、上記被膜は導体
全面に施す必要はなく、摺動接触面に限定して形成して
もよい。 更に、Ag−Cに第3の粒子として微細な硬質粒子、例
えばSiC、WC、ZrB、Al23、ZrO2、CrO3、TiO2、R
23、ThO2、Y23、MoO3、W2C、TiC、B4C、CrB2
などの粒子を分散させれば、被膜全体の硬度を上げて、
より磨耗しにくい長寿命の接触部を構成することができ
る。 最後に第15図は可動接触子とこれに摺動接触する接続
導体とを更にリード線で接続したこの発明の第4の実施
例を示すもので、第15図(A)は可動接触子部分の平面
図、同(B)はその側面図、同(C)はその背面図であ
る。図において、59は可動接触子41と接続導体43との間
の摺動接触部とほぼ同等の抵抗値を有する可撓性のリー
ド線で、その一端は可動接触子41の後端部の下面に、ま
た他端は接続導体43の基部43aの上面にそれぞれろう付
けにより接続され、リード線59により摺動接触部に対す
る並列回路が構成されている。 これにより、可動接触子41と接続導体43との間を流れ
る電流は摺動接触部とリード線59とにほぼ二分され、短
絡電流などの大電流が流れた際の摺動接触部の熱的負荷
が半減し、その分、回路遮断器全体としての限界電流値
の増加が可能となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings showing the embodiment, the same reference numerals are given to portions substantially the same as those in the conventional example. First, FIG. 1 is a perspective view of a movable contact portion of a center pole according to a first embodiment of the present invention in principle. Movable contact
31 is formed by punching out a predetermined shape from a copper strip, and a movable contact 32 is brazed to the tip. The connection conductor 33 is formed integrally with the bimetal 9a, and is fastened to the case 1 by a screw (not shown) passing through the hole. In this case, the fixed conductor 9b (FIG. 16) for fixing the bimetal 9a is unnecessary. A pair of arms 33a opposed to each other are formed on the connection conductor 33 by bending, and the arms 33a elastically sandwich the end of the movable contact 31 and make sliding contact with the movable contact 31 that opens and closes. Although not shown, a common hole is formed in the movable contact 31 and the arm 33a, and the shaft 35 is inserted as shown. On the other hand, a concave portion 36a for receiving the movable contact 31 is formed in the holder 36 of the resin molded product.
Are fitted at both ends. Also, at that time, the arm
A compression spring 37 made of a coil spring is inserted into the shaft 35 on both sides of the arm 33a, and the movable contact 3
It is pressed against the side of 1. Reference numeral 38 denotes an integrally formed opening / closing shaft for connecting the holder 36 to holders on the left and right poles on both sides thereof (not shown). The holder 36 is rotatably supported by the case 1 via the opening / closing shaft 38. When the movable contact 31 is driven by the opening / closing mechanism 16, the movable contact 31 opens and closes around the opening / closing shaft 38, and the left and right pole movable contacts similarly held by a holder (not shown) also open and close integrally. The overcurrent tripping device 9 of the conventional example of FIG. 16 and the embodiment of FIG. 1 is of a direct heating type in which a current flows through the bimetal 9a itself, but a current flows through the heater conductor to generate heat. There is an indirectly heated type that transfers heat to the combined bimetal. FIG. 2 shows a basic embodiment of a circuit breaker using such an overcurrent trip device, in which case a connecting conductor is used.
33 is formed integrally with the heater conductor 39. Other configurations are the same as those in the embodiment of FIG. 3 and 4 are longitudinal sectional views of the circuit breaker provided with the movable contact 31 and the connection conductor 33 shown in the embodiment of FIG. 1. FIG. 3 is a closed state, and FIG. Indicates an open circuit state. In the figure, the current flowing from the fixed contact 3 to the movable contact 31 via the fixed contact 4 and the movable contact 8 is
The sliding contact between the side surface of the arm 31a and the inner wall surface of the arm 33a directly flows into the connection conductor 33, passes through the bimetal 9a, the flexible conductor 15, and the terminal 13
Leads to. Numeral 40 denotes a contact spring consisting of a compression spring inserted between the movable contact 31 and the case 1, and
Numeral 31 is urged toward the fixed contact 3 to give an appropriate contact pressure. Other configurations and operations are the same as those of the conventional example, and the description is omitted. Next, FIGS. 5 to 9 show a practical third embodiment of the present invention. Hereinafter, this will be described in detail. First, FIG. 5 shows a state in which a fixed contact and a connecting conductor which makes sliding contact with the fixed contact are combined. FIG. 5 (A) shows a state in which an upper plate of a mounting bracket 44 (described later) is partially removed. (B) is a side view in which a front side plate of the mounting bracket 44 is partially removed, and (C) is a rear view. In the figure, 41 is a movable contact stamped out of a copper strip in the illustrated shape, 42 is a movable contact brazed to the tip thereof, 43 is a connection conductor bent from a copper plate, and 44 is a thin steel plate having a large spring property. The mounting bracket 45 formed in a gate shape is a current limiting latch made of a steel plate constituting a current limiting mechanism. The connection conductor 43 is a screw passing through the hole 46 and is the case 1 of the circuit breaker.
A pair of opposing arms 43b is raised from a base 43a fastened to (FIG. 3), and the arm 43b is a movable contact.
The movable contact 41, which is bent into the shape shown in the drawing to a slightly smaller interval than the plate thickness of 41, is elastically sandwiched between the rear ends of the inserted movable contacts 41, and comes into sliding contact with the side surface thereof. . Also, as shown in FIG. 5 (A), the base 43a has a slit 43c extending from the left end to a position short of the hole 46 along the center line.
The arm 43b is easily elastically deformed in the lateral direction. A common through hole is formed in a sliding contact portion between the movable contact 41 and the arm 43b, and a shaft 47 is inserted through a slight gap. Then, a spring 49 made of a compression coil spring is inserted into the shaft 47 with a washer 48 on both sides of the arm 43b, and both ends of the shaft 47 are joined to the side plate of the mounting bracket 44 by caulking. As a result, the movable contact 41 is rotatable around the axis 47, and the arm 43b is pressed against the movable contact 41 by the spring 49 to apply an appropriate contact pressure. Here, FIG. 9 (A) is a side view of the connection conductor 43, and FIG. 9 (B) is a cross-sectional view along the line BB. As shown in FIG. 9, an annular convex portion 43c is formed inside the arm 43b so as to surround the through hole 50 through which the shaft 47 passes, and the movable contact 41 is formed at this portion.
It comes in contact with. This allows the movable contact 41
The contact range between the arm and the arm 43b is specified within the range of a small average radius, the braking torque to the movable contact 41 due to the frictional force can be suppressed to a small value, the contact pressure is improved, and even if the opening and closing movements are repeated, the contact surface becomes Constant and stable contact is maintained. Referring again to FIG. 5, the mounting bracket 44 has a shaft attached to its side plate.
The current limiting latch 45 is rotatably supported by another shaft 51 having both ends fixed similarly to 47. Current limiting latch 45 is shaft 51
Is a bifurcated hard member bent into a U-shape at the portion where it penetrates, and a normal surface 45a substantially perpendicular to the axis 47 on the side facing the axis 47 with the inflection point V in between, and a counterclockwise direction in FIG. And a current limiting surface 45b that is inclined. The current limiting latch 45 is provided with a current limiting pin 52 implanted on the normal surface 45a of the movable contact 41 so as to protrude left and right in a normal open / close state.
, And is pressed against the current limiting pin 52 by a pair of left and right current limiting springs 53 spanned between the upper end thereof and the upper part of the mounting bracket. On the other hand, the movable contact 41 is provided with a torque that rotates around the axis 47 in the counterclockwise direction in FIG. This torque is applied to the movable contact 42 when incorporated in the circuit breaker as described later.
Is generated toward the fixed contact 4. That is, the current limiting spring 53 has the function of a contact spring. Engagement pieces 44a and 44b are formed by cutting and bending on the upper plate and the lower portion of the side plate of the mounting bracket 44 so as to project outward. The assembly of the illustrated movable contact 41 and the connection conductor 43 is fixed to the holder using the engagement pieces 44a and 44b. Next, the holder will be described. FIG. 6 is a plan view of the holder, and FIG. 7 is a cross-sectional view thereof along the line VII-VII. As shown in FIG. 6, holders 54 of respective poles made of a mold resin are connected to each other by an opening / closing shaft 55. 55a is an inter-phase barrier formed integrally with the opening / closing shaft 55. The holder 54 is rotatably supported by the connection shaft 55 being fitted into a bearing groove (not shown) formed in the phase gap wall 1a of the case 1 shown by a two-dot chain line. Notches 54a for connecting links of the opening and closing mechanism are formed on the left and right side surfaces of the holder 54 of the center pole. The assembly of FIG. 5 is mounted on the holder 54 as shown in FIG. That is, the holder 54 is formed with a concave portion 56 for inserting the above-mentioned assembly from the rear surface thereof, and a window 57 for opening the movable contact 41 so that the movable contact member 41 can be opened and closed. A fitting surface 56a is formed on the left and right walls of the concave portion 56 in accordance with the width of the mounting bracket 44, and a front edge 56b of the fitting surface 56a is formed in a contour of a front surface of the mounting bracket 44. Further, a step 56c is provided on the ceiling wall of the concave portion 56 corresponding to the engaging piece 44a, and further on the left and right walls along the lower portion of the fitting surface front edge 56b, a step corresponding to the engaging piece 44b. 56d is provided. On such a holder 54, the engaging pieces 44a and 4
When the assembly shown in FIG. 5 is pushed in while elastically deforming the inner side 4b, the mounting bracket 44 stops when the front surface of the mounting bracket 44 abuts the front edge 56b of the fitting surface of the left and right walls, and at the same time, the engagement pieces 44a and 44b
Is returned by the elastic force and engages with the steps 56c and 56d, respectively, and is fixed in the state shown in FIG. FIG. 8 is a perspective view showing the holder 54 to which the movable contact 41 is fixed as described above. Reference numeral 54b is a through hole into which a pin connecting the link of the opening / closing mechanism is inserted. FIG. 14 is a longitudinal sectional view of a center pole portion of the circuit breaker in which the holder 54 holding the assembly of FIG. 5 is incorporated, and the figure shows a closed state. The base 43a of the connection conductor 43 is bimetal 9
It is fastened to Case 1 together with a. In the illustrated state, the movable contact 41 is pressed by the fixed contact 3 to
Around the shaft 51 slightly counterclockwise around the shaft 51 against the current limiting spring 53 via the current limiting pin 52. I have. As a result, the movable contact 41 receives a rotational moment from the current-limiting spring 53 in the counterclockwise direction in the drawing to obtain a contact pressure between the contacts 4 and 42. The holder 54 and the movable contact 41 rotate about the axis A of the opening / closing shaft 55 in FIG. 7 during the opening / closing movement, or the axis B of the shaft 47 is moved away from the point A as shown in the figure. The shaft 47 pivots about point A by a radius r. Therefore, as shown in FIG. 9 (A), the through hole 50 through which the shaft 47 is inserted is formed as an elongated hole so as not to hinder its rotation. The reason that the point B of the axis supporting the movable contact 41 is shifted from the point A of the axis of the opening / closing shaft 55 is that the movable contact 41 is moved back and forth (horizontal direction in FIG. 14) with the rotation of the holder 54. Is moved slightly to slide between the contacts 4 and 42 to remove the oxide film on the contact surface. Next, the current limiting interruption by the action of the current limiting latch 45 is described. In FIG. 14, a fixed contact 3 has a movable contact 5
A conductor portion 3b located in parallel with the conductor of
, The directions of the currents flowing through the conductor portion 3b and the movable contact 31 are opposite to each other as shown by arrows. Therefore, the movable contact
31 is always receiving force in the direction of separation. When a large current such as a short-circuit current flows through such a circuit breaker, the movable contact 41 receives an extremely large driving force, and pushes back the current limiting latch 45 against the force of the current limiting spring 53 to rotate around the shaft 47. To rotate clockwise. As a result, the current limiting pin 52 slides on the normal surface 45a of the current limiting latch 45, crosses the inflection point V, and rides on the current limiting surface 45b. When the current limiting pin 52 is in contact with the normal surface 45a, the angle between the normal surface 45a and the current limiting surface 45b in the current limiting latch 45 is limited by the current limiting latch 45 based on the spring force of the current limiting spring 53. pin
The force acting on 52 acts to rotate the movable contact 41 in the counterclockwise direction in the figure, and when the current limiting pin 52 moves to the current limiting surface 45b,
The force is set so as to act to rotate the movable contact 41 clockwise. Therefore, as described above, when the movable contact 41 is rotated more than a certain opening distance and exceeds the inflection point V, the movable contact 41 is rotated by the current limiting spring 53 in addition to the electromagnetic repulsion. In response to the opening, the opening and closing mechanism 16 is quickly opened prior to the opening. As a result, the arc voltage is rapidly increased, and so-called current limiting interruption is performed. FIG. 7 shows the result of such a current limiting cutoff. In FIG. 14, the reset of the current limiting latch 45 is performed in such a manner that the movable contact 41 is integrated with the cover 2 in the trip operation of the opening / closing mechanism 16 following the current limiting operation in accordance with a command of the overcurrent trip device 9 in FIG. This is performed by forcibly rotating the holder 54 in the clockwise direction in the figure while the holder 54 is in contact with the formed stopper 2a, and the current limiting pin 52 crosses the inflection point V in the reverse direction and engages with the normal surface 45a again. I do. FIG. 10 is an explanatory diagram for clarifying the force relationship at the time of the current limiting operation described above. FIG. 10 (A) shows a closed state of the circuit breaker, and FIG. 10 (B) shows a state immediately after the opening of the circuit breaker. Is shown.
FIG. 11 is a diagram showing the relationship between the torque acting on the movable contact 41 based on the spring force of the current limiting spring 53 during the current limiting operation and the separation distance of the movable contact 41. First, in FIG. 10 (A), the current-limiting spring
Due to the spring force P 1 of 53 and the distance L 1 from the pin 52, a torque of P 1 × L 1 acts on the current limiting latch 45. This torque gives a force of P 2 to the current limiting pin 52 at a distance of L 2 from the pin 51 on the substantially vertical normal surface 45a (P 1 × L 1 =
P 2 × L 2), P 2 × the force P 2 from the limiting pin 52 by a distance L 3 to the axis 47, in a counterclockwise direction with respect to the movable contact 41
Give the torque of the L 3. This torque causes the movable contact 42
A contact pressure between the contact and the fixed contact 4 occurs. On the other hand, in the state shown in FIG. 10B beyond the inflection point V, the torque acting on the current limiting latch based on the spring force P 3 from the current limiting spring 53 causes the distance from the pin 51 on the current limiting surface 45b to be reduced. L force P 4 occurs for limiting pin 52 at the point of 4. This force P
4 the relationship between the tilt angle of Kiriryumen 45b, P 4 × L 5 to the movable contact 41 by a distance L 5 to the shaft 47 through the top of FIG axis 47
The clockwise torque is applied to accelerate the separating operation. FIG. 11 shows a state in which the direction of the torque acting on the movable contact 41 reverses as soon as the current limiting pin 52 slides on the normal surface 45a and exceeds the inflection point V due to the electromagnetic repulsion, The + side of the torque indicates a counterclockwise direction, and the one side indicates a clockwise direction. By the way, when a large current flows and the electromagnetic repulsion exceeds the contact pressure, it is desired that the above-mentioned torque reversal occurs in as short a time as possible. To this end, an increase in the torque in the + direction while the current limiting pin 52 moves from the closed position to the inflection point V is suppressed, and the amount of engagement between the current limiting pin 52 and the current limiting latch 45 in FIG. it is necessary to reduce as much as possible L 6. In order to reduce the increase in the torque in the + direction, the angle difference between the normal surface 45a and the current limiting surface 45b may be reduced. However, the direction of the force P 2 If the angle difference is small close to the shaft 47 side, the distance L 3 is also made by the contact pressure is reduced smaller.
Further, when the engaging amount L 6 is too small, the risk of limiting pin 52 exceeds the inflection point caused by contact bounce during circuit breaker closing. Therefore, in consideration of these tradeoffs, the angle and engaging amount L 6 of the normal surface 45a appropriately determined. In the case of a circuit breaker configured to separate the movable contact from the fixed contact by electromagnetic repulsion, simply deforming the contact spring increases the reaction force of the contact spring with the separation of the movable contact. The movement of the movable contact is hindered. In contrast, the current limiting mechanism shown has a large current limiting effect, for example, AC46
It has been confirmed that when the current of 0 V and 42 kA is cut off, the peak value of the passing current decreases from about 33 kA to about 26 kA. Next, FIG. 12 (A) shows a main part of a movable contact 41 and a connection conductor 43 which make sliding contact, and FIG. 12 (B) is an enlarged view of the B part. As shown, the current flows through several contact points P in the contact area. This current gathers toward the contact point P as indicated by an arrow i in FIG. 12 (B) and spreads at the same time as passing through the contact point P. Therefore, the direction of the current is reversed before and after the contact point P, and Electromagnetic repulsion acts between the contact 41 and the arm 43b of the connection conductor 43. Assuming that the passing current at one contact point P is I K (kA), the magnitude F 1 of the electromagnetic repulsive force is F 1 = Σ51 j 2 × 10 -2 (kg), where n is the number of contact points P. j = 1 to n). The electromagnetic repulsive force F 1 increases at an increasing rate as the current passing through the circuit breaker increases, and thus increases as the current passing through each contact point P increases. As a result, the force of the spring 49 is reduced, the number of the contact points P is reduced, and the passing current at the remaining contact points P becomes excessive, and there is a possibility that arcing or welding occurs at that portion. For this reason, when the movable contact 41 and the connection conductor 43 are connected by sliding contact (surface contact), there is a limit to the applicable short-circuit current rating. If the force of the spring 49 is increased to increase the limit value, a problem arises that the frictional force is increased this time and the constant opening / closing speed of the movable contact 41 is reduced. As a means for solving this problem, as shown in FIG. 5 (C) and FIG. 9 (B), the distance between the arm 43b and the movable contact 41 near the contact portion of the arm 43b is greater than that of the contact portion. Also, a portion 58 with a narrow interval is provided. In the following,
This will be described with reference to FIG. Now, assuming that the length of the arm 43b in the portion 58 is l, the interval between the arms 43b is S, and the current shunted to each arm 43b is I [kA],
Current I from flowing through the arm 43b in the same direction, the following electromagnetic attracting force F 2 generated in the inter-arm 43b. F 2 = 2.04 kl / S · I 2 (k: constant) Therefore, if the interval S is determined so that the electromagnetic attraction force F 2 is larger than the electromagnetic repulsion force F 1 , the force of the spring 49 is increased. The applicable short-circuit current rating can be improved without performing. In FIG. 17 the electromagnetic repulsive force F 1 and the electromagnetic attractive force F 2 indicates the state of performing change with short-circuit current passing through the circuit breaker. The contact force in the figure is a force obtained by the elasticity of the spring 49 and the connection conductor 43. Further, as shown in FIG. 9 (B), the annular convex portion 43c provided at the contact portion of the arm 43b is provided outside the arm 43b with the movable contactor 41.
It acts to reduce the electromagnetic repulsive force F 1 to the size of the interval of the current flowing in opposite directions before and after the distance therebetween, the contact between the. Further, by applying a coating treatment with a composite material of silver (Ag) and carbon (C) to at least one of the sliding contact surfaces of the movable contact and the connection conductor, the circuit breaker can be repeatedly opened and closed with no load or interrupted by a large current. To prevent the contact surface from sticking and welding
The current-carrying performance can be greatly improved. Thus, test results will be described below for an embodiment in which the above-mentioned coating treatment is applied to the movable contact 41 and the connection conductor 43 having the structure shown in FIG. First, each of the movable contact 41 and the connection conductor 43 is made of Ag-6.
% C (vol%) was electroplated to a thickness of 7 μm.
At this time, the C particles dispersed in Ag used were flaky particles having a major axis of 0.5 to 2 μm and a minor axis of 0.2 to 0.5 μm (Experimental Example 1). Similarly, each of the movable contact 41 and the connection conductor 43 has an Ag-
A 3% C (vol%) coating was electroplated to a thickness of 7 μm. At this time, the C particles dispersed in Ag have a major axis of 0.8 to 5 μm.
m, and a piece having a minor axis of 0.3 to 1 μm was used (Experimental Example 2). Further, as a comparative example, a similar movable contact and a connection conductor coated with 7 μm of Ag plating were prepared. Table 1 shows the results obtained by incorporating these movable contacts and connection conductors into a circuit breaker, and performing a no-load switching test and a large current cutoff test. According to this, it can be understood that the copper base material is less likely to be exposed in the case where the Ag-C composite material is plated than in the case of the normal plating. Although two examples are shown in the above experimental examples, the effect of the present invention depends on the nature of C, so that the C% and the size of C grains are not limited to these. In addition, the ease of biting and melting of the sliding contact portion is also affected by the width and surface pressure of the contact portion, and thus the C% and the size of the C grains are determined collectively. However, C has conductivity but the electrical resistance is Ag
Of several hundred to several thousand times. Therefore, C%
Large C that penetrates the plating thickness
The use of particles is not preferable because it increases the heat generated in the sliding contact portion and increases the terminal temperature of the circuit breaker. Although the above experimental example shows the case of an electroplated film, it is important that the film is a composite material of Ag and C, and the method of forming the film is not limited to electroplating. Since the presence of C in the sliding contact surface contributes to the prevention of fraying or welding, it is effective to form an Ag-C coating only on one of the movable contact and the connection conductor. In that case, it is desirable that the other component is plated with Ag, but since C has an antioxidant effect, some current-carrying characteristics can be obtained even with copper. Note that the coating need not be applied to the entire surface of the conductor, and may be formed only on the sliding contact surface. Further, the fine hard particles as third particles Ag-C, for example SiC, WC, ZrB, Al 2 O 3, ZrO 2, CrO 3, TiO 2, R
2 O 3 , ThO 2 , Y 2 O 3 , MoO 3 , W 2 C, TiC, B 4 C, CrB 2
By dispersing such particles, increase the hardness of the entire coating,
A long-life contact portion that is less likely to be worn can be configured. Finally, FIG. 15 shows a fourth embodiment of the present invention in which a movable contact and a connecting conductor which slides on the movable contact are further connected by a lead wire. FIG. 15 (A) shows a movable contact portion. (B) is a side view thereof, and (C) is a rear view thereof. In the figure, reference numeral 59 denotes a flexible lead wire having substantially the same resistance as the sliding contact portion between the movable contact 41 and the connection conductor 43, one end of which is the lower surface of the rear end of the movable contact 41. The other end is connected to the upper surface of the base 43a of the connection conductor 43 by brazing, respectively, and the lead wire 59 forms a parallel circuit for the sliding contact portion. As a result, the current flowing between the movable contact 41 and the connection conductor 43 is almost divided into the sliding contact portion and the lead wire 59, and the thermal contact of the sliding contact portion when a large current such as a short-circuit current flows. The load is reduced by half, and the limit current value of the entire circuit breaker can be increased accordingly.

【発明の効果】【The invention's effect】

この発明によれば、可動接触子と接続導体とを可撓導
体を用いることなく電気的に接続することができ、信頼
性に優れかつ遮断性能の高い回路遮断器を小形に構成す
ることが可能となる。また、その際、可動接触子あるい
は接続導体の摺動接触面に銀と炭素との複合材料よりな
る被膜処理を施すことにより、長期間にわたって良好な
通電状態を維持することができる。更に、必要に応じて
上記摺動接触部の電流の一部をリード線に分流させて、
電流容量の増大を図ることが可能である。
ADVANTAGE OF THE INVENTION According to this invention, a movable contactor and a connection conductor can be electrically connected, without using a flexible conductor, and it is possible to form a small circuit breaker with excellent reliability and high breaking performance. Becomes Further, at this time, by applying a coating treatment made of a composite material of silver and carbon to the sliding contact surface of the movable contact or the connection conductor, it is possible to maintain a good energized state for a long period of time. Further, if necessary, a part of the current of the sliding contact portion is diverted to the lead wire,
It is possible to increase the current capacity.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の第1の実施例の可動接触子部分の斜
視図、第2図はこの発明の第2の実施例の可動接触子部
分の斜視図、第3図は第1図の可動接触子部分を備えた
回路遮断器の中央極部分の閉路状態の縦断面図、第4図
は同じく開路状態の縦断面図、第5図(A)はこの発明
の第3の実施例の可動接触子部分の平面図、第5図
(B)はその側面図、第5図(C)はその背面図、第6
図は第5図の可動接触子部分を保持するホルダの平面
図、第7図は第6図のVII-VII線に沿う断面図、第8図
は第6図のホルダに第5図の可動接触子部分を装着した
状態の斜視図、第9図(A)は第5図における接続導体
の拡大側面図、第9図(B)はそのB−B線に沿う断面
図、第10図(A)は閉路状態における限流ラッチと限流
ピンとの間の力関係を説明する図、第10図(B)は同じ
く開極直後の力関係を説明する図、第11図は限流ばねに
基づいて可動接触子に作用するトルクと可動接触子の開
極距離との関係を示す線図、第12図(A)は可動接触子
と接続導体との間に働く力を説明するための第5図
(C)に担当する背面図、第12図(B)はそのB部拡大
図、第13図は第12図の接触部での磁気反発力及び磁気吸
引力と短絡電流との関係を示す線図、第14図は第5図の
可動接触子部分を備えた回路遮断器の中央極部分の閉路
状態の縦断面図、第15図(A)はこの発明の第4の実施
例の可動接触子部分の平面図、第15図(B)はその側面
図、第15図(C)はその背面図、第16図は従来の回路遮
断器の中央極部分の閉路状態の縦断面図、第17図は同じ
く開路状態の縦断面図である。 1……ケース、16……開閉機構、31……可動接触子、33
……接続導体、33a……腕、35……ばね、36……ホル
ダ、37……開閉軸、41……可動接触子、43……接続導
体、43a……腕、44……取付金具、44a,44b……係合片、
49……ばね、54……ホルダ、55……開閉軸、56……凹
部、56c,56d……段部、59……リード線。
FIG. 1 is a perspective view of a movable contact portion of a first embodiment of the present invention, FIG. 2 is a perspective view of a movable contact portion of a second embodiment of the present invention, and FIG. FIG. 4 is a longitudinal sectional view of a circuit breaker having a movable contact portion in a closed state of a central pole portion, FIG. 4 is a longitudinal sectional view of the circuit breaker in an open state, and FIG. 5 (A) is a third embodiment of the present invention. FIG. 5 (B) is a side view, FIG. 5 (C) is a rear view, and FIG.
5 is a plan view of a holder for holding the movable contact portion of FIG. 5, FIG. 7 is a sectional view taken along the line VII-VII of FIG. 6, and FIG. 8 is a movable view of FIG. 9 (A) is an enlarged side view of the connection conductor in FIG. 5, FIG. 9 (B) is a cross-sectional view along the line BB, FIG. 10 ( FIG. 10A illustrates a force relationship between the current limiting latch and the current limiting pin in a closed state, FIG. 10B illustrates a force relationship immediately after opening, and FIG. FIG. 12 (A) is a diagram showing the relationship between the torque acting on the movable contact and the opening distance of the movable contact based on FIG. 12 (A). FIG. 5 (C) is a rear view, FIG. 12 (B) is an enlarged view of the portion B, and FIG. 13 is a diagram showing the relationship between the magnetic repulsive force and magnetic attractive force and the short-circuit current at the contact portion in FIG. Show line FIG. 14 is a longitudinal sectional view showing a closed state of a center pole portion of the circuit breaker having the movable contact portion shown in FIG. 5, and FIG. 15 (A) is a movable contact according to a fourth embodiment of the present invention. 15 (B) is a side view thereof, FIG. 15 (C) is a rear view thereof, FIG. 16 is a longitudinal sectional view showing a closed state of a center pole portion of a conventional circuit breaker, FIG. The figure is a longitudinal sectional view of the same open state. 1 ... case, 16 ... opening / closing mechanism, 31 ... movable contact, 33
… Connection conductor, 33a… Arm, 35… Spring, 36… Holder, 37… Open / close axis, 41… Movable contact, 43… Connection conductor, 43a… Arm, 44… Mounting bracket, 44a, 44b …… engaging piece,
49: spring, 54: holder, 55: open / close shaft, 56: recess, 56c, 56d: step, 59: lead wire.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平2−31215 (32)優先日 平2(1990)2月9日 (33)優先権主張国 日本(JP) (72)発明者 高橋 龍典 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 篠原 久次 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 神達 健之 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 浅川 浩司 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭63−174238(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01H 71/08 H01H 73/02 H01H 73/20──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 2-31215 (32) Priority date Hei 2 (1990) February 9 (33) Priority claim country Japan (JP) (72) Inventor Tatsunori Takahashi 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. Person Takeyuki Kandatsu 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. References JP-A-63-174238 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01H 71/08 H01H 73/02 H01H 73/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】開閉軸を介してケースに回動自在に支持さ
れた絶縁物のホルダに可動接触子が保持され、この可動
接触子は開閉機構に駆動されて前記ホルダと一緒に前記
開閉軸のまわりに開閉運動する回路遮断器において、前
記可動接触子と前記ケースに固定した接続導体とを摺動
接触により電気的に接続するものとし、この接続導体の
前記可動接触子との接続端に対向する一対の腕を形成し
て前記可動接触子を弾性的に挟ませ、かつこの腕と前記
可動接触子との接触部を通して軸を挿通し、前記可動接
触子を前記腕に回動可能に連結するとともに、この軸の
両端に前記腕を前記可動接触子の側面に圧接する圧縮コ
イルばねを挿入したことを特徴とする回路遮断器。
A movable contact is held by an insulator holder rotatably supported by a case via an opening / closing shaft, and the movable contact is driven by an opening / closing mechanism and is moved together with the holder by the opening / closing shaft. In a circuit breaker that opens and closes around, the movable contact and the connection conductor fixed to the case are electrically connected by sliding contact, and the connection end of the connection conductor with the movable contact is A pair of opposing arms are formed to elastically sandwich the movable contact, and a shaft is inserted through a contact portion between the arm and the movable contact, so that the movable contact can be turned on the arm. A circuit breaker, which is connected and has a compression coil spring inserted at both ends of the shaft to press the arm against a side surface of the movable contact.
【請求項2】請求項1記載の回路遮断器において、接続
導体の腕の可動接触子との接触部の近傍に対向間隔が前
記接触部よりも狭い部分を設けたことを特徴とする回路
遮断器。
2. The circuit breaker according to claim 1, wherein a portion of the arm of the connection conductor near the contact portion of the arm with the movable contact is provided at a portion where the facing distance is smaller than the contact portion. vessel.
【請求項3】請求項1又は請求項2記載の回路遮断器に
おいて、可動接触子を係合片を切り曲げ形成した薄板か
らなる取付金具に取り付け、この取付金具を前記係合片
と対応する係合段部を有する凹部を形成したホルダに圧
入して前記可動接触子を前記ホルダに保持させたことを
特徴とする回路遮断器。
3. The circuit breaker according to claim 1, wherein the movable contact is mounted on a mounting member made of a thin plate formed by cutting and bending an engaging piece, and this mounting metal corresponds to the engaging piece. A circuit breaker, wherein the movable contact is held by the holder by press-fitting into a holder having a recess having an engagement step.
【請求項4】請求項1〜請求項3のいずれかに記載の回
路遮断器において、可動接触子及び接続導体の少なくと
も一方の摺動接触面に、銀と炭素との複合材料からなる
皮膜処理を施したことを特徴とする回路遮断器。
4. The circuit breaker according to claim 1, wherein at least one of the sliding contact surfaces of the movable contact and the connection conductor is formed of a composite material of silver and carbon. A circuit breaker characterized by having been subjected to.
【請求項5】請求項1〜請求項4のいずれかに記載の回
路遮断器において、可動接触子と接続導体とをこれらの
間の摺動接触部に対して並列回路を構成するように可撓
性のリード線で接続したことを特徴とする回路遮断器。
5. The circuit breaker according to claim 1, wherein the movable contact and the connection conductor are formed in a parallel circuit with respect to a sliding contact portion therebetween. A circuit breaker characterized by being connected by a flexible lead wire.
JP2134482A 1989-10-03 1990-05-24 Circuit breaker Expired - Fee Related JP2762704B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19914103584 DE4103584A1 (en) 1990-02-09 1991-02-06 Small line of earthing switch with coupling conductor on frame - has flexible conductive wire as parallel connection for movable contact and coupling conductor
KR1019910002119A KR910016028A (en) 1990-02-09 1991-02-08 Circuit breaker

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1-258584 1989-10-03
JP25858489 1989-10-03
JP26658889 1989-10-14
JP1-266588 1989-10-14
JP32428989 1989-12-14
JP1-324289 1989-12-14
JP3121590 1990-02-09
JP2-31215 1990-02-09

Publications (2)

Publication Number Publication Date
JPH0419938A JPH0419938A (en) 1992-01-23
JP2762704B2 true JP2762704B2 (en) 1998-06-04

Family

ID=27459396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134482A Expired - Fee Related JP2762704B2 (en) 1989-10-03 1990-05-24 Circuit breaker

Country Status (1)

Country Link
JP (1) JP2762704B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243953A (en) * 2010-05-13 2011-11-16 上海华联低压电器有限公司 Plastic shell type low-voltage circuit breaker
CN102243943A (en) * 2010-05-13 2011-11-16 上海华联低压电器有限公司 Falling-prevention contact mechanism of low-voltage circuit breaker
CN102427001A (en) * 2011-11-08 2012-04-25 江苏辉能电气有限公司 Contact pressure control mechanism for molded case low-voltage circuit breaker
CN102479647A (en) * 2010-11-19 2012-05-30 三菱电机株式会社 Circuit breaker
CN102568946A (en) * 2010-10-05 2012-07-11 Ls产电株式会社 Slide type movable contactor assembly for balanced contact force
CN102693885A (en) * 2011-03-22 2012-09-26 Ls产电株式会社 Molded case circuit breaker and manufacturing method thereof
KR101367153B1 (en) * 2010-12-16 2014-02-25 엘에스산전 주식회사 Small circuit breaker with qucik making mechanism
CN107123579A (en) * 2017-06-16 2017-09-01 天津京人电器有限公司 The contact system and low-voltage circuit breaker of a kind of low-voltage circuit breaker

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404706B4 (en) * 1993-02-16 2005-09-15 Fuji Electric Co., Ltd., Kawasaki Mobile contactor device in a circuit breaker
IT1314039B1 (en) * 1999-10-08 2002-12-03 Abb Ricerca Spa ELECTRIC POLE FOR LOW VOLTAGE POWER SWITCH.
KR100425188B1 (en) * 2001-12-04 2004-03-30 엘지산전 주식회사 structure for slide-contacting a moving contact terminal of Circuit Breaker
WO2013171837A1 (en) * 2012-05-15 2013-11-21 三菱電機株式会社 Circuit breaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733033A (en) * 1986-12-15 1988-03-22 General Electric Company Molded case circuit breaker contact arrangement including a spring clip contact arm retainer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243943A (en) * 2010-05-13 2011-11-16 上海华联低压电器有限公司 Falling-prevention contact mechanism of low-voltage circuit breaker
CN102243953A (en) * 2010-05-13 2011-11-16 上海华联低压电器有限公司 Plastic shell type low-voltage circuit breaker
CN102568946A (en) * 2010-10-05 2012-07-11 Ls产电株式会社 Slide type movable contactor assembly for balanced contact force
CN102568946B (en) * 2010-10-05 2015-04-29 Ls产电株式会社 Movable contactor assembly for circuit breaker
CN102479647A (en) * 2010-11-19 2012-05-30 三菱电机株式会社 Circuit breaker
CN102479647B (en) * 2010-11-19 2014-08-20 三菱电机株式会社 Circuit breaker
KR101367153B1 (en) * 2010-12-16 2014-02-25 엘에스산전 주식회사 Small circuit breaker with qucik making mechanism
CN102693885A (en) * 2011-03-22 2012-09-26 Ls产电株式会社 Molded case circuit breaker and manufacturing method thereof
CN102693885B (en) * 2011-03-22 2015-11-18 Ls产电株式会社 Breaker of plastic casing and manufacture method thereof
CN102427001B (en) * 2011-11-08 2014-09-24 江苏辉能电气有限公司 Contact pressure control mechanism for molded case low-voltage circuit breaker
CN102427001A (en) * 2011-11-08 2012-04-25 江苏辉能电气有限公司 Contact pressure control mechanism for molded case low-voltage circuit breaker
CN107123579A (en) * 2017-06-16 2017-09-01 天津京人电器有限公司 The contact system and low-voltage circuit breaker of a kind of low-voltage circuit breaker
CN107123579B (en) * 2017-06-16 2019-09-13 天津京人电器有限公司 A kind of contact system and low-voltage circuit breaker of low-voltage circuit breaker

Also Published As

Publication number Publication date
JPH0419938A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
KR920008726B1 (en) Circuit breaker
JP2762704B2 (en) Circuit breaker
AU681175B2 (en) Switching devices
JPS63174238A (en) Wire breaker contactor
US5199553A (en) Sliding contactor for electric equipment
KR0150272B1 (en) Movable contactor device in circuit breaker
JPS59191224A (en) Current breaker
JP2965025B1 (en) Circuit breaker
CZ271794A3 (en) Arrangement of contact springs for relay for conducting and switching of high currents
US3930211A (en) Circuit breaker
JP3054628B2 (en) Sliding contacts for electrical equipment
JP3099690B2 (en) Circuit breaker
US6770828B2 (en) System and method for electrical contacts and connections in switches and relays
JP3206696B2 (en) Movable contact device for circuit breakers
JP2633959B2 (en) Circuit breaker
EP0482197B1 (en) Circuit breaker
JP2929464B2 (en) Sliding contacts for electrical equipment
JP2700040B2 (en) Current limiting mechanism of circuit breaker
JP3097467B2 (en) Movable contact mechanism for circuit breakers
JP2734678B2 (en) Contact device
JP3097300B2 (en) Movable contact device for circuit breakers
JP4387075B2 (en) Circuit breaker
JP2959216B2 (en) Switch contacts
JP2000294113A (en) Circuit breaker
JP2828077B2 (en) Circuit breaker

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees