JPS59232268A - Vacuum device - Google Patents

Vacuum device

Info

Publication number
JPS59232268A
JPS59232268A JP10612383A JP10612383A JPS59232268A JP S59232268 A JPS59232268 A JP S59232268A JP 10612383 A JP10612383 A JP 10612383A JP 10612383 A JP10612383 A JP 10612383A JP S59232268 A JPS59232268 A JP S59232268A
Authority
JP
Japan
Prior art keywords
pressure
container
air supply
valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10612383A
Other languages
Japanese (ja)
Inventor
Koichi Kodera
宏一 小寺
Isamu Inoue
勇 井上
Kazumi Tanaka
一己 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10612383A priority Critical patent/JPS59232268A/en
Publication of JPS59232268A publication Critical patent/JPS59232268A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To restore quickly atm. pressure without soar-up of dust in a vacuum vessel by feeding high pressure air into the vessel by using a fluid throttling valve device having a specific construction. CONSTITUTION:Air is fed into a vacuum vessel 601 from a high pressure air source 606 via a fluid throttling valve 607 and a stop valve 605 in the stage of supplying the air to said vessel and restoring the atm. pressure therein after finishing a vacuum deposition treatment with a vacuum deposition device. A pressure detector 609 is installed in the vessel 601, and such a deviation signal 613 at which the deviation between the pressure signal 611 detected with said detector and the signal 612 from a pressure commanding means 610 is made zero. The means 610 emits such a command 612 as to decrease gradually the restrictor of the valve 607 to an optimum condition in order to maintain the required change rate of the pressure in the vessel 601 with time. The above- mentioned deviation signal 613 is converted by a preamplifier 614 to a speed command signal 615 which is amplified by an amplifier 616. A motor 617 for driving the valve 607 is driven by said signal so that the air is fed to the vessel so as to meet the prescribed air feeding characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空蒸着等に用いる真空装置の構成に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a vacuum apparatus used for vacuum evaporation and the like.

従来例の構成とその問題点 近年、真空蒸着技術は半導体産業や光学産業には欠くべ
からざる技術になっており、薄膜形成技術において果た
す役割は大きい。
Structure of conventional examples and their problems In recent years, vacuum evaporation technology has become indispensable to the semiconductor and optical industries, and plays a major role in thin film formation technology.

真空蒸着装置は真空装置と蒸着源を加熱蒸着する加熱源
の2部によって構成されている。このうち真空装置は第
1図に示すように容器101と容器内を真空排気する排
気手段102並びに真空の良 容器中に気体を供給して大気圧に委す給気手段103と
から構成されている。通常、給気手段103は、直列に
接続された流体絞り弁104と給気開閉弁105によっ
て構成されており、流体絞り弁104はその絞り状態で
給気速度を規制するものであり、給気開閉弁105は給
気の開始および終了を決定するものである。
A vacuum evaporation apparatus is composed of two parts: a vacuum apparatus and a heating source for heating and evaporating a evaporation source. As shown in FIG. 1, the vacuum device is composed of a container 101, an exhaust means 102 for evacuating the inside of the container, and an air supply means 103 for supplying gas into a well-vacuumed container and bringing it to atmospheric pressure. There is. Normally, the air supply means 103 is composed of a fluid throttle valve 104 and an air supply on/off valve 105 that are connected in series.The fluid throttle valve 104 regulates the air supply speed in its throttled state, and the air supply The on-off valve 105 determines the start and end of air supply.

第2図は各々の流体絞り弁の絞り状態(流路抵抗R)で
真空状態にある容器を給気したときの圧力と時間の関係
を実験的に求めた一例であり、給気の当初においては圧
力の時間に対する変化率は一定であるが、大気圧に近づ
くにつれ、この変化率は徐々に小さくなっている。
Figure 2 is an example of the relationship between pressure and time obtained experimentally when air is supplied to a container in a vacuum state with the throttle state of each fluid throttle valve (flow path resistance R). The rate of change in pressure over time is constant, but as the pressure approaches atmospheric pressure, this rate of change gradually decreases.

近年、真空蒸着は無塵化傾向にあり、高クリーン化雰囲
気で蒸着を行う必要のある場合が非常に多い。真空蒸着
では、蒸着膜がすべて被蒸着物。
In recent years, there has been a trend toward dust-free vacuum deposition, and it is often necessary to perform deposition in a highly clean atmosphere. In vacuum evaporation, the entire evaporated film is the object to be evaporated.

被蒸着箇所のみに堆積されれば問題はないが、容器内の
他の箇所にも蒸着膜が付着する結果となる。
Although there is no problem if the vapor is deposited only on the location to be vapor-deposited, the result is that the vapor-deposited film also adheres to other locations within the container.

容器内に付着した蒸着膜は、蒸着が繰り返されるにつれ
、はく離現象を起こして容器の底にたまったり、はく離
しないまでもはがれ易くなってしまう。このような状態
で容器内を給気した場合、気体の急激なる流入により、
容器の底にたまった蒸着物等の塵埃が舞い」−がって、
容器内の被蒸着物に付着し、被蒸着物が汚染される結果
となる。この対策として、第1図の流体絞り弁104の
流路抵抗を大きくして給気速度を小さくし、容器を給気
するに際しての気体の流れを小さくすることが有効であ
るが、大気圧に達するまでの給気時間が非常に長くなっ
てしまう欠点が一方で出てくる。
As the vapor deposition is repeated, the vapor deposited film deposited inside the container tends to peel off and accumulate at the bottom of the container, or to easily peel off if not peel off. If air is supplied into the container under such conditions, the sudden inflow of gas will cause
Dust from vapor deposits, etc. that has accumulated at the bottom of the container will fly around.
It adheres to the object to be evaporated in the container, resulting in contamination of the object to be evaporated. As a countermeasure against this problem, it is effective to increase the flow path resistance of the fluid throttle valve 104 shown in FIG. On the other hand, the drawback is that it takes a very long time to supply air.

発明の目的 本発明は上記従来の問題点を解消するもので、蒸着装置
等の真空状態の容器を給気する時、容器に付着あるいは
底にたまった塵埃が気体の流れにより舞い」二がって容
器内の被蒸着物が汚染されることを防止するとともに、
大気圧になるまでの給気時間を極力短くすることができ
る真空装置を提供することを目的とするものである。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional problems.When air is supplied to a vacuum container such as a vapor deposition apparatus, dust attached to the container or accumulated at the bottom is blown up by the gas flow. In addition to preventing contamination of the material to be deposited in the container,
It is an object of the present invention to provide a vacuum device that can shorten the time required for air supply to reach atmospheric pressure as much as possible.

発明の構成 手段とを備え、この給気手段を、大気圧よりも高圧の気
体を供給する気体供給手段と、この気体供給手段と前記
容器間に挿入され、流路抵抗が時間とともに漸減する流
体絞り手段と、この流体絞り手段に直列接続された給気
開閉弁とにより構成し、給気当初の塵埃の舞い上がりを
防止するとともに、大気圧よりも高圧の気体を供給する
気体供給手段により短時間で容器の給気を完了させるも
のである。
a gas supply means for supplying gas at a pressure higher than atmospheric pressure; and a fluid whose flow path resistance gradually decreases over time, the gas supply means being inserted between the gas supply means and the container. It consists of a throttle means and an air supply opening/closing valve connected in series to the fluid throttle means, and prevents dust from flying up at the beginning of the air supply.The gas supply means supplies gas at a pressure higher than atmospheric pressure for a short time. This completes the air supply to the container.

実施例の説明 以下本発明の実施例を図面を用いて説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

第3図はその原理図であり、真空状態にある容器301
を大気圧に給気するに際し、大気圧よりも高圧の気体を
供給する気体供給手段306を、直列接続された給気開
閉弁305と流体絞り手段304を介して容器301に
接続する。第4図は第3図における流体絞り手段304
の流路抵抗を固定し、気体供給手段306として大気圧
の気体と、大気圧よりも高圧の気体、例えば2気圧の気
体を供給して真空状態にある容器を給気したときの圧力
と時間との関係を対比したものである。
FIG. 3 is a diagram showing the principle of this, and shows a container 301 in a vacuum state.
When supplying air to atmospheric pressure, a gas supply means 306 that supplies gas at a pressure higher than atmospheric pressure is connected to the container 301 via an air supply opening/closing valve 305 and a fluid restriction means 304 connected in series. FIG. 4 shows the fluid restricting means 304 in FIG.
The pressure and time when a container in a vacuum state is inflated by fixing the flow path resistance and supplying gas at atmospheric pressure and gas at a higher pressure than atmospheric pressure, for example, 2 atmospheres, as the gas supply means 306. This is a comparison of the relationship between

第4図においてAは気体供給手段の気体の圧力が大気圧
の場合、Bは2気圧の場合を示している。
In FIG. 4, A indicates a case where the pressure of the gas in the gas supply means is atmospheric pressure, and B indicates a case where the pressure is 2 atmospheres.

大気圧の気体を供給した場合、大気圧に近づくにつれ、
圧力の時間に対する変化率は小さくなり、大気圧に達す
るまでの給気時間は長くなってしまうが、2気圧の気体
を供給すると、大気正寸で圧力の時間に対する変化率は
ほぼ一様にすることができ給気時間を短くすることがで
きる。このように大気圧よりも高圧の気体を供給するこ
とにより、大気圧に近づくにつれ、圧力の時間に対する
変化率が小さくなる現象を改善することができ、給気時
間を短縮するどとができる。
When gas is supplied at atmospheric pressure, as it approaches atmospheric pressure,
The rate of change in pressure over time becomes smaller and the time required to supply air to reach atmospheric pressure becomes longer, but if 2 atm gas is supplied, the rate of change in pressure over time becomes almost uniform at the same atmospheric pressure. This allows the air supply time to be shortened. By supplying gas at a pressure higher than atmospheric pressure in this manner, it is possible to improve the phenomenon in which the rate of change in pressure over time decreases as the pressure approaches atmospheric pressure, and the air supply time can be shortened.

第4図は前述の如く流体絞り手段の流路抵抗を固定した
場合の説明図であり、給気当初の圧力の時間に対する変
化率は比較的大きなものになっている。このため、給気
当初において、気体の急激なる流入により、容器301
内の塵埃が舞い上がり、被蒸着物が汚染される結果とな
る。そこでこの対策として第3図に示すように流体絞り
手段304を流体絞り弁307とこの絞り弁307の絞
りを所定速度で開く絞り弁駆動手段308によって構成
し、流体絞り弁307の流路抵抗を時間とともに漸減さ
せた。す々わち給気の当初において塵埃が舞い上がらな
い状態を確保できるように流体絞や弁を充分絞り、流路
抵抗を大きくした後、前記流路抵抗を徐々に減少させ、
第6図に示す圧力と時間の関係を実現させる。この結果
として、塵埃の舞い上が沙は防止されることに加え大気
圧よりも高圧の気体供給手段との相乗効果で、大気圧に
達するまでの給気時間も短縮化される。なお、給気にお
いて容器301内が大気に達した時、給気開閉弁305
を閉じる手段を設けることにより、気圧供給手段におけ
る供給気体を有効的に利用することができる。
FIG. 4 is an explanatory diagram when the flow path resistance of the fluid restricting means is fixed as described above, and the rate of change of the pressure at the beginning of air supply with respect to time is relatively large. Therefore, at the beginning of air supply, due to the rapid inflow of gas, the container 301
The dust inside will fly up, resulting in contamination of the object to be deposited. As a countermeasure against this problem, as shown in FIG. 3, the fluid restricting means 304 is constituted by a fluid restricting valve 307 and a restricting valve driving means 308 that opens the restricting valve of the restricting valve 307 at a predetermined speed to reduce the flow path resistance of the fluid restricting valve 307. It was gradually reduced over time. In other words, at the beginning of the air supply, the fluid restrictor or valve is sufficiently throttled to increase the flow path resistance so as to ensure that dust does not fly up, and then the flow path resistance is gradually decreased.
The relationship between pressure and time shown in FIG. 6 is realized. As a result, in addition to preventing dust from flying up, the synergistic effect with the gas supply means having a pressure higher than atmospheric pressure shortens the air supply time until atmospheric pressure is reached. Note that when the inside of the container 301 reaches the atmosphere during air supply, the air supply on/off valve 305
By providing a means for closing the air pressure supply means, it is possible to effectively utilize the supplied gas in the atmospheric pressure supply means.

容器と大気圧よりも高圧の気体供給手段との間の絞り弁
の絞りを所要速度で開く絞り弁駆動手段としては、第6
図に示す装置が非常に有効である。
A sixth throttle valve driving means opens the throttle of the throttle valve between the container and the gas supply means having a pressure higher than atmospheric pressure at a required speed.
The device shown in the figure is very effective.

容器601内の圧力を検出する圧力検出手段609と容
器内の圧力の時間に対する変化率を所要のものとするた
め流体絞り弁607の絞りを最適条件で漸減するよう指
令する圧力指令手段610を設け、圧力検出手段609
からの圧力信号611と、圧力指令手段610からの圧
力指令信号612の偏差を0にするような圧力偏差信号
613を取り出す。この圧力偏差信号613をプリアン
プ614を介して速度指令信号615に変換し、さらに
モータ駆動アンプ616て増幅し、流体絞り弁607の
絞りに直結したモータ617を駆動させ、絞り弁607
の流路抵抗を最適化した速度で漸減させるものであり、
所定の給気特性を精度良く得ることができる。
A pressure detection means 609 for detecting the pressure inside the container 601 and a pressure command means 610 for instructing the throttle of the fluid throttle valve 607 to be gradually reduced under optimum conditions in order to obtain a desired rate of change of the pressure inside the container with respect to time are provided. , pressure detection means 609
A pressure deviation signal 613 is extracted that makes the deviation between the pressure signal 611 from the pressure command means 610 and the pressure command signal 612 from the pressure command means 610 zero. This pressure deviation signal 613 is converted into a speed command signal 615 via a preamplifier 614 and further amplified by a motor drive amplifier 616 to drive a motor 617 directly connected to the throttle of the fluid throttle valve 607.
This method gradually reduces the flow path resistance of
Predetermined air supply characteristics can be obtained with high precision.

流路抵抗を時間とともに漸減させる流体絞り手段として
、絞り弁の絞りを所要速度で開く絞り弁駆動手段によっ
て行う方法を前述したが、このほかに次の方法も有効で
ある。これは、第7図に示すように複数の給気開閉弁7
0.5 a 、7otsb・・・705 nとこれらの
給気開閉弁705a、705b・・・705nのそれぞ
れに直列に接続された互いに異なる流体絞り707a 
、To”’rb−707nを各々、並列で接続し、流路
抵抗の大なる流体絞シから小さい流体絞りに向かって、
それに接続する給気開閉弁を順次、開く開閉弁操作手段
708により、流体絞りの系全体としての流路抵抗を時
間とともに漸減させるものである。
As the fluid throttling means for gradually reducing the flow path resistance over time, the method described above uses a throttling valve drive means that opens the throttling valve at a required speed, but the following method is also effective. This includes a plurality of air supply on/off valves 7 as shown in FIG.
0.5a, 7otsb...705n and different fluid restrictors 707a connected in series to each of these air supply on/off valves 705a, 705b...705n.
, To'''rb-707n are connected in parallel, from the fluid restrictor with large flow path resistance to the fluid restrictor with small flow path resistance.
By means of an on-off valve operation means 708 that sequentially opens the air supply on-off valves connected thereto, the flow path resistance of the entire fluid restriction system is gradually reduced over time.

なお本発明の説明図である第3図、第6図、第7図にお
いて、すべて給気手段を容器の」二部に配しているが、
容器内にたまった塵埃を給気において少しでも舞い上が
らせにくくする上で非常に有効である。
Note that in FIGS. 3, 6, and 7, which are explanatory diagrams of the present invention, the air supply means are all arranged in the second part of the container.
This is very effective in making it difficult for dust accumulated in the container to be blown up in the air supply.

発明の効果 以上のように本発明の真空装置は、真空状態にある容器
を大気圧に給気すに際し、大気圧よりも高圧の気体を供
給する気体供給手段を、直列接続された給気開閉弁とそ
の流路抵抗が時間とともに漸減する流体絞り手段を介し
て容器に接続するようにしたので、給気当初の大きな気
体の流れによる塵埃の舞い上がりが防止され、被蒸着物
へのtll染が解消されるとともに、大気圧に達する捷
での給気時間も大きく短縮化され、その工業的価値は非
常に大きい。
Effects of the Invention As described above, the vacuum device of the present invention, when supplying air to atmospheric pressure in a container in a vacuum state, connects the gas supply means for supplying gas at a pressure higher than atmospheric pressure to the air supply opening/closing system connected in series. Since the valve is connected to the container through a fluid restricting means whose flow path resistance gradually decreases over time, it is possible to prevent dust from flying up due to the large flow of gas at the beginning of air supply, and to prevent Tll staining on the material to be evaporated. At the same time, the time required for air supply to reach atmospheric pressure is also greatly shortened, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における真空装置の原理図、第2図は同
装置の絞り弁の流路抵抗を一定にした時の容器内圧力と
給気時間の関係を示す特性図、第3図は本発明の一実施
例における真空装置の概略を示す原理図、第4図は同装
置の絞り弁の流路抵抗を一定にし、気体供給手段の気体
圧力を大気圧とそれ以上にしたときの容器内圧力と給気
時間の関係を示す特性図、第5図は同装置の容器内圧力
と給気時間の関係を示す図、第6図は本発明さらに具体
的な実施例のブロー)り図、第7図は同地の実施例を示
すブロック図である。 301.601.701 ・−・・=容器、307,6
07゜70了1,7072・・・707n・・・・・・
流体絞り弁、305゜605.6051.6052−・
・605n−・−給気開閉弁、306.θ○6.706
・・・・・・気体供給手段、308・・・・・・絞り弁
駆動手段、708・・・・・・給気開閉弁操作手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 鎗久晴閲 尤 第3図 第4図 #久時間 L 第5図 持久時間    尤 第6図 第7図
Fig. 1 is a principle diagram of a conventional vacuum device, Fig. 2 is a characteristic diagram showing the relationship between the pressure inside the container and air supply time when the flow path resistance of the throttle valve of the same device is constant, and Fig. 3 is a diagram showing the relationship between the pressure inside the container and the air supply time. FIG. 4 is a principle diagram showing the outline of a vacuum device according to an embodiment of the present invention, and FIG. A characteristic diagram showing the relationship between internal pressure and air supply time, Fig. 5 is a diagram showing the relationship between the internal pressure of the container and air supply time of the same device, and Fig. 6 is a blow diagram of a more specific embodiment of the present invention. , FIG. 7 is a block diagram showing an embodiment of the same. 301.601.701 ・-・・=container, 307,6
07゜70了1,7072...707n...
Fluid throttle valve, 305°605.6051.6052-・
・605n-・-Air supply opening/closing valve, 306. θ○6.706
. . . Gas supply means, 308 . . . Throttle valve driving means, 708 . . . Air supply opening/closing valve operation means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 2 Haruyoshi Yarihisa Figure 3 Figure 4 # Long time L Figure 5 Endurance time Figure 6 Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)容器と、真空の状態にある前記容器中へ気体を供
給して前記容器内を大気圧に蟇す給気手段とを備え、こ
の給気手段を、大気圧よりも高圧の気体を供給する気体
供給手段と、この気体供給手段と前記容器間に挿入され
、流路抵抗が時間とともに漸減する流体絞り手段と、こ
の流体絞9手段に直列接続された給気開閉弁により構成
し、前記容器内が大気圧に達した時、前記給気開閉弁を
閉じるよう構成した真空装置。
(1) A container, and an air supply means for supplying gas into the container in a vacuum state to bring the inside of the container to atmospheric pressure, and the air supply means is provided with a gas having a pressure higher than atmospheric pressure. Consisting of a gas supply means, a fluid throttle means inserted between the gas supply means and the container and whose flow path resistance gradually decreases over time, and an air supply opening/closing valve connected in series to the fluid throttle means, A vacuum device configured to close the air supply opening/closing valve when the inside of the container reaches atmospheric pressure.
(2)流体絞り手段を、可変絞り弁と、この絞シ弁の絞
りを所要速度で開く絞シ弁駆動手段とにより構成した特
許請求の範囲第1項記載の真空装置。
(2) The vacuum device according to claim 1, wherein the fluid restricting means is constituted by a variable restricting valve and a restricting valve driving means that opens the restricting valve at a required speed.
(3)絞り弁駆動手段を、容器内の圧力を検出する圧力
検出手段と、前記容器内の圧力を所要速度で漸減するよ
うに指令する圧力指令手段と、この圧力検出手段からの
圧力信号と前記圧力指令手段からの圧力指令信号の偏差
を0にするように前記絞り弁を駆動する絞り弁制御手段
により構成した特許請求の範囲第2項記載の真空装置。
(3) A pressure detection means for detecting the pressure inside the container, a pressure command means for commanding the pressure inside the container to gradually decrease at a required speed, and a pressure signal from the pressure detection means for controlling the throttle valve driving means. 3. The vacuum apparatus according to claim 2, further comprising throttle valve control means for driving said throttle valve so that the deviation of the pressure command signal from said pressure command means is zero.
(4)流体制御手段を、複数の給気開閉弁と、この複数
の給気開閉弁のそれぞれに直列接続された互いに異なる
流路抵抗を有する流体絞りと、との流路抵抗の大なる流
体絞りに接続された開閉弁から順次、流路抵抗の小なる
流体絞りに接続された開閉弁を開く開閉弁操作手段とに
より構成した特許請求の範囲第1項記載の真空装置。
(4) The fluid control means is a fluid having a large flow path resistance between a plurality of air supply on-off valves and a fluid restrictor having a mutually different flow path resistance and connected in series to each of the plurality of air supply on-off valves. 2. The vacuum device according to claim 1, further comprising an on-off valve operating means that sequentially opens on-off valves connected to the fluid throttle having a small flow path resistance, starting with the on-off valves connected to the throttle.
(5)給気手段と容器の接続部を容器の」二部に配する
特許請求の範囲第1項記載の真空装置。
(5) The vacuum device according to claim 1, wherein the connection portion between the air supply means and the container is arranged in the second part of the container.
JP10612383A 1983-06-14 1983-06-14 Vacuum device Pending JPS59232268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10612383A JPS59232268A (en) 1983-06-14 1983-06-14 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10612383A JPS59232268A (en) 1983-06-14 1983-06-14 Vacuum device

Publications (1)

Publication Number Publication Date
JPS59232268A true JPS59232268A (en) 1984-12-27

Family

ID=14425652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10612383A Pending JPS59232268A (en) 1983-06-14 1983-06-14 Vacuum device

Country Status (1)

Country Link
JP (1) JPS59232268A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391081A (en) * 1977-01-24 1978-08-10 Hitachi Ltd Vacuum deposition apparatus
JPS57145976A (en) * 1981-03-03 1982-09-09 Nec Corp Vacuum film-forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391081A (en) * 1977-01-24 1978-08-10 Hitachi Ltd Vacuum deposition apparatus
JPS57145976A (en) * 1981-03-03 1982-09-09 Nec Corp Vacuum film-forming device

Similar Documents

Publication Publication Date Title
US5758680A (en) Method and apparatus for pressure control in vacuum processors
JPH0242186A (en) Control device for booster pump
KR960001501A (en) Vacuum system exhaust method and device
JP2747603B2 (en) Method and apparatus for venting vacuum processing equipment
JPH11274024A (en) Method and device for supplying treatment liquid
JPS59232268A (en) Vacuum device
JPS59232269A (en) Vacuum device
JP3089130B2 (en) Room pressure control device
JP2826479B2 (en) Gas supply device and operation method thereof
US4264936A (en) Altitude correcting vacuum system
JP3044205B2 (en) Room pressure control device
US6824617B2 (en) Input/output valve switching apparatus of semiconductor manufacturing system
JPH01256743A (en) Room pressure regulating device for plurality of rooms
JPH0560068A (en) Vacuum device and method for preventing refuse from sticking
JP3146789B2 (en) Exhaust system for test equipment
KR930004198Y1 (en) Automatic exhaust system of gas pipe
JPH04113141A (en) Clean room
JPH0855769A (en) Automatic regulator of inside and outside pressure difference
JPH01268861A (en) Method for introducing gas into vacuum vessel and vacuum device therefor
JP2000135586A (en) Device and method for protecting light condensing lens using assist gas bypass circuit
JPS6025232A (en) Pressure regulation of semiconductor manufacturing device
JPH03982A (en) Vacuum chamber pressure control system
JPS62187589A (en) Protection method for condensing lens in laser beam machine and gas feeding device for its use
JPH0719554Y2 (en) Vacuum exhaust device
JPH05114176A (en) Cooler for optical disk substrate