JPS59232232A - Manufacture of ferritic stainless steel sheet with no surface crack and high workability - Google Patents

Manufacture of ferritic stainless steel sheet with no surface crack and high workability

Info

Publication number
JPS59232232A
JPS59232232A JP10719983A JP10719983A JPS59232232A JP S59232232 A JPS59232232 A JP S59232232A JP 10719983 A JP10719983 A JP 10719983A JP 10719983 A JP10719983 A JP 10719983A JP S59232232 A JPS59232232 A JP S59232232A
Authority
JP
Japan
Prior art keywords
rolling
rolled
temperature
hot
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10719983A
Other languages
Japanese (ja)
Other versions
JPH0132291B2 (en
Inventor
Jiro Harase
原勢 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10719983A priority Critical patent/JPS59232232A/en
Publication of JPS59232232A publication Critical patent/JPS59232232A/en
Publication of JPH0132291B2 publication Critical patent/JPH0132291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture the titled stainless steel sheet by hot rolling a ferritic stainless steel contg. specified amounts of C, Al and Cr, carrying out reheating at a high temp., hot rolling at a high temp. and coiling at a low temp., cold rolling the hot rolled sheet without carrying out annealing, and subjecting it to recrystallization annealing. CONSTITUTION:The composition of a ferritic stainless steel billet is composed of, by weight, 0.03-0.07% C, 0.08-0.5% Al, 15-19% Cr and the balance Fe with inevitable impurities. The billet is rolled at 1,000-1,200 deg.C and >=20% total draft. The resulting plate is reheated at 1,180-1,300 deg.C and rolled at >=850 deg.C finishing temp. with a rolling mill consisting of a rough rolling mill and a continuous finish rolling mill, and rapid cooling and coiling at <=650 deg.C are carried out. The hot rolled sheet is cold rolled without carrying out annealing, and it is subjected to recrystallization annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフェライト系ステンレス薄鋼板の製造法、特に
製造工程を簡略化しうる加工性のすぐれたフェライト系
ステンレス薄鋼板の製造法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a ferritic stainless thin steel sheet, and particularly to a method for manufacturing a ferritic stainless steel sheet with excellent workability that can simplify the manufacturing process. .

(従来技術) 従来、フェライト系ステンレス薄鋼板(SUS430)
は、熱間圧延鋼帯を800〜850℃の温度範囲で2時
間以上の箱焼鈍を行うか、900℃〜1100℃の温度
範囲で短時間の連続焼鈍を行ったのち、冷間圧延する方
法によって製造されている@熱延板焼鈍を行う冶金的意
味の一つは、再結晶による結晶粒の微細化にあり、この
再結晶を効果的に行うには、スラブ加熱温度を低温にす
るとか、仕上圧延温度を低温にする等の低温熱延が必要
である。
(Conventional technology) Conventionally, ferritic stainless thin steel plate (SUS430)
The method is to box-anneal a hot-rolled steel strip at a temperature range of 800 to 850°C for 2 hours or more, or to perform continuous annealing for a short time in a temperature range of 900°C to 1100°C, followed by cold rolling. One of the metallurgical meanings of annealing the hot-rolled sheets produced by @ is the refinement of crystal grains through recrystallization. , low-temperature hot rolling is required, such as lowering the finish rolling temperature.

このような低温熱延を行うことは、いわゆるスケール疵
と呼ばれる表面疵が発生し易くなる。
When such low-temperature hot rolling is performed, surface flaws called so-called scale flaws are likely to occur.

(発明の目的) 本発明はこのような低温熱延を行わずに熱延板焼鈍工程
を省略したプロセスで表面疵がなく、加工性の良いフェ
ライト系ステンレス薄鋼板を↓造する方法を提供するも
のである。
(Objective of the invention) The present invention provides a method for producing a ferritic stainless thin steel sheet with no surface defects and good workability using a process that does not perform such low-temperature hot rolling and omits the hot-rolled sheet annealing step. It is something.

(発明の構成・作用) 本発明の要旨とするところはC0,03〜0.07%、
At0.08〜0.5%、Cr15〜19%、残部鉄及
び不可避的不純物からなるフェライト系ステンレス鋼鋳
片を1000〜1200℃の温度範囲で少なくとも全圧
下率2(1以上の圧延を行った後、1180℃以上13
00℃以下の温度に再加熱を行い、粗圧延機と連続仕上
圧延機からなる圧延機で、850℃以上の終了温度で圧
延し、次いで急冷して650℃以下の温度で捲取った後
、熱延板焼鈍することなく冷間圧延し、再結晶焼鈍する
ことを特徴とする表面疵がなく、加工性の良いフェライ
ト系ステンレス薄鉛板の製造法にある。
(Structure and operation of the invention) The gist of the present invention is that C0.03 to 0.07%,
A ferritic stainless steel slab consisting of 0.08 to 0.5% At, 15 to 19% Cr, the balance iron and unavoidable impurities was rolled at a total reduction rate of at least 2 (1 or more) in a temperature range of 1000 to 1200°C. After that, 1180℃ or more 13
After being reheated to a temperature of 00°C or lower, rolled at a finishing temperature of 850°C or higher in a rolling mill consisting of a rough rolling mill and a continuous finishing rolling mill, and then rapidly cooled and rolled at a temperature of 650°C or lower, A method for producing a ferritic stainless steel thin lead plate with no surface flaws and good workability, characterized by cold rolling and recrystallization annealing without hot-rolled plate annealing.

本発明の骨子となる一貫f日セメ条件について説明する
。鋳片を熱間圧延した後高温で再加熱を行うのは、この
工程で静的再結晶を促進させ、鋳造組織を微細化させる
ものであり、高温工1加熱をしたちと、高温熱延を行い
、次いで650℃以下の低温捲取をするのは、■出来る
だけγ相の存在する領域で熱間圧延を行い、熱延板中に
γ相を微細分散させ、熱延ままの状態で出来るだけ多量
の硬い相(α′相)を熱延板中に微細に分赦さぜること
、■高温スラブ加熱および高温仕上熱延することによシ
、熱延中にスケール疵が発生するのを防止すること、■
仕上圧延終了温度を高温とすることでr値の低下を防ぐ
ためである。
The consistent f-day condition, which is the gist of the present invention, will be explained. Reheating the slab at high temperature after hot rolling promotes static recrystallization in this process and refines the cast structure. The reason for this is to carry out hot rolling in the region where the γ phase exists as much as possible, to finely disperse the γ phase in the hot rolled sheet, and then to roll it at a low temperature of 650°C or less. By finely dispersing a large amount of hard phase (α' phase) into the hot-rolled sheet, and by performing high-temperature slab heating and high-temperature finishing hot rolling, scale defects are prevented from occurring during hot rolling. To prevent, ■
This is to prevent the r value from decreasing by setting the finish rolling finish temperature to a high temperature.

鋳片を熱間圧延後高温再加熱して鋳造組織を微細化させ
る目的は、熱延板焼鈍での組織微細化の代替を行うもの
であり、高温熱延後、低温捲取して出来るだけ多量の硬
い相(α′相)を熱延板中に微細に分散させるΩは、冷
延焼鈍後の絡合組織をランダム化させることにより、リ
ジングを少なくさせることを目的としたものである。
The purpose of reheating the cast slab at a high temperature after hot rolling to refine the cast structure is to replace the microstructural refinement in hot-rolled plate annealing. The purpose of Ω, which finely disperses a large amount of hard phase (α' phase) in the hot rolled sheet, is to reduce ridging by randomizing the entangled structure after cold rolling annealing.

本発明に従って冷間圧延するにあた9冷間圧延工程の前
段において好ましくは冷間圧延すべき圧下量の少なくと
も60%を150+nm以上の大径ワークロールで冷間
圧延を行う。かくして全圧下量を150mm以上の大径
ロールで圧延した場合とほぼ同程度の加工性、特にr値
を向上させることが出来、引続き小径ロールで残余の圧
下量を圧延することによシ、銅板表面を全工程大径ロー
ルで圧延した場合に比較して美麗に、更によυ薄手の鋼
板が出来る。また本発明に従い最終焼鈍を行うにあたシ
、好ましくは850℃以上、900℃以下で60秒以内
の高温短時間で行う。かくして加工性特にr値、リジン
グ特性を−そう向上させることができる。
In cold rolling according to the present invention, at least 60% of the reduction to be cold rolled is preferably cold rolled using large diameter work rolls of 150+ nm or more in the first stage of the 9 cold rolling steps. In this way, it is possible to improve the workability, especially the r value, to the same extent as when the total reduction is rolled with large diameter rolls of 150 mm or more, and by continuing to roll the remaining reduction with small diameter rolls, the copper plate can be rolled. Compared to the case where the surface is rolled with large-diameter rolls throughout the process, a steel plate that is more beautiful and thinner can be produced. Further, according to the present invention, the final annealing is preferably carried out at a temperature of 850° C. or higher and 900° C. or lower for a short period of time within 60 seconds. In this way, the processability, especially the r-value, and the ridging properties can be improved.

次に、本発明における出発鋼成分の限定理由について述
べる。kl添加の理由は、低降伏点化、キラキラ疵発生
防止及びr値向上を目的としたものであシ、C量に範囲
をもうけたのは、r値およびリジング特性のバランスを
考慮して決定したものである。Cr含有量に範囲をもう
けたのは、5O8430系ステンレス鋼としての耐食性
を考慮したものでおる。以下、各条件の限定理由につい
て説明する000.07%以下としたのは、これを超え
るC含有量では熱延ままの状態で、熱延板が硬く、その
ままの状態では冷延しにくいことと、成品のr値が低下
し、深絞シ性が劣化する為である。CO,03多以上と
したのは、これ未満のC含有量ではりジング特性が劣化
するためである。
Next, the reasons for limiting the starting steel components in the present invention will be described. The reason for adding Kl was to lower the yield point, prevent the occurrence of sparkling defects, and improve the r value.The reason for creating a range for the amount of C was determined by considering the balance between the r value and ridging characteristics. This is what I did. The range for the Cr content was set in consideration of the corrosion resistance of the 5O8430 series stainless steel. The reasons for limiting each condition are explained below.The reason for setting the C content to 000.07% or less is that if the C content exceeds this value, the hot-rolled sheet will be hard in the as-hot-rolled state, and it will be difficult to cold-roll it in that state. This is because the r value of the finished product decreases and the deep drawing properties deteriorate. The reason why the content is set to be higher than CO,03 is that if the C content is less than this, the fusing characteristics deteriorate.

At0.08%以上としたのは、これ未に;1のAt含
有量では熱地ままの状態で硬いので、■熱延板焼鈍なし
では冷延性が劣化すること、■熱延板焼鈍なしの場合に
は、粒界腐食感受性が大きく、いわゆるキラキラ疵が発
生すること、■熱延板焼鈍なしの場合には成品の降伏点
が高く、伸びが少ないこと、■熱延板ヅ亮鈍なしの場合
には成品のr値が低いこと等の理由による。At添加量
を0.5%以下としたのは、これを超える添加でも上述
の効果は期待出来るが、At添加量が増すことは経済的
ではないので上限を設けたものである。
The reason for setting the At content to 0.08% or more is that the At content of 1 is hard in the hot state, so cold rollability deteriorates without hot-rolled sheet annealing; In some cases, the susceptibility to intergranular corrosion is large and so-called sparkling defects occur; ■ In the case of hot-rolled sheets without annealing, the yield point of the product is high and the elongation is low; ■ In the case of hot-rolled sheets without annealing, In some cases, this is due to reasons such as the low r value of the finished product. The reason why the amount of At added is set to 0.5% or less is that although the above-mentioned effects can be expected even if the amount of At added exceeds 0.5%, it is not economical to increase the amount of At added, so an upper limit was set.

Crを15%以上としたのは、これ未満のCr量では熱
延ままの状態でマルテンサイトの量が多く、冷延性が劣
化することと、5O8430N板としての耐食性が劣化
するという理由からであ=!l)、191Crを上限と
したのは、これを超えて添加しても加工性の向上は認め
られず、経済的でないので上限を設けたものである。
The reason why the Cr content is set to 15% or more is because if the Cr content is less than this, there will be a large amount of martensite in the as-hot-rolled state, resulting in poor cold rollability and poor corrosion resistance as a 5O8430N plate. =! 1), 191Cr is set as the upper limit because adding more than this does not improve workability and is not economical.

次に、圧延工程についてその限定理由を説明する。Next, the reason for the limitation regarding the rolling process will be explained.

通常の熱間圧延工程の前に行う鋳片の熱間圧延温度を1
000℃以上、1200℃以下の温度と限定したのは次
の理由による。1000℃未満の温度の圧延でも結晶粒
微細化効果はあるが、1000℃未満の温度の圧延では
圧延変形のだめの変型抵抗が大きくこの圧延工程で表面
疵が発生し易くなυ好ましくない。また、1200℃を
超える温度では、熱延中の歪蓄積の効果が少なく、再加
熱時の静的再結晶による鋳造組織の微細化が不充分なこ
とによる。圧下率20%以上としたのは、これ未満の圧
下では、再加熱時の静的再結晶が不十分であシ、鋳造組
織の微細化が不十分々ことによる。圧下量は20%以上
多い程好ましいが、圧下量を大きくすることは、次工程
で通常の熱間圧延機で圧延する場合、鋳片長さは一定と
なっているから、圧下量が増す程鋳片単重を小さくする
必要があシ、熱間圧延の生産性が低下することになるの
で、これらを考慮して最適圧下量を決定する必要がある
The hot rolling temperature of the slab before the normal hot rolling process is 1
The reason why the temperature was limited to 000°C or higher and 1200°C or lower is as follows. Although rolling at a temperature of less than 1000°C has the effect of grain refinement, rolling at a temperature of less than 1000°C is undesirable because the deformation resistance during rolling deformation is large and surface flaws are likely to occur during this rolling process. Moreover, at temperatures exceeding 1200° C., the effect of strain accumulation during hot rolling is small, and this is due to insufficient refinement of the cast structure due to static recrystallization during reheating. The reason why the rolling reduction ratio is set to 20% or more is because if the rolling reduction is less than this, static recrystallization during reheating will be insufficient and the casting structure will not be sufficiently refined. It is preferable to increase the reduction amount by 20% or more, but increasing the reduction amount is because when rolling in a normal hot rolling mill in the next step, the length of the slab is constant, so the higher the reduction amount, the more the casting Since it is necessary to reduce the piece unit weight and the productivity of hot rolling will decrease, it is necessary to determine the optimum rolling reduction amount in consideration of these factors.

通常の熱間圧延を行うに際して、圧延済鋳片を1180
℃以上1300℃以下の高温で再加熱を行う理由は、■
圧延済鋳片を、高温再加熱によって静的に再結晶させる
こと、■仕上熱延前段までα+γの2相域で熱間圧延す
ること等のためである。再加熱温度を1180℃以上と
したのは、■これ以下の温度では再加熱工程での静的再
結晶の進行が不十分で、且つ鋳造組織の破壊が不十分で
あシ、■該温度を1180℃以上にすることによシ、粗
圧延工程及び少くとも仕上熱延工程の前段でγ相が出来
るだけ多い状態で熱延可能となシ、熱延ままの状態で硬
い相が多くなり、リジング軽減効果が増し、■これ以下
の温度では圧延荷重がまし、表面疵が出易くなるからで
ある。再加熱温度を1300℃以下としたのは、これを
超える加熱では加熱時に結晶粒が異常成長して粗大化し
、かえってリジング特性が劣化するためである。
When performing normal hot rolling, the rolled slab is
The reason for reheating at a high temperature above ℃ and below 1300℃ is ■
This is to statically recrystallize the rolled slab by high-temperature reheating, and (2) to hot-roll it in the α+γ two-phase region up to the stage before finishing hot rolling. The reason why the reheating temperature was set at 1180°C or higher was because: 1) If the temperature is lower than this, the progress of static recrystallization in the reheating process is insufficient, and the destruction of the cast structure is insufficient; By setting the temperature to 1180° C. or higher, hot rolling is possible with as much γ phase as possible in the rough rolling process and at least before the final hot rolling process, and the hard phase increases in the as-hot rolled state. This is because the effect of reducing ridging increases, and at temperatures below this temperature, the rolling load increases and surface flaws are more likely to appear. The reason why the reheating temperature is set to 1300° C. or lower is that heating exceeding this temperature causes crystal grains to abnormally grow and become coarser during heating, which actually deteriorates the ridging properties.

熱延終了温度を850℃以上とした理由は、■熱延での
変形抵抗を少なくして表面疵を少なくすること、■高瀞
仕上熱延をすることでr値向上を目標としたこと等によ
る。本発明者等の研究では熱延板焼鈍する工程では仕上
熱延終了温度が低い程、r値が向上するが、熱延板焼鈍
省略工程では仕上熱延終了温度が低い8r値が低下する
ため、熱延終了温度は850℃以上高い程望ましいこと
が判った。
The reasons for setting the hot rolling end temperature at 850°C or higher are: ■ To reduce the deformation resistance during hot rolling to reduce surface flaws; and ■ To improve the r value by performing high finish hot rolling. by. According to research conducted by the present inventors, in the hot-rolled sheet annealing process, the lower the final hot-rolling end temperature, the higher the r value, but in the hot-rolled sheet annealing process, the lower the final hot-rolling end temperature, the lower the 8r value. It has been found that the higher the hot rolling end temperature is by 850°C or more, the more desirable it is.

次に仕上圧延終了後急冷して650℃以下で捲取る理由
について説明する。
Next, the reason why the material is rapidly cooled and rolled up at 650° C. or lower after finish rolling will be explained.

本発明の方法で通常の熱間圧延前例加熱圧延後、高温で
再加熱する場合、このような加熱圧延を行わないで再加
熱した場合と比べて、熱延終了直後のγ相の分散状況が
異なり、微細に分散化されることがわかった。その理由
については明瞭ではないが、通常の熱間圧延前の圧延に
より、歪が蓄積され、それを再加熱することによシ、こ
れらの歪蓄積部分に新たにγ相が析出し、鋳造ままのγ
相分布がより分散化されるためであると考えている。
In the case of reheating at a high temperature after the conventional hot rolling example in the method of the present invention, the dispersion state of the γ phase immediately after the end of hot rolling is different from that in the case of reheating without such hot rolling. It was found that the particles were different and finely dispersed. The reason for this is not clear, but strain is accumulated during rolling before normal hot rolling, and by reheating it, γ phase is newly precipitated in these strain accumulated areas, resulting in the as-cast state. γ of
We believe that this is because the phase distribution becomes more dispersed.

このように再分散されたγ相は高温の再加熱によシ、再
び一部又は全量が固溶し、熱延中に再び析出するが、こ
のような前履歴を経た場合には、鋳造ままのスラブを直
接高温に加熱して熱延した場合に析出するγ相の析出と
比べると、より微細分散されていることがわかった。こ
のように微細分散されたγ相は熱延後直ちに急冷して6
50℃以下の温度で捲取った場合は相当量のγ相はd相
十炭化物に分解しないで、硬い相(α′相)に変態する
が、このような微細分散した硬い相は、冷延工程で変形
モードを変え、最終焼鈍後の集合組織をランダム化する
ことによシ、リジングを著しく軽減する効果があること
が判った。捲取温度は低い程硬い相の生成を助長してリ
ジング低減効果は太きいが、450℃以下では、それ以
下の低温としても、リジング低減効果は変化しなくなる
ことと、これ以下の温度で生産性を下げずに捲取ること
は困難なことと、これ以下の温度で捲取った場合には、
冷延中に耳割れ等の欠陥が生じ易くなるので、捲取温度
は450℃以上が好ましい。
The γ phase redispersed in this way is reheated at a high temperature, part or all of which becomes solid solution again, and precipitates again during hot rolling. It was found that the precipitated γ phase was more finely dispersed than the γ phase precipitated when the slab was directly heated to high temperature and hot rolled. The γ phase finely dispersed in this way is rapidly cooled immediately after hot rolling to form a 6
When rolling at a temperature below 50°C, a considerable amount of the γ phase does not decompose into d-phase decacarides, but transforms into a hard phase (α' phase). It has been found that changing the deformation mode during the process and randomizing the texture after final annealing can significantly reduce ridging. The lower the winding temperature, the stronger the formation of a hard phase and the greater the effect of reducing ridging. However, at temperatures below 450°C, the effect of reducing ridging does not change even at lower temperatures, and production at lower temperatures It is difficult to wind up the material without reducing its properties, and if it is rolled up at a temperature lower than this,
Since defects such as edge cracks are likely to occur during cold rolling, the winding temperature is preferably 450° C. or higher.

熱間圧延前に加熱圧延のない通常の熱延を行ったものも
、650c以下の低温で捲取ることにより、リジング軽
減効果はみられるが、この場合は、本発明法の如く、圧
延した場合と比べて、リジング軽減効果が少ない。この
理由は、前述の説明で明らかな如く低温捲取によって生
じる硬い相の分散が細かくないために、冷延工程で生成
する変形帯の分散が粗くなシ、集合組織が均一にはラン
ダム化しないので結果として、リジング低減効果が減少
するものである。Atを含有しない通常の430鋼にお
いても、低温捲取することで、リソングは軽減するが、
本発明の如きAt添加量がない場合は、■冷延性が著し
く劣化し、■冷延又は最終焼鈍工程で、キラキラ疵と呼
ばれる表面欠陥が生じ、■成品の降伏点が著しく高く、
伸びが少なく、r値も著しく低下し、浅い絞シ加工や、
ロールフォーミング、密着曲げ等の加工には適した薄板
とはならないのは言うまでもない。
Even in the case of ordinary hot rolling without hot rolling before hot rolling, the effect of reducing ridging can be seen by rolling at a low temperature of 650c or less, but in this case, when rolled as in the method of the present invention, Compared to this, the ridging reduction effect is less. The reason for this is that, as is clear from the above explanation, the hard phase produced by low-temperature rolling is not finely dispersed, so the deformation bands generated in the cold rolling process are not coarsely dispersed, and the texture is not uniformly randomized. As a result, the ridging reduction effect is reduced. Even with ordinary 430 steel that does not contain At, resonating can be reduced by rolling at low temperatures, but
If there is no At addition amount as in the present invention, 1) the cold rollability will be significantly deteriorated, 2) surface defects called sparkling defects will occur during the cold rolling or final annealing process, and 2) the yield point of the product will be significantly high.
There is little elongation, the r value is significantly reduced, and shallow drawing processing,
Needless to say, this is not a thin plate suitable for processing such as roll forming and close bending.

本発明の好ましい実施態俤では冷間圧延の前段で大径ロ
ールを採用するが、かかる圧延法により集合組織特にr
値を向上させる(222)極密度が増し、r値を劣化さ
ぜる(200)極密度が減少するので加工性、特にr値
が向上する。このように集合組織を変化させてr値が向
上する効果は、ロール径が大きい程効果的であるが、本
発明において好ましいワークロールの径の下限を150
−とした理由は、150謳未満でもロール径が大きい程
r値の向上効果はあるが、150M以上で圧延した場合
と比べて効果か少ないこととζ150 mm未満のロー
ル径では生産性向上の点から好ましくないので150悶
以上としだ。又大径ロールで圧延すべき圧延量を全圧延
量の60%以上としだのは、大径ロールでの圧延比率を
増せばそれだけr値は向上するが、圧延比率を60%以
上とすれば、100eIb大径ロールで圧延した場合と
ほぼ同レベルの高いr値を得ることが出来ることによる
In a preferred embodiment of the present invention, large-diameter rolls are employed in the preceding stage of cold rolling.
(222) increases the polar density, and degrades the r value (200) since the polar density decreases, processability, especially the r value, improves. The effect of improving the r value by changing the texture in this way is more effective as the roll diameter increases, but in the present invention, the lower limit of the preferred work roll diameter is set to 150.
The reason why it is set as - is that even if the roll diameter is less than 150 mm, the r value is improved as the roll diameter becomes larger, but the effect is smaller than when rolling at 150 mm or more, and that the productivity improvement is difficult with roll diameters less than ζ150 mm. It's unfavorable, so it's 150 or more in agony. Also, the reason why the amount of rolling that should be rolled with large diameter rolls should be 60% or more of the total rolling amount is because the r value increases as the rolling ratio with large diameter rolls increases, but if the rolling ratio is increased to 60% or more, This is because it is possible to obtain a high r value that is almost the same level as when rolling with a 100 eIb large diameter roll.

々お、大径ロールによる圧延を100%行った場合は良
好な鋼板の表面性状が得られないので、表面の光沢を得
るために、本発明では小径ロールとの組合せを必要とし
、その圧下量はl襲程度で良い結果が得られる。
However, if rolling is performed 100% with large-diameter rolls, a good surface quality of the steel sheet cannot be obtained. Therefore, in order to obtain surface gloss, the present invention requires a combination with small-diameter rolls, and the reduction amount Good results can be obtained with just one attack.

次に最終焼鈍条件の好ましい範囲について述べる。Next, a preferred range of final annealing conditions will be described.

Atの含有量が0.08%以下の通常の430鋼におい
ては、熱延板は800〜850℃程度の温度で2時間以
上の箱焼鈍後、冷間圧延され、仕上焼鈍を行うというプ
ロセスで製造されているのが一般的である。熱延板の状
態で存在していた硬い相は、フェライト相+炭化物に変
化するので、熱延板焼鈍後の状態ではフェライト相と炭
化物相となる。
For ordinary 430 steel with an At content of 0.08% or less, the hot rolled sheet is box annealed at a temperature of about 800 to 850°C for 2 hours or more, then cold rolled and final annealed. It is commonly manufactured. The hard phase that existed in the hot rolled sheet changes to a ferrite phase + carbide, and therefore becomes a ferrite phase and a carbide phase in the hot rolled sheet annealed state.

このような素材を冷間圧延後加熱すれば回復、再結晶が
おこり、再結晶後のミクロ組織は等軸粒となシ、結晶粒
径は均熱温度、時間に殆んど影響を受けず一定となる。
If such a material is heated after cold rolling, recovery and recrystallization will occur, and the microstructure after recrystallization will be equiaxed grains, and the grain size will be almost unaffected by soaking temperature and time. It becomes constant.

再結晶が完了する温度は、成分、熱延条件、冷延圧下率
によって若干異なるが、材料温度が800℃以上に達す
れば均熱時間に関係なく、再結晶し、再結晶すれば均熱
温度、時間に関係なくほぼ一定のr値、リジング特性が
得られる。
The temperature at which recrystallization is completed varies slightly depending on the ingredients, hot rolling conditions, and cold rolling reduction ratio, but if the material temperature reaches 800°C or higher, it will recrystallize regardless of the soaking time, and if it recrystallizes, it will reach the soaking temperature. , an almost constant r value and ridging characteristics can be obtained regardless of time.

しかしながらAtを多量に含有した本発明の出発鋼を熱
延板焼鈍なしで冷延して再結晶焼鈍した場合は、再結晶
温度は、熱延板焼鈍後冷延した場合と比べて高温となり
結晶粒も混粒となる。完全に再結晶した場合、結晶粒の
大きさは、均熱温度、時間に殆んど影響を受けず一定と
なるが、r値、リジング特性は、均熱温度、時間によシ
太r9に変化する。即ちr値は、均熱温度875℃迄の
範囲では、高温長時間程向上し、875℃を超え、90
0℃までは、はぼ同じレベルかあるいはゆるやかに劣化
するが、850℃以下の温度の場合と比べて高いレベル
にある。均熱時間は長い程r値向上効果は顕著であるが
、それは、均熱温度約875℃以下の場合であり、均熱
温度が約875℃を超えると、10秒以上の均熱時間を
とれば、それ以上均熱時間を長くしてもr値の向上式は
わずかである。
However, when the starting steel of the present invention containing a large amount of At is cold-rolled and recrystallized without hot-rolled sheet annealing, the recrystallization temperature is higher than that when the hot-rolled sheet is annealed and then cold-rolled. The grains are also mixed grains. When completely recrystallized, the grain size is almost unaffected by the soaking temperature and time and remains constant; however, the r value and ridging characteristics vary depending on the soaking temperature and time. Change. In other words, in the soaking temperature range up to 875°C, the r value increases as the temperature increases for a longer period of time;
At temperatures up to 0°C, the deterioration is at about the same level or at a slower rate, but at a higher level than at temperatures below 850°C. The longer the soaking time is, the more remarkable the r-value improvement effect is, but this is only when the soaking temperature is about 875°C or lower; if the soaking temperature exceeds about 875°C, the soaking time is longer than 10 seconds. For example, even if the soaking time is increased further, the r value will only improve slightly.

す・ソング特性に及はす最終焼鈍サイクルの影響は複雑
であるが、均熱時間を一定として種々の温度で焼鈍する
場合には、ある均熱温度の場合に最小のりソングを示し
、その温度よシ低い場合も、高い場合もリジングが増加
し、その最適温度は、均熱時間が短い程高温側に移行し
、且つ最適温度範囲が狭く、リジングの減少傾向が大き
い傾向がある。例えば均熱時間が60秒と長い場合には
、リジングの相対値は比較的大きく、825〜875℃
の広い範囲でlミぼ一定の値を示し、これ以上の温度又
はこれ以下の温度では逆にリジング特性は劣化する傾向
を示すし、均熱時間が10秒と短い場合は、均熱温度が
875〜9oo℃の比較的高温で狭い温度範囲で、リジ
ングは低い値を示し、且つこの絶対値は均熱時間が60
秒と長い場合の最適温度で焼鈍して得られるリジングの
値と比べて良好である。
The influence of the final annealing cycle on the properties of the solder and song is complex, but when annealing is performed at various temperatures with a constant soaking time, the minimum glue song is obtained at a certain soaking temperature, and the Ridging increases both when the temperature is low and when it is high, and the optimum temperature shifts to a higher temperature side as the soaking time is shorter.The optimum temperature range is narrower, and there is a tendency for the tendency for the reduction of ridging to be large. For example, when the soaking time is as long as 60 seconds, the relative value of ridging is relatively large and is 825-875℃.
It shows a constant value over a wide range of 1 mm, and at higher or lower temperatures, the ridging properties tend to deteriorate, and when the soaking time is as short as 10 seconds, the soaking temperature In a relatively high temperature and narrow temperature range of 875-900°C, the ridging shows a low value, and this absolute value is lower than the soaking time of 60°C.
This is better than the ridging value obtained by annealing at the optimum temperature for a long time of seconds.

熱延ままの状態で数10%程度存在する硬い相は引続く
冷間圧延工程で、圧延方向に延ばされ、仕上焼鈍工程で
、分解し、フェライト相と炭化物となシ、再結晶温度以
上の温度で、このフェライト相も再結晶する。高温焼鈍
することにより、このような硬い相から分離した炭化物
や、すでに存在していた微細な炭化物は、凝集粗大化し
てマトリックスは清浄化し、加工変形に際して活動する
転位の活動を妨げるような働きがなくなり、塑性変形し
易くなシ更に、焼鈍中にAtNが析出することによシ、
r値を向上させるものである。熱延板焼鈍した場合には
、熱延板焼鈍工程で、炭化物のサイズ、分散状況が決ま
ってしまい、更に固溶Nも窒化クロムや、微量に含まれ
ているAt等により固定され、仕上焼鈍工程では、これ
らの析出物の分散状況は、焼鈍方法によっては変化しな
いので、再結晶が完了すれば、r値は焼鈍条件にかかわ
らず変化しないものである。本発明鋼で熱延板焼鈍温度
が875℃を超えるとr値がゆるやかに劣化するのは、
AANが再固溶をはじめることと、炭化物が再固溶し、
再び微細化し、マトリックスの固溶CやHpが高く々る
ためである。
The hard phase, which exists in the as-hot rolled state by several tens of percent, is stretched in the rolling direction in the subsequent cold rolling process, decomposed in the final annealing process, and becomes a ferrite phase and carbide. At a temperature of , this ferrite phase also recrystallizes. By high-temperature annealing, the carbides separated from the hard phase and the fine carbides that were already present become aggregated and coarsened, cleaning the matrix and inhibiting the activity of dislocations that become active during processing deformation. In addition, due to the precipitation of AtN during annealing,
This improves the r value. When hot-rolled sheets are annealed, the size and dispersion of carbides are determined during the hot-rolled sheet annealing process, and solid solution N is also fixed by chromium nitride and a small amount of At, etc. In the process, the dispersion state of these precipitates does not change depending on the annealing method, so once recrystallization is completed, the r value does not change regardless of the annealing conditions. The reason why the r value gradually deteriorates when the hot-rolled sheet annealing temperature exceeds 875°C in the steel of the present invention is because
AAN starts to re-dissolve, carbide re-dissolves,
This is because the particles become fine again and the solid solution C and Hp in the matrix becomes high.

次にリジング特性であるが、焼鈍温度が低い場合に劣化
するのは、本発明の出発鋼では焼鈍中にAtNが析出す
るため、再結晶完了温度が高温になりその結果、完全な
再結晶が起らず、集合組織のランダム化が不十分となる
からである。更に焼鈍温度が高くなるとり・ソング特性
が逆に劣化する傾向があるのは、微細炭化物が再固溶す
ることにより、旧フェライト相の粒界に存在した微細結
晶粒が消滅し、隣接する伸長フェライト相は小傾角粒界
からなっている場合が多いので、実質的に粗結晶が粗大
化したのと同じように働き、その結果リジング特性が劣
化するからである。
Next, regarding the ridging property, the reason why it deteriorates when the annealing temperature is low is that in the starting steel of the present invention, AtN precipitates during annealing, so the recrystallization completion temperature becomes high and as a result, complete recrystallization is not achieved. This is because the randomization of the texture becomes insufficient. Furthermore, as the annealing temperature increases, the song properties tend to deteriorate because fine carbides re-dissolve into solid solution, causing the fine grains that existed at the grain boundaries of the old ferrite phase to disappear, causing adjacent elongation. This is because the ferrite phase is often composed of low-angle grain boundaries, so it essentially acts in the same way as coarse crystals become coarser, and as a result, the ridging properties deteriorate.

以上本発明を、430鋼にAtを添加した場合について
説明したが、更に1%までのCu −+ 0.1%まで
のTi又はNb 、 100 ppmまでのBを単独又
は複合添加した銅も本発明の対象鋼に包含されることは
言うまでもない。
The present invention has been described above with respect to the case where At is added to 430 steel, but the present invention also applies to copper in which up to 1% Cu − + up to 0.1% Ti or Nb, and up to 100 ppm of B are added singly or in combination. Needless to say, it is included in the steel subject to the invention.

以下本発明を実施例に従って具体的に説明する。The present invention will be specifically described below according to examples.

(実施例) 実施例1 表1に示した成分組成で厚さ250m1のii>J7片
を1100℃の温度で1時間加熱後、3ノぐスで〃、さ
175rymiで圧延(全圧下率30係)後、1240
℃の温度で120分加熱して直ちに圧延して〃さ2、5
 mmの熱延板とした。熱延終了温度は870℃であっ
た。ついでこの熱延板を580℃及び750℃の2や件
で捲取った。このようにして製造した熱延板は、熱延板
焼鈍することなくワークロール径60間の冷間圧延榎て
厚さ0.4門迄冷間圧蛾した。ついで840℃X 2 
min間の焼鈍を#−jった。
(Example) Example 1 A ii>J7 piece with a thickness of 250 m1 having the component composition shown in Table 1 was heated at a temperature of 1100°C for 1 hour, and then rolled at 3 nogs and 175 rymi (total reduction rate of 30 after) 1240
Heat it for 120 minutes at a temperature of ℃ and immediately roll it.
It was made into a hot rolled sheet of mm. The hot rolling end temperature was 870°C. This hot-rolled sheet was then rolled at 580°C and 750°C. The hot-rolled sheet thus produced was cold-rolled to a thickness of 0.4 mm by cold-rolling between work rolls with a diameter of 60 mm without annealing the hot-rolled sheet. Then 840℃ x 2
Annealing between min was #-j.

表2に焼鈍材の機械的性質、r値、リジング特性を示し
た。表2に示した如<AAを含有した本発明鋼を本発明
の方法に従って処理した場合は、At含有量の少ない比
較鋼と比べて降伏点が低く、降伏点延びも少なく、r値
も高く、良好な加工性を示した。又比較鋼では冷間圧延
工程で粒界腐食にもとづく材相疵の発生が一部観察され
たが、本発明鋼の場合は、そのような疵の発生はみられ
なかった。尚Mを含有した本発明鋼も750℃で捲取っ
たものは、r値は良好であったが、リジングは太きかっ
た。又いづれも高温で圧延したため熱間圧延中の表面疵
の発生はみられなかった。
Table 2 shows the mechanical properties, r value, and ridging properties of the annealed materials. As shown in Table 2, when the inventive steel containing AA is treated according to the method of the present invention, the yield point is lower, the yield point elongation is less, and the r value is higher than the comparative steel with low At content. , showed good processability. Further, in the comparative steel, some occurrence of material phase defects due to intergranular corrosion was observed during the cold rolling process, but in the case of the steel of the present invention, no such defects were observed. When the steel of the present invention containing M was also rolled at 750°C, the r value was good, but the ridging was thick. In addition, since both were rolled at high temperatures, no surface flaws were observed during hot rolling.

表1  供試材の成分(%) 表2 成品特性 実施例2 表3に示した成分組成で厚さ250朋の鋳片を1150
℃の温度に加熱後、3パスで180mmの鋳片とした。
Table 1 Ingredients (%) of test material Table 2 Product characteristics Example 2 A slab of 250 mm thick was made into 1150
After heating to a temperature of 180 mm, it was made into a slab of 180 mm in three passes.

ついで1000℃、1100℃、1200℃。Then 1000℃, 1100℃, 1200℃.

1250℃の4種類の湿度で加熱後、厚さ3.0朋の熱
延板とした。熱延終了温度は、スラブ加熱1000℃材
は770℃、1100℃材は820℃、 1200℃材
は870℃、1250℃材は910℃であった。
After heating at 1250° C. at four different humidity levels, a hot-rolled sheet with a thickness of 3.0 mm was obtained. The hot rolling end temperature was 770°C for the 1000°C slab heated material, 820°C for the 1100°C material, 870°C for the 1200°C material, and 910°C for the 1250°C material.

捲取温度は各スラグ加熱温度とも550℃とし、スラブ
加熱温度1200℃及び1250℃の場合は750℃で
捲取った熱延板も作成した。
The rolling temperature was 550°C for each slag heating temperature, and in the case of slab heating temperatures of 1200°C and 1250°C, hot rolled sheets were also created by rolling at 750°C.

こうして製造した熱延板は、熱延板焼鈍することなくワ
ークロール径450門の冷間圧延機で圧延して厚さ0.
7 mmの薄板とした。ついで875℃XIO秒の焼鈍
を行い、焼鈍拐のりソングを測定した。表4に測定結果
を示したが、本発明の如く、再加熱温度が高く、低温捲
取したものは、良好なりソング特性を示した。又、再加
熱温度1000℃及び1100℃の低温にしたものは熱
延中に疵の発生がみられたが、本発明の如く、高温熱延
した場合は、熱延中の疵の発生はなく、良好な表面が得
られた。
The hot-rolled sheet produced in this way was rolled to a thickness of 0.2 mm by rolling in a cold rolling mill with a work roll diameter of 450 without annealing the hot-rolled sheet.
It was made into a thin plate of 7 mm. Then, annealing was performed at 875° C. for 10 seconds, and the annealing bond song was measured. The measurement results are shown in Table 4, and the ones that were reheated at a high temperature and wound at a low temperature as in the present invention showed good song characteristics. In addition, when the reheating temperature was set to a low temperature of 1000°C and 1100°C, scratches were observed during hot rolling, but when hot rolling was carried out at a high temperature as in the present invention, no scratches were generated during hot rolling. , a good surface was obtained.

表3 供試材の主要化学成分(%) 表4 成品のりジング高さくμm) 実施例3 表5に示した成分組成で厚さ200mmの鋳片を110
0℃の温度で圧延して150間厚0スラブとした後、1
250℃の温度に再加熱後、圧延終了温度900℃と7
00℃の2条件で3.7朋の熱延板とし、600℃の温
度で捲取った。
Table 3 Main chemical components of the test material (%) Table 4 Finished product gluing height μm) Example 3 A slab with a thickness of 200 mm was prepared with the composition shown in Table 5.
After rolling at a temperature of 0℃ for 150 minutes to make a 0-thickness slab, 1
After reheating to a temperature of 250℃, the rolling end temperature was 900℃ and 7
A hot-rolled sheet with a thickness of 3.7 mm was obtained under two conditions of 00°C and rolled at a temperature of 600°C.

比較のため、200 mm厚の鋳片を途中圧延すること
なく直接1250℃の温度に加熱後圧延終了温度900
℃、捲取温度750℃の条件で厚さ3.7闘の熱延板と
した。このようにして製造した熱延板を、熱延板焼鈍す
ることなくワークロール径60朋の冷間圧延機で圧延し
て厚さ07朋の薄板とした後850℃X 2 minの
焼鈍全行りた。表6に焼鈍後のr値、リソング高さを示
したが、本発明の方法で製造した薄板は、r値、リジン
グ特性ともに良好であった。本発明と同様に熱延前に圧
延加工したが、圧延終了温度が700℃と低かった材料
は、本発明材と同様良好なり・ソング特性を示したがr
値が低く、且つ、熱延中に表面疵の発生がみられた。熱
間圧延前の圧延を行わず、低温捲取をしなかった材料で
は、リジング特性が著しく悪かった。
For comparison, a slab with a thickness of 200 mm was directly heated to a temperature of 1250°C without being rolled during the process, and then the rolling end temperature was 900°C.
A hot-rolled sheet with a thickness of 3.7mm was obtained under conditions of 750°C and a winding temperature of 750°C. The hot-rolled sheet produced in this way was rolled in a cold rolling mill with a work roll diameter of 60 mm without hot-rolled sheet annealing to form a thin sheet with a thickness of 0.7 mm, and then annealed at 850°C for 2 min. It was. Table 6 shows the r value and resong height after annealing, and the thin plates produced by the method of the present invention had good r values and resong properties. The material, which was rolled before hot rolling in the same way as the present invention, but whose rolling finish temperature was as low as 700°C, showed good song characteristics similar to the present invention material.
The value was low, and surface defects were observed during hot rolling. Materials that were not rolled before hot rolling and were not cold-rolled had significantly poor ridging properties.

表5 供試材の主要化学成分(裂) 表6  成品のr値、リソング 実施例4 実施例3で本発明法に従って熱延しまた熱延板(熱延前
の圧延を行い900℃で仕上圧延を終了し、600℃で
捲取ったもの)を150朋φのワークロールを有する冷
間圧延機及び60正φのワークロールを有する冷間圧延
機ヲ用いて表7に示した如き方法で冷間圧延を行い厚さ
0.7朋の冷延板とした。
Table 5 Main chemical components (cracks) of the test material Table 6 R value of finished product, Risong Example 4 Hot rolled sheet according to the method of the present invention in Example 3 (rolled before hot rolling and finished at 900°C) After finishing the rolling, the rolled product was rolled at 600° C.) by the method shown in Table 7 using a cold rolling mill with a 150 mm diameter work roll and a cold rolling mill with a 60 mm diameter work roll. Cold rolling was performed to obtain a cold rolled sheet with a thickness of 0.7 mm.

ついで840℃X 2 minの焼鈍を行いr値の測定
全行った。
Then, annealing was performed at 840° C. for 2 min, and the r value was measured.

表8にr値と冷延条件の関係を示したが、熱延板焼鈍布
シの工程の場合は、大径ロールによる圧延比率を60%
以上とすることにより、全圧延量を大径ロールで圧延し
た場合とほぼ同等のr値が得られることがわかる。熱延
板焼鈍なしで冷延した場合は、大径ロールで全圧延%の
約60%を圧延した場合は、全圧延量を大径ロールで圧
延した場合と比べると若干r値は低下するが、全圧延f
=に’を小径ロールで圧延する場合と比較するとr値の
向上が大きいことがわかる。又太径ロールのみで圧延し
た場合と比較して小径ロールによる圧延を追加したもの
は、全圧延量を小径ロールのみで圧延した場合と同様の
美麗な表面性状が得られた。
Table 8 shows the relationship between the r value and the cold rolling conditions.
It can be seen that by doing the above, it is possible to obtain an r value that is almost the same as when the entire rolling amount is rolled with large diameter rolls. When hot-rolled sheets are cold-rolled without annealing, when approximately 60% of the total rolling percentage is rolled with large-diameter rolls, the r value is slightly lower than when the entire rolling amount is rolled with large-diameter rolls. , total rolling f
It can be seen that the r value is greatly improved when compared with the case of rolling = ni' with small diameter rolls. In addition, compared to rolling with only large-diameter rolls, when rolling with small-diameter rolls was added, a beautiful surface texture similar to that obtained when the entire rolling amount was rolled with only small-diameter rolls was obtained.

実施例5 表9に示した成分組成で厚さ250朋の鋳片を1100
℃の温度で1時間加熱後、全圧下率30%の圧延を行っ
た後、1250℃の温度に11加熱して直ちに圧延を行
い、2.5mInの熱延板とした。圧延終了温度は90
0℃、捲取温度は590℃であった。
Example 5 A slab with a thickness of 250 mm was made into a 1100 mm thick slab with the composition shown in Table 9.
After heating at a temperature of 1250° C. for 1 hour and rolling with a total reduction ratio of 30%, the sheet was heated to a temperature of 1250° C. for 1 hour and immediately rolled to obtain a hot rolled sheet of 2.5 mIn. The rolling end temperature is 90
The winding temperature was 590°C.

ついで熱延板焼鈍することなく冷間圧延を行い、表10
に示した乗件で焼鈍全行い、r f[〆い リノングを
測定した。表10から明かの如く、本究明に従りて焼鈍
を高温短時間で行ったものは、r値。
Then, cold rolling was performed without annealing the hot rolled sheet, and Table 10
The entire annealing process was carried out under the conditions shown in Figure 2, and the rf [reinforcement] was measured. As is clear from Table 10, those annealed at high temperature and for a short time according to this study have r values.

リソングともに良好であった。比較のため、Atを含イ
]しない通常の430鈴1の熱延板を箱焼鈍後、冷延焼
鈍した場合の結果も示したが、r値、リノングは本発明
鋼と異なシ、仕上焼鈍法でほとんど変化しないことがわ
かる。
Both songs were good. For comparison, the results are also shown when a conventional hot-rolled sheet of 430 Suzu 1, which does not contain At, was box-annealed and then cold-rolled. It can be seen that the law makes little difference.

表9 供試料の主袂化学成分(%) (発明の効果) 以上実施例で説明した如く、本発明の方法に従えば、従
来不可欠とされた熱延板焼鈍を省略した簡潔グロセスで
、表面疵がなく加工性のすぐれたフェライト系ステンレ
ス薄鍋板の製造が可能となり、本発明がもたらす経済的
効果はきわめて大きなものである。
Table 9 Main surface chemical components of sample (%) (Effects of the invention) As explained in the examples above, if the method of the present invention is followed, the surface can be easily processed without hot-rolled plate annealing, which was considered indispensable in the past. It becomes possible to manufacture a thin ferritic stainless steel pan plate that is free from defects and has excellent workability, and the economic effects brought about by the present invention are extremely large.

特許出願人 新日本製鐵株弐會社 手続補正書 (自発) 昭和58年7月11日 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第107199号 2、 発明の名称 表面疵がなく、加工性の良いフェライト系ステンレス薄
れ1板の製造法 3、補正をする者 事件との関係 特許出願人 代表者 武  1)   豊 4、代理人〒io。
Patent Applicant Nippon Steel Corporation Procedural Amendment (Voluntary) July 11, 1980 Director-General of the Patent Office Kazuo Wakasugi 1 Indication of the Case Patent Application No. 107199 of 1988 2 Title of the invention Manufacturing method for thin ferritic stainless steel plate with no defects and good workability 3. Relationship with the case of the person making the amendment Patent applicant representative Takeshi 1) Yutaka 4, agent 〒io.

6、補正の対象 (1)特許請求の範囲を別紙のとおり補正する。6. Subject of correction (1) Amend the claims as shown in the attached sheet.

(2)明細書3頁11行〜12行r C0,03〜0,
07チ。
(2) Specification page 3 lines 11-12 r C0,03-0,
07chi.

A70.08〜0.5係」をrco、02〜009チ、
AA!0.03〜0.5%Jに補正する。
A70.08~0.5 Section" rco, 02~009ch,
AA! Correct to 0.03-0.5%J.

(3)同6頁5行rc0.07チ」をrco、o9%J
に補正する。
(3) rco, o9%J
Correct to.

(4)同6頁8行1’−CQ、03」をrco、02J
 に補正する。
(4) Same page 6 line 8 1'-CQ, 03'' rco, 02J
Correct to.

(5)同6頁11行「All 0.08%jをrAIo
、03チ」に補正する。
(5) Same page 6 line 11 “All 0.08%j rAIo
, 03chi''.

(6)  同19頁表1を下記のとおシ補正する。(6) Table 1 on page 19 will be amended as follows.

表1 供試材の成分(%′) (7)  同27頁表9を下記のとお!ll補正する。Table 1 Components of sample material (%') (7) Table 9 on page 27 is as below! ll Correct.

表9 供試料の主要化学成分(チ) 特許請求の範囲 Cr 15〜19チ、残部鉄及び不可避的不純物からな
るフェライト系ステンレス鋼鋳片を1000〜1200
℃の温度範囲で少なくとも全圧下率20φ以上の圧延を
行った後、1180℃以上1300℃以下の温度に再加
熱を行い、粗圧延機と連続仕上圧延機からなる圧延機で
、850℃以上の終了温度で圧延し、次いで急冷して6
50℃以下の温度で捲取った後、熱延板焼鈍することな
く冷間圧延し、再結晶焼鈍することを特徴とする表面疵
がなく、加工性の良いフェライト系ステンレス薄鋼板の
製造法。
Table 9 Main chemical components of sample (H) Claim range Cr 15~19H, balance iron and unavoidable impurities Ferritic stainless steel slab 1000~1200
After rolling with a total reduction rate of at least 20φ in the temperature range of 1,180 °C to 1,300 °C, the rolling mill consisting of a rough rolling mill and a continuous finishing mill Rolled at finishing temperature, then rapidly cooled to 6
A method for producing a ferritic stainless thin steel sheet having no surface flaws and good workability, characterized by rolling the sheet at a temperature of 50° C. or less, then cold rolling without hot-rolling the sheet, and recrystallizing the sheet.

(2)冷間圧延工程で圧延すべき圧下量の60φ以上を
径150叫以上のワークロールを用いて、該冷間圧延工
程の前段で冷間圧延する特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein a reduction amount of 60φ or more to be rolled in the cold rolling step is cold rolled in the preceding stage of the cold rolling step using a work roll having a diameter of 150 mm or more. .

(3)  冷間圧延後の再結晶焼鈍を850〜900℃
の温度範囲で60秒以内で行う特許請求の範囲第1項記
載の方法。
(3) Recrystallization annealing after cold rolling at 850-900°C
The method according to claim 1, wherein the method is carried out within 60 seconds at a temperature range of .

(4)フェライト系ステンレス鋼鋳片刃よ連続鋳造鋳片
でちる特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the ferritic stainless steel slab blade is continuously cast slab.

Claims (4)

【特許請求の範囲】[Claims] (1)  CO,03〜0.07%、At0.08〜0
.5%。 Cr15〜19チ、残部鉄及び不可避的不純物からなる
フェライト系ステンレス鋼鋳片を10oO〜1200℃
の温度範囲で少なくとも全圧下率20%以上の圧延を行
った後、1180℃以上1300℃以下の温度に再加熱
を行い、粗圧延機と連続仕上圧延機からなる圧延機で、
850℃以上の終了温度で圧延し、次いで急冷して65
0℃以下の温度で捲取った後、熱延板焼鈍することなく
冷間圧延し、再結晶焼鈍することを特徴とする表面疵が
なく、加工性の良いフェライト系ステンレス薄鋼板の製
造法。
(1) CO, 03-0.07%, At0.08-0
.. 5%. A ferritic stainless steel slab consisting of 15 to 19 Cr, the balance iron and unavoidable impurities was heated at 10oO to 1200℃.
After rolling with a total reduction rate of at least 20% in the temperature range of
Rolled at a finishing temperature of 850°C or higher, then rapidly cooled to 65°C.
A method for producing a ferritic stainless thin steel sheet free from surface defects and having good workability, characterized by rolling the sheet at a temperature of 0° C. or lower, then cold rolling without hot-rolling the sheet and recrystallization annealing.
(2)冷間圧延工程で圧延すべき圧下量の60チ以上を
径150mm以上のワークロールを用いて、該冷間圧延
の前段で冷間圧延する特許請求の範囲第1項記載の方法
(2) The method according to claim 1, wherein a reduction amount of 60 inches or more to be rolled in the cold rolling step is cold-rolled in the preceding stage of the cold rolling using work rolls having a diameter of 150 mm or more.
(3)冷間圧延後の再結晶焼鈍を850〜900℃の温
度範囲で60秒以内で行う特許RtW求の範囲第1項記
載の方法。
(3) The method according to the scope of patent RtW, item 1, in which recrystallization annealing after cold rolling is performed within 60 seconds at a temperature range of 850 to 900°C.
(4)  フェライト系ステンレス鋼鋳片が連続鋳造鋳
片である特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the ferritic stainless steel slab is a continuously cast slab.
JP10719983A 1983-06-15 1983-06-15 Manufacture of ferritic stainless steel sheet with no surface crack and high workability Granted JPS59232232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10719983A JPS59232232A (en) 1983-06-15 1983-06-15 Manufacture of ferritic stainless steel sheet with no surface crack and high workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10719983A JPS59232232A (en) 1983-06-15 1983-06-15 Manufacture of ferritic stainless steel sheet with no surface crack and high workability

Publications (2)

Publication Number Publication Date
JPS59232232A true JPS59232232A (en) 1984-12-27
JPH0132291B2 JPH0132291B2 (en) 1989-06-30

Family

ID=14452990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10719983A Granted JPS59232232A (en) 1983-06-15 1983-06-15 Manufacture of ferritic stainless steel sheet with no surface crack and high workability

Country Status (1)

Country Link
JP (1) JPS59232232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190527A (en) * 1984-03-12 1985-09-28 Nippon Steel Corp Manufacture of ferritic stainless steel sheet having superior workability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234803A (en) * 1985-07-19 1987-02-14 ルド・ケッテンファブリーク・リーゲル・ウント・ディーツ・ゲー・エム・ベー・ハー・ウント・ツェー・オー Antislip device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234803A (en) * 1985-07-19 1987-02-14 ルド・ケッテンファブリーク・リーゲル・ウント・ディーツ・ゲー・エム・ベー・ハー・ウント・ツェー・オー Antislip device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190527A (en) * 1984-03-12 1985-09-28 Nippon Steel Corp Manufacture of ferritic stainless steel sheet having superior workability
JPH0227411B2 (en) * 1984-03-12 1990-06-18 Nippon Steel Corp

Also Published As

Publication number Publication date
JPH0132291B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP4744033B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP3823338B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP3297798B2 (en) Manufacturing method of austenitic stainless steel sheet for roll forming
JPS59232232A (en) Manufacture of ferritic stainless steel sheet with no surface crack and high workability
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JPS5983725A (en) Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging
JPS6054375B2 (en) Manufacturing method of austenitic stainless steel plate or steel strip
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JPH0564212B2 (en)
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
JP3314847B2 (en) Manufacturing method of ferritic stainless steel sheet with good workability
JP3222048B2 (en) Manufacturing method of high purity ferritic stainless steel sheet with excellent ridging characteristics
JP3309386B2 (en) Method of manufacturing cold rolled ferritic stainless steel sheet
JP3273597B2 (en) Cr-Ni stainless steel sheet having excellent surface quality and workability and method for producing the same
JPH0765111B2 (en) Method for producing hot rolled strip of duplex stainless steel
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JPH0686626B2 (en) Method for manufacturing hot rolled sheet for high-grade non-oriented electrical steel sheet
JPH10280035A (en) Production of high purity ferritic stainless hot rolled steel strip excellent in workability and heat resistance
JPS6056767B2 (en) Manufacturing method of ferritic stainless steel hot-rolled steel sheet