JP2004098199A - Solid electrolyte, flexible laminate containing it, and all-solid actuator formed from solid electrolyte - Google Patents

Solid electrolyte, flexible laminate containing it, and all-solid actuator formed from solid electrolyte Download PDF

Info

Publication number
JP2004098199A
JP2004098199A JP2002261872A JP2002261872A JP2004098199A JP 2004098199 A JP2004098199 A JP 2004098199A JP 2002261872 A JP2002261872 A JP 2002261872A JP 2002261872 A JP2002261872 A JP 2002261872A JP 2004098199 A JP2004098199 A JP 2004098199A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
present
actuator
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002261872A
Other languages
Japanese (ja)
Other versions
JP4637446B2 (en
Inventor
Naoki Toshima
戸嶋 直樹
Ko Gen
厳 虎
Takanao Okamoto
岡本 高尚
Naohiko Fukuoka
福岡 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2002261872A priority Critical patent/JP4637446B2/en
Publication of JP2004098199A publication Critical patent/JP2004098199A/en
Application granted granted Critical
Publication of JP4637446B2 publication Critical patent/JP4637446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-polymer solid electrolyte not being influenced by the moisture, having soft nature and good adhesiveness, and also to provide an all-solid actuator using the solid electrolyte. <P>SOLUTION: The solid electrolyte contains ionic liquid A having hydrophobic nature and epoxy resin B, and the all-solid actuator is formed using the solid electrolyte. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロマシン、人工筋肉などとして有用な、電圧印加に応じて湾曲することのできるアクチュエータに用いるのに適した固体電解質およびそれを用いたアクチュエータに関する。
【0002】
【従来技術】
ポリアニリンなどの導電性高分子と高分子固体電解質よりなる全固体アクチュエータは、溶液を用いず、空気中で作動するので、大変好ましいものである。しかし、この種のアクチュエータは、イオン化成分としてLiClなどで代表される塩類が用いられているが、この種の化合物は潮解性の化合物で、湿気の影響を受けやすく、その結果、アクチュエータの応答速度が不安定となったり、アクチュエータとしての寿命を短くするという欠点があった。
【0003】
従来、イオン性液体の存在下にメタクリル酸メチルおよびエチレングリコールジメタクリレートをラジカル重合させて得られた高分子固体電解質があるが、この系統のものは非常に硬い材料であるから本発明が意図している可撓性を有する全固体アクチュエータには全く使用できないものである。
【0004】
【発明が解決しようとする課題】
本発明の目的は、湿気の影響を受けず、柔軟で接着性のよい高分子固体電解質と、それを用いた全固体アクチュエータを提供する点にある。
【0005】
【課題を解決するための手段】
本発明の第1は、
(A)疎水性のイオン性液体、
および
(B)エポキシ樹脂
を含有することを特徴とする固体電解質に関する。
本発明の第2は、エポキシ樹脂の硬化剤がポリアミンおよび/または酸無水物である請求項1記載の固体電解質に関する。
本発明の第3は、前記(A)の疎水性のイオン性液体が下記式
【化2】

Figure 2004098199
よりなる群から選ばれた有機カチオンと、AlCl 、PF 、BF 、CFSO 、(CFSO、(CN)Nおよび(CFSOよりなる群から選ばれた対アニオンとからなるものである請求項1または2記載の固体電解質に関する。
本発明の第4は、(イ)請求項1〜3いずれか記載の固体電解質に、柔かい対電極を接触または埋め込んでなる固体電解質層、(ロ)導電性高分子層および(ハ)支持部材層の順で積層されている可撓性積層体に関する。
本発明の第5は、請求項4記載の可撓性積層体よりなる電圧印加に応じて湾曲することのできる全固体アクチュエータに関する。
【0006】
本発明において用いる硬化剤としては、ポリアミンおよび/または酸無水物が好ましい。
【0007】
ポリアミンとしては、ジアミン、トリアミン、テトラアミンなどがあり、アミンは第一級アミン、第二級アミン、または第三級アミンのいずれでもよい。
これらの代表的なものとしては、脂肪族第一アミン、芳香族第一アミン、変形アミン、その他のアミンなどがあり、これらの具体的化合物は、例えば昭和63年5月30日 株式会社 昭晃堂発行 垣内 弘 編著「新エポキシ樹脂」第164〜191頁に詳述されているので、それを参照されたい。
【0008】
前記酸無水物としては、芳香族酸無水物、環状脂肪族酸無水物、脂肪族酸無水物、ハロゲン化酸無水物などがあり、これらの具体的化合物は、前記「新エポキシ樹脂」第191〜208頁に詳述されているので、それを参照されたい。
【0009】
本発明において、エポキシ樹脂を形成するためのエポキシ化合物は、1つの化合物に2以上のエポキシ基をもつ化合物であり、硬化剤との反応により3次元構造化が可能な化合物である。
【0010】
前記エポキシ化合物の例としては、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ノボラック型エポキシ化合物、臭素化エポキシ化合物、変性ビスフェノールA系エポキシ化合物などがある。詳細は前記「新エポキシ樹脂」第15〜102頁に詳述されているので、それを参照されたい。
【0011】
エポキシ化合物とジアミンの硬化反応は、下記のとおりである。
【化3】
Figure 2004098199
〔式中、Rは硬化剤であるアミン化合物本体部分、Qはエポキシ化合物の本体部分を指す。〕
【0012】
エポキシ化合物と酸無水物の硬化反応は下記のとおりである。
【化4】
Figure 2004098199
〔式中、Rは酸無水物の本体部分、Qはエポキシ化合物の本体部分である。〕
【0013】
本発明のエポキシ樹脂は、分子量が1000〜100,000のものが好ましい。1000以下ではその形状が保ちにくくなり、100,000以上では柔軟性が不充分となる傾向が生じる。
【0014】
本発明におけるイオン性液体は、陽イオンと陰イオンのみで形成された化合物であり、常温で液体でありながら、蒸気圧がなく(不揮発性)、イオン伝導性が高く、化学的に安定で、不燃性であり、分解電圧が高く(電気分解しにくい)、耐熱性であって、液体状態を保つ範囲の広いものが好ましい。また、本発明における疎水性とは、非潮解性であって、水を吸収することがない性質をいうものである。
【0015】
前記イオン性液体の具体例としては、
【化5】
Figure 2004098199
などがある。
とくに、
【化6】
Figure 2004098199
で示されるイオン性液体は、400℃までの温度に耐えることができ、−16℃まで液状を保つことができ、この温度範囲で安定なイオン供給源となる。
【0016】
本発明のエポキシ樹脂は、前記エポキシ化合物と硬化剤との反応により生成した三次元網目構造をもつエポキシ樹脂である。そして本発明の全固体電解質とは、この網目構造中に前記イオン性液体を含有しているものであり、これはゲル状ないし固体状を呈している。
【0017】
三次元網目構造をもつ樹脂は、常識的には硬いと考えられるが、不思議なことに本発明においては、イオン性液体を含有しているためか、柔軟性に富み、この本発明固体電解質層/導電性高分子層(例えばポリアニリン層)/支持部材層(例えばポリプロピレン層)よりなる積層体としたとき、電圧印加に応じて湾曲することができる。この性質が、本発明の全固体アクチュエータにとっては大切な物性である。ちなみに本発明の固体電解質の代りに、前述のメタクリル酸メチルとエチレングリコールジメタクリレートとの共重合体を高分子とした固体電解質層を用いた積層体は、電圧を印加しても湾曲することができず、本発明のような全固体アクチュエータとして使用することができない。
【0018】
本発明における(A)疎水性のイオン性液体と(B)エポキシ樹脂の配合比(重量比)は0.001〜3:1、好ましくは、0.01〜2:1、とくに好ましくは0.1〜1:1である。
【0019】
本発明における硬化剤とエポキシ化合物の配合比(重量比)は、0.1〜5:1、好ましくは0.2〜3:1、とくに好ましくは0.5〜1:1である。
【0020】
本発明における導電性高分子としては、とくに制限はないが、例えばポリアニリン、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリビニレンフェニレン、ポリフェニレンスルフィド、ポリイソチアナフテンおよびそれらの誘導体などを挙げることができる。
【0021】
支持部材層としては、ポリプロピレン、ポリエチレン、ポリエステル(例えばポリエチレンテレフタレート)、ポリアミド(例えば6−ナイロン、6,6−ナイロン)などの可撓性絶縁性高分子化合物が好ましい。
【0022】
固体電解質層の厚さは、通常5μm〜1cm、好ましくは10μm〜1mm、とくに好ましくは40μm〜200μmであり、導電性高分子層の厚さは、通常5〜100μm、好ましくは5〜30μm、とくに好ましくは10〜20μm、であり、支持部材層の厚さは、通常20〜500μm、好ましくは20〜200μm、とくに好ましくは30〜100μmである。
【0023】
本発明で使用する柔かい対電極を構成する材料としては、金、銀、白金、銅、クロムなどを例示することができるが、アクチュエータの動きを妨げない程度の柔かさであればよい。十分に細い細線か薄い箔にすればほとんどすべての金属を用いることができる。
【0024】
本発明の可撓性積層体に印加する電圧は、通常±0.5〜±12V、好ましくは±0.5〜±6V、とくに好ましくは±1.5〜±3Vである。
【0025】
【実施例】
以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれにより何等限定されるものではない。
【0026】
実施例1
(1)固体電解質用組成物の作成
(イ)下記構造のエポキシ化合物        1重量部
【化7】
Figure 2004098199
(ロ)下記構造のエポキシ化合物        2重量部
【化8】
Figure 2004098199
(ハ)エポキシ化合物用硬化剤(無水フタル酸) 3重量部
よりなる液状エポキシ組成物を作る。
(2)導電性フィルムの作成
ポリアニリン溶液をキャスティング法によりフィルム化し、これを加熱延伸して配向フィルムとした後、HClドーピングを30分間行い、導電性ポリアニリンフィルム(厚さ11μm)を得た。
(3)支持部材層として厚さ39μmのポリプロピレンフィルム上に、前記ポリアニリンフィルムを両面テープを用いて接着し、ポリアニリンフィルム側に前記(1)で作成した液状エポキシ組成物を塗布してから、直径0.05mmの金線群よりなる電極(金線を1.6mm間隔で並べる)を配置し、さらにそのうえに、前記(1)で作成した液状エポキシ組成物を塗布し、ホットプレート上で70℃に加熱して、厚さ49μmの固体電解質層を形成した。
【0027】
比較例1
実施例1のエポキシ樹脂の代りに、下記式
Figure 2004098199
〔式中、nの平均値は288である。〕
で示される高分子を、イオン伝導剤としてLiClOを用いた以外は、実施例1を繰り返した。ただし、イオン伝導剤は高分子固体電解質に対して5.6重量%になるよう配合したものである。これが最適の配合割合と考えられるからである。また、ポリアニリンフィルムの厚みは20μm、ポリプロピレンフィルムの厚みは30μmのものを用いた。
【0028】
図4のグラフは、実施例1の固体電解質のイオン伝導度が固体電解質自体の温度によって如何に変化するかを示している。室温に放置してあるものは高いイオン伝導度を示すが乾燥状態でもかなり高いイオン伝導度を示し、室温放置時に比べ15%の減少にとどまっている。
【0029】
図5のは、実施例1の固体電解質の応答速度に関する電圧依存性を示すものであり、図6は実施例1の固体電解質の最大変位(図3のδの絶対値)に関する電圧依存性を示すものである。いずれも5〜10Vの範囲で、とくに8V近傍でよい結果が得られている。
【0030】
実施例1の固体電解質を用いて作った図1〜2に示す全固体アクチュエータと比較例1の固体電解質を用いて作った図1〜2に示す全固体アクチュエータの6Vにおける応答速度と2Vにおける最大変位値を下記表に示す。
【表1】
Figure 2004098199
【0031】
図7に実施例1のアクチュエータの寿命を示し、図8は応答速度の伸縮回数に対応した変化を示す。
この結果から、アクチュエータの寿命も、以前の固体電解質を用いたものに比べ格段に長くなった。動作回数の増加に伴って応答速度は多少減速したが、変位の衰えは左程大きくない。また、このアクチュエータは電圧を印加すると収縮し、電圧の印加を停止すると膨張する。
【0032】
【発明の効果】
(1)本発明の固体電解質は、高分子としてエポキシ樹脂を使用するものであるにもかかわらず、全固体アクチュエータのための積層体としたとき、全く不思議なことに今までの他の高分子を用いた場合に比べて極めて可撓性に富むため、全固体アクチュエータとしての寿命を大幅に延長することができた。
(2)本発明の固体電解質は、新規なものであり、湿気の影響を受けにくい。
【図面の簡単な説明】
【図1】実施例1における支持部材層であるポリプロピレンフィルム上に積層されている導電性高分子層であるポリアニリンフィルム上に柔かい対電極を介して固体電解質層が設けられている状態をわかりやすく1部分離した状態で示す斜視図である。
【図2】図1のものに作用電極のリード線を取付け、印加電圧により可動する本発明積層体の斜視図である。
【図3】図2に示す本発明積層体よりなるアクチュエータに電圧を印加したり、電圧印加を停止したりして、変位の速度を求めるための実施態様を示す図である。
【図4】実施例1にかかる固体電解質の温度とイオン伝導度との関係を示すグラフである。
【図5】実施例1にかかる固体電解質の応答速度と印加電圧の関係を示すグラフである。
【図6】実施例1にかかる固体電解質の最大変位と印加電圧の関係を示すグラフである。
【図7】実施例1の全固体アクチュエータの寿命の長さを示すグラフであり、縦軸は変位の大きさδ、横軸は時間を示す。
【図8】実施例1の全固体アクチュエータの伸縮回数に対応した応答速度の変化を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolyte that is useful as a micromachine, an artificial muscle, or the like, and is suitable for use in an actuator that can bend in response to voltage application, and an actuator using the same.
[0002]
[Prior art]
An all-solid actuator comprising a conductive polymer such as polyaniline and a solid polymer electrolyte is very preferable because it operates in air without using a solution. However, this type of actuator uses a salt represented by LiCl 3 or the like as an ionizing component. However, this type of compound is a deliquescent compound and is easily affected by moisture. There are disadvantages that the speed becomes unstable and the life of the actuator is shortened.
[0003]
Conventionally, there is a polymer solid electrolyte obtained by radically polymerizing methyl methacrylate and ethylene glycol dimethacrylate in the presence of an ionic liquid, but since this type of material is a very hard material, the present invention is intended. It cannot be used for an all-solid-state actuator having flexibility.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a polymer solid electrolyte which is not affected by moisture and has good flexibility and adhesiveness, and an all-solid-state actuator using the same.
[0005]
[Means for Solving the Problems]
The first of the present invention is
(A) a hydrophobic ionic liquid,
And (B) a solid electrolyte containing an epoxy resin.
A second aspect of the present invention relates to the solid electrolyte according to claim 1, wherein the curing agent for the epoxy resin is a polyamine and / or an acid anhydride.
A third aspect of the present invention is that the hydrophobic ionic liquid of the above (A) is represented by the following formula:
Figure 2004098199
Organic cations selected from the group consisting of AlCl 4 , PF 6 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (CN 2 ) N and (CF 3 SO 2) 3 C - about claim 1 or 2 solid electrolyte according is made of a selected counter anion from the group consisting of.
A fourth aspect of the present invention is (a) a solid electrolyte layer obtained by contacting or embedding a soft counter electrode with the solid electrolyte according to any one of claims 1 to 3, (b) a conductive polymer layer, and (c) a supporting member. The present invention relates to a flexible laminate that is laminated in the order of layers.
A fifth aspect of the present invention relates to an all-solid-state actuator which can be bent in response to voltage application, which is made of the flexible laminate according to the fourth aspect.
[0006]
The curing agent used in the present invention is preferably a polyamine and / or an acid anhydride.
[0007]
Examples of the polyamine include a diamine, a triamine, and a tetraamine, and the amine may be any of a primary amine, a secondary amine, and a tertiary amine.
Typical examples thereof include aliphatic primary amines, aromatic primary amines, modified amines, and other amines. Specific examples of these compounds are described in, for example, May 30, 1988 Please refer to "New Epoxy Resin", pages 164-191, edited by Hiroshi Kakiuchi, published by Dou.
[0008]
Examples of the acid anhydride include an aromatic acid anhydride, a cyclic aliphatic acid anhydride, an aliphatic acid anhydride, a halogenated acid anhydride, and the like. Please refer to it as described in detail on page 208208.
[0009]
In the present invention, an epoxy compound for forming an epoxy resin is a compound having two or more epoxy groups in one compound, and is a compound capable of forming a three-dimensional structure by reacting with a curing agent.
[0010]
Examples of the epoxy compound include a bisphenol A epoxy compound, a bisphenol F epoxy compound, a novolak epoxy compound, a brominated epoxy compound, and a modified bisphenol A epoxy compound. The details are described in the above-mentioned “New Epoxy Resin”, pp. 15-102, so please refer to it.
[0011]
The curing reaction between the epoxy compound and the diamine is as follows.
Embedded image
Figure 2004098199
[Wherein, R 1 represents a main body of an amine compound as a curing agent, and Q represents a main body of an epoxy compound. ]
[0012]
The curing reaction between the epoxy compound and the acid anhydride is as follows.
Embedded image
Figure 2004098199
[Wherein, R 2 is a main body of an acid anhydride, and Q is a main body of an epoxy compound. ]
[0013]
The epoxy resin of the present invention preferably has a molecular weight of 1,000 to 100,000. If it is less than 1,000, it is difficult to maintain its shape, and if it is more than 100,000, the flexibility tends to be insufficient.
[0014]
The ionic liquid in the present invention is a compound formed only of cations and anions, and is a liquid at ordinary temperature, has no vapor pressure (non-volatile), has high ionic conductivity, is chemically stable, It is preferably nonflammable, has a high decomposition voltage (not easily electrolyzed), is heat-resistant, and has a wide range of maintaining a liquid state. In addition, the hydrophobicity in the present invention refers to a property that is non-deliquescent and does not absorb water.
[0015]
As a specific example of the ionic liquid,
Embedded image
Figure 2004098199
and so on.
In particular,
Embedded image
Figure 2004098199
Can withstand temperatures up to 400 ° C. and can maintain a liquid state up to −16 ° C., and is a stable ion source in this temperature range.
[0016]
The epoxy resin of the present invention is an epoxy resin having a three-dimensional network structure generated by a reaction between the epoxy compound and a curing agent. The all-solid electrolyte of the present invention is one in which the ionic liquid is contained in the network structure, which is in a gel or solid state.
[0017]
A resin having a three-dimensional network structure is considered to be hard by common sense, but it is mysterious that the solid electrolyte layer of the present invention is rich in flexibility, probably because it contains an ionic liquid. In the case of a laminate composed of / a conductive polymer layer (for example, a polyaniline layer) / a support member layer (for example, a polypropylene layer), the laminate can be curved in response to voltage application. This property is an important physical property for the all-solid-state actuator of the present invention. Incidentally, instead of the solid electrolyte of the present invention, a laminate using a solid electrolyte layer having a polymer of the above-mentioned copolymer of methyl methacrylate and ethylene glycol dimethacrylate as a polymer may be curved even when voltage is applied. No, it cannot be used as an all-solid actuator as in the present invention.
[0018]
The mixing ratio (weight ratio) of (A) the hydrophobic ionic liquid and (B) the epoxy resin in the present invention is 0.001 to 3: 1, preferably 0.01 to 2: 1, and particularly preferably 0.1 to 0.1. 1 to 1: 1.
[0019]
The compounding ratio (weight ratio) of the curing agent and the epoxy compound in the present invention is 0.1 to 5: 1, preferably 0.2 to 3: 1, particularly preferably 0.5 to 1: 1.
[0020]
The conductive polymer in the present invention is not particularly limited, and examples thereof include polyaniline, polypyrrole, polythiophene, polyparaphenylene, polyvinylenephenylene, polyphenylene sulfide, polyisothianaphthene, and derivatives thereof.
[0021]
As the support member layer, a flexible insulating polymer compound such as polypropylene, polyethylene, polyester (for example, polyethylene terephthalate), or polyamide (for example, 6-nylon or 6,6-nylon) is preferable.
[0022]
The thickness of the solid electrolyte layer is usually 5 μm to 1 cm, preferably 10 μm to 1 mm, particularly preferably 40 μm to 200 μm, and the thickness of the conductive polymer layer is usually 5 to 100 μm, preferably 5 to 30 μm, especially The thickness is preferably 10 to 20 μm, and the thickness of the support member layer is usually 20 to 500 μm, preferably 20 to 200 μm, and particularly preferably 30 to 100 μm.
[0023]
Examples of a material constituting the soft counter electrode used in the present invention include gold, silver, platinum, copper, and chromium, but may be any softness that does not hinder the movement of the actuator. Almost any metal can be used, provided that the wires are thin enough or thin foil.
[0024]
The voltage applied to the flexible laminate of the present invention is usually ± 0.5 to ± 12 V, preferably ± 0.5 to ± 6 V, and particularly preferably ± 1.5 to ± 3 V.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[0026]
Example 1
(1) Preparation of composition for solid electrolyte (a) 1 part by weight of epoxy compound having the following structure
Figure 2004098199
(B) 2 parts by weight of an epoxy compound having the following structure:
Figure 2004098199
(C) A curing agent for epoxy compounds (phthalic anhydride) is used to prepare a liquid epoxy composition comprising 3 parts by weight.
(2) Preparation of Conductive Film A polyaniline solution was formed into a film by a casting method, which was then stretched by heating to form an oriented film. HCl doping was performed for 30 minutes to obtain a conductive polyaniline film (thickness: 11 μm).
(3) The polyaniline film was adhered to a 39 μm-thick polypropylene film as a support member layer using a double-sided tape, and the liquid epoxy composition prepared in (1) was applied to the polyaniline film side. An electrode composed of a group of 0.05 mm gold wires (gold wires are arranged at 1.6 mm intervals) is arranged, and further, the liquid epoxy composition prepared in the above (1) is applied thereon, and heated to 70 ° C. on a hot plate. By heating, a solid electrolyte layer having a thickness of 49 μm was formed.
[0027]
Comparative Example 1
Instead of the epoxy resin of Example 1, the following formula
Figure 2004098199
[Wherein, the average value of n is 288. ]
Example 1 was repeated except that the polymer represented by was LiClO 4 as an ion conductive agent. However, the ion conductive agent was blended so as to be 5.6% by weight based on the solid polymer electrolyte. This is because this is considered to be the optimum blending ratio. The thickness of the polyaniline film was 20 μm, and the thickness of the polypropylene film was 30 μm.
[0028]
The graph of FIG. 4 shows how the ionic conductivity of the solid electrolyte of Example 1 changes depending on the temperature of the solid electrolyte itself. Those left to stand at room temperature show high ionic conductivity, but show a considerably high ionic conductivity even in a dry state, and are reduced by only 15% as compared with those left at room temperature.
[0029]
FIG. 5 shows the voltage dependence on the response speed of the solid electrolyte of Example 1, and FIG. 6 shows the voltage dependence on the maximum displacement (absolute value of δ in FIG. 3) of the solid electrolyte of Example 1. It is shown. In each case, good results were obtained in the range of 5 to 10 V, particularly in the vicinity of 8 V.
[0030]
The response speed at 6V and the maximum at 2V of the all solid actuator shown in FIGS. 1 and 2 made using the solid electrolyte of Example 1 and the solid electrolyte shown in FIGS. 1 and 2 made using the solid electrolyte of Comparative Example 1 The displacement values are shown in the table below.
[Table 1]
Figure 2004098199
[0031]
FIG. 7 shows the life of the actuator of the first embodiment, and FIG. 8 shows a change in response speed corresponding to the number of times of expansion and contraction.
As a result, the life of the actuator was significantly longer than that of the previous actuator using the solid electrolyte. As the number of operations increases, the response speed slightly decreases, but the displacement does not decrease as much as to the left. The actuator contracts when voltage is applied, and expands when voltage is stopped.
[0032]
【The invention's effect】
(1) Despite the fact that the solid electrolyte of the present invention uses an epoxy resin as a polymer, when it is used as a laminate for an all-solid-state actuator, it is quite strange that other solid Is extremely flexible as compared with the case of using the solid-state actuator, so that the life of the all-solid-state actuator can be greatly extended.
(2) The solid electrolyte of the present invention is a novel one and is hardly affected by moisture.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state in which a solid electrolyte layer is provided via a soft counter electrode on a polyaniline film which is a conductive polymer layer laminated on a polypropylene film which is a support member layer in Example 1. It is a perspective view shown in the state where one part was separated.
FIG. 2 is a perspective view of the laminate of the present invention in which a lead wire of a working electrode is attached to that of FIG. 1 and is movable by an applied voltage.
FIG. 3 is a diagram showing an embodiment for obtaining a displacement speed by applying a voltage to the actuator made of the laminate of the present invention shown in FIG. 2 or stopping the voltage application.
FIG. 4 is a graph showing the relationship between the temperature and the ionic conductivity of the solid electrolyte according to Example 1.
FIG. 5 is a graph showing the relationship between the response speed of the solid electrolyte according to Example 1 and the applied voltage.
FIG. 6 is a graph showing the relationship between the maximum displacement of the solid electrolyte according to Example 1 and the applied voltage.
FIG. 7 is a graph showing the length of life of the all-solid-state actuator of Example 1, in which the vertical axis represents displacement magnitude δ and the horizontal axis represents time.
FIG. 8 shows a change in response speed corresponding to the number of times of expansion and contraction of the all-solid-state actuator of Example 1.

Claims (5)

(A)疎水性のイオン性液体、
および
(B)エポキシ樹脂
を含有することを特徴とする固体電解質。
(A) a hydrophobic ionic liquid,
And (B) a solid electrolyte comprising an epoxy resin.
エポキシ樹脂の硬化剤がポリアミンおよび/または酸無水物である請求項1記載の固体電解質。The solid electrolyte according to claim 1, wherein the curing agent for the epoxy resin is a polyamine and / or an acid anhydride. 前記(A)の疎水性のイオン性液体が下記式
Figure 2004098199
よりなる群から選ばれた有機カチオンと、AlCl 、PF 、BF 、CFSO 、(CFSO、(CN)Nおよび(CFSOよりなる群から選ばれた対アニオンとからなるものである請求項1または2記載の固体電解質。
The hydrophobic ionic liquid of the above (A) is represented by the following formula:
Figure 2004098199
Organic cations selected from the group consisting of AlCl 4 , PF 6 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (CN 2 ) N and (CF 3 SO 2) 3 C - claim 1 or 2 solid electrolyte according is made of a selected counter anion from the group consisting of.
(イ)請求項1〜3いずれか記載の固体電解質に、柔かい対電極を接触または埋め込んでなる固体電解質層、(ロ)導電性高分子層および(ハ)支持部材層の順で積層されている可撓性積層体。(A) a solid electrolyte layer formed by contacting or embedding a soft counter electrode on the solid electrolyte according to any one of claims 1 to 3, (b) a conductive polymer layer, and (c) a support member layer. Flexible laminate. 請求項4記載の可撓性積層体よりなる電圧印加に応じて湾曲することのできる全固体アクチュエータ。An all-solid-state actuator capable of bending in response to voltage application, comprising the flexible laminate according to claim 4.
JP2002261872A 2002-09-06 2002-09-06 All solid actuator Expired - Fee Related JP4637446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261872A JP4637446B2 (en) 2002-09-06 2002-09-06 All solid actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261872A JP4637446B2 (en) 2002-09-06 2002-09-06 All solid actuator

Publications (2)

Publication Number Publication Date
JP2004098199A true JP2004098199A (en) 2004-04-02
JP4637446B2 JP4637446B2 (en) 2011-02-23

Family

ID=32262119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261872A Expired - Fee Related JP4637446B2 (en) 2002-09-06 2002-09-06 All solid actuator

Country Status (1)

Country Link
JP (1) JP4637446B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314332A (en) * 2004-04-30 2005-11-10 Kaneka Corp Ionic liquid and method for producing the same
JP2006299120A (en) * 2005-04-21 2006-11-02 Sumitomo Bakelite Co Ltd Resin sheet, container for transferring electronic part and cover tape
WO2008044546A1 (en) 2006-10-06 2008-04-17 Kuraray Co., Ltd. Polymer solid electrolyte, electrochemical device, and actuator element
JP2008253016A (en) * 2007-03-29 2008-10-16 Tdk Corp Polymer actuator
JP2010016968A (en) * 2008-07-03 2010-01-21 Alps Electric Co Ltd Polymeric actuator
US7671514B2 (en) 2004-10-22 2010-03-02 Samsung Electro-Mechanics. Co. Ltd Electroactive solid-state actuator and method of manufacturing the same
WO2010037918A1 (en) * 2008-10-02 2010-04-08 Ifp Chemically gelled curable composition based on epoxy-amine resins and on ionic liquids
WO2010084938A1 (en) * 2009-01-23 2010-07-29 味の素株式会社 Resin composition
JP2011172383A (en) * 2010-02-18 2011-09-01 Univ Of Fukui Polymer actuator and method of manufacturing the same
JP2014509080A (en) * 2011-02-19 2014-04-10 ユナイテッド アラブ エミレーツ ユニバーシティ Semiconductor materials and storage devices
US11767437B2 (en) 2020-11-19 2023-09-26 Korea Institute Of Science And Technology Porous polymer actuator and method for fabricating the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923260A (en) * 1982-07-28 1984-02-06 Matsushita Electric Ind Co Ltd Solid-state electrochemical element
JPH04127885A (en) * 1990-09-17 1992-04-28 Matsushita Electric Ind Co Ltd Electrochemical actuator
JPH05109310A (en) * 1990-04-06 1993-04-30 Ultracell Inc Manufacture of radiation hardened solid electrolyte and electrochemical device using this solid electrolyte
JPH05173638A (en) * 1991-04-29 1993-07-13 Philips Gloeilampenfab:Nv Translational device
JPH0748500A (en) * 1993-08-03 1995-02-21 Toagosei Co Ltd Epoxy resin composition for sealing of semiconductor
JPH07316263A (en) * 1994-05-23 1995-12-05 New Japan Chem Co Ltd Epoxy resin composition
JPH08280187A (en) * 1995-04-04 1996-10-22 Terumo Corp Actuator and guide wire
JPH1193827A (en) * 1997-09-18 1999-04-06 Toshiba Corp Functional element and actuator
JPH11280639A (en) * 1998-03-30 1999-10-15 Agency Of Ind Science & Technol High polymer electrolyte ammonium derivative
JPH11353610A (en) * 1998-04-07 1999-12-24 Alps Electric Co Ltd Magnetic head
JP2001054899A (en) * 1999-08-11 2001-02-27 Chemiprokasei Kaisha Ltd Flexible layered product capable of curving in response to applied voltage
JP2002075443A (en) * 2000-08-29 2002-03-15 Fuji Photo Film Co Ltd Electrolyte component and electrochemical cell using the same
JP2002097251A (en) * 2000-09-21 2002-04-02 New Japan Chem Co Ltd Alicyclic compound containing glycidyl group, its production method and epoxy resin composition using the same
JP2002170426A (en) * 2000-08-22 2002-06-14 Fuji Photo Film Co Ltd Electrolyte composition and electrochemical cell using the same
JP2002173533A (en) * 2000-12-06 2002-06-21 Yokohama Rubber Co Ltd:The Hardening resin composition
JP2002371952A (en) * 2001-06-14 2002-12-26 Sony Corp Actuator, and driving method and system therefor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923260A (en) * 1982-07-28 1984-02-06 Matsushita Electric Ind Co Ltd Solid-state electrochemical element
JPH05109310A (en) * 1990-04-06 1993-04-30 Ultracell Inc Manufacture of radiation hardened solid electrolyte and electrochemical device using this solid electrolyte
JPH04127885A (en) * 1990-09-17 1992-04-28 Matsushita Electric Ind Co Ltd Electrochemical actuator
JPH05173638A (en) * 1991-04-29 1993-07-13 Philips Gloeilampenfab:Nv Translational device
JPH0748500A (en) * 1993-08-03 1995-02-21 Toagosei Co Ltd Epoxy resin composition for sealing of semiconductor
JPH07316263A (en) * 1994-05-23 1995-12-05 New Japan Chem Co Ltd Epoxy resin composition
JPH08280187A (en) * 1995-04-04 1996-10-22 Terumo Corp Actuator and guide wire
JPH1193827A (en) * 1997-09-18 1999-04-06 Toshiba Corp Functional element and actuator
JPH11280639A (en) * 1998-03-30 1999-10-15 Agency Of Ind Science & Technol High polymer electrolyte ammonium derivative
JPH11353610A (en) * 1998-04-07 1999-12-24 Alps Electric Co Ltd Magnetic head
JP2001054899A (en) * 1999-08-11 2001-02-27 Chemiprokasei Kaisha Ltd Flexible layered product capable of curving in response to applied voltage
JP2002170426A (en) * 2000-08-22 2002-06-14 Fuji Photo Film Co Ltd Electrolyte composition and electrochemical cell using the same
JP2002075443A (en) * 2000-08-29 2002-03-15 Fuji Photo Film Co Ltd Electrolyte component and electrochemical cell using the same
JP2002097251A (en) * 2000-09-21 2002-04-02 New Japan Chem Co Ltd Alicyclic compound containing glycidyl group, its production method and epoxy resin composition using the same
JP2002173533A (en) * 2000-12-06 2002-06-21 Yokohama Rubber Co Ltd:The Hardening resin composition
JP2002371952A (en) * 2001-06-14 2002-12-26 Sony Corp Actuator, and driving method and system therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314332A (en) * 2004-04-30 2005-11-10 Kaneka Corp Ionic liquid and method for producing the same
US7671514B2 (en) 2004-10-22 2010-03-02 Samsung Electro-Mechanics. Co. Ltd Electroactive solid-state actuator and method of manufacturing the same
JP2006299120A (en) * 2005-04-21 2006-11-02 Sumitomo Bakelite Co Ltd Resin sheet, container for transferring electronic part and cover tape
US8138246B2 (en) 2006-10-06 2012-03-20 Kuraray Co., Ltd. Polymer electrolyte, electrochemical device, and actuator element
WO2008044546A1 (en) 2006-10-06 2008-04-17 Kuraray Co., Ltd. Polymer solid electrolyte, electrochemical device, and actuator element
JP5555407B2 (en) * 2006-10-06 2014-07-23 株式会社クラレ Polymer solid electrolyte, electrochemical device and actuator element
JP2008253016A (en) * 2007-03-29 2008-10-16 Tdk Corp Polymer actuator
JP2010016968A (en) * 2008-07-03 2010-01-21 Alps Electric Co Ltd Polymeric actuator
WO2010037918A1 (en) * 2008-10-02 2010-04-08 Ifp Chemically gelled curable composition based on epoxy-amine resins and on ionic liquids
CN102197066A (en) * 2008-10-02 2011-09-21 Ifp新能源公司 Chemically gelled curable composition based on epoxy-amine resins and on ionic liquids
FR2936802A1 (en) * 2008-10-02 2010-04-09 Inst Francais Du Petrole CHEMICALLY GELIFIED CURABLE COMPOSITION BASED ON EPOXY-AMINE RESINS AND IONIC LIQUID
WO2010084938A1 (en) * 2009-01-23 2010-07-29 味の素株式会社 Resin composition
JP2011172383A (en) * 2010-02-18 2011-09-01 Univ Of Fukui Polymer actuator and method of manufacturing the same
JP2014509080A (en) * 2011-02-19 2014-04-10 ユナイテッド アラブ エミレーツ ユニバーシティ Semiconductor materials and storage devices
US11767437B2 (en) 2020-11-19 2023-09-26 Korea Institute Of Science And Technology Porous polymer actuator and method for fabricating the same

Also Published As

Publication number Publication date
JP4637446B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
CN101828330B (en) Conductive-polymer actuator and process for producing the same
Ying et al. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond
JP2004098199A (en) Solid electrolyte, flexible laminate containing it, and all-solid actuator formed from solid electrolyte
US7696669B2 (en) Electrically conductive polymer actuator, method for manufacturing the same, and method of driving the same
Li et al. Recent Progress on Self‐Healable Conducting Polymers
US20090308737A1 (en) Electrically conductive polymer actuator and method for manufacturing the same
JP3959104B2 (en) Polymer actuator
WO2009096419A1 (en) Flexible deformation sensor
JP2005176428A (en) Actuator element
Shi et al. Actuator based on MWNT/PVA hydrogels
JPH02172179A (en) Self temp. adjusting heat-emitting body and flexible surface-shaped heat emitting body using same
Shen et al. Precise Network Polymerized Ionic Liquids for Low‐Voltage, Dopant‐Free Soft Actuators
JP2006288040A (en) Actuator element and manufacturing method therefor
JP2010161870A (en) Conductive polymer actuator and method of producing the same
CN103380503B (en) Semi-conducting polymer
JP2005051949A (en) Actuator and articulated drive mechanism using the same
Qiu et al. Versatile copolymer for stretchable and self-healable liquid-free ionic conductive elastomers
Liao et al. Intrinsically self-healable and wearable all-organic thermoelectric composite with high electrical conductivity for heat harvesting
Prameswati et al. Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics
Hong et al. Dynamic Metal–Ligand Coordination-Assisted Ionogels for Deformable Alternating Current Electroluminescent Devices
JP3131180B2 (en) Highly sensitive electric deformation method of pyrrole polymer film or fiber
JP2008253012A (en) Polymer actuator and method of manufacturing the same
JP2001054899A (en) Flexible layered product capable of curving in response to applied voltage
JP2007267471A (en) Polymer actuator
JP5448293B2 (en) Actuator or sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees