JPS59231358A - Solar battery hybrid heat collector - Google Patents

Solar battery hybrid heat collector

Info

Publication number
JPS59231358A
JPS59231358A JP58105663A JP10566383A JPS59231358A JP S59231358 A JPS59231358 A JP S59231358A JP 58105663 A JP58105663 A JP 58105663A JP 10566383 A JP10566383 A JP 10566383A JP S59231358 A JPS59231358 A JP S59231358A
Authority
JP
Japan
Prior art keywords
heat
heat collecting
solar
light
collecting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58105663A
Other languages
Japanese (ja)
Inventor
Kazutake Imani
和武 今仁
Masanori Chinen
正紀 知念
Naohisa Watabiki
直久 綿引
Isao Kumada
隈田 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58105663A priority Critical patent/JPS59231358A/en
Publication of JPS59231358A publication Critical patent/JPS59231358A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/838Other shapes involutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce the heat loss from a heat collecting plate and also reduce leakage of solar light by attaching a solar battery material to both surfaces the heat collecting plate and setting the angle of incidence of light toward the battery surface due to a reflection mirror at 60 deg. or less. CONSTITUTION:Solar light 1 which permeate through a glass plate 2, and then a reflection mirror 3 (having a configuration in which an involute circle is combined with a straight line) are collected in a front solar battery 4 and a rear solar battery 5 by reflection or directly, and utilized for the solar light power generation. Since the solar batteries simultaneously generate heat, heat from the heat collecting plate 6 is cooled by a heat collecting pipe 7. Although the temperature of the reflection mirror 3 slightly rises up, when a heat-insulator 8 is set between the mirror 3 and the outer box, heat loss toward the back surface is reduced. Since a reflection mirror is installed on the back surface of the solar battery, solar light are collected on both surfaces and radiation of heat can be reduced. It is necessary for preventing the solar battery from lowering to reduce the angle of incidence toward the surface of the solar battery of light to 60 deg. or less. Therefore, only a selective absorption surface 12 is attached to the heat collecting pipe 7, and the solar battery is formed in the heat collecting plate 6.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は太陽電池ハイブリッド集熱器に係り、特に高価
な太陽電池を有効に利用するのに好適な反射鏡を使用し
て太陽光発電をすると共に、集熱するためにも好適な構
造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a solar cell hybrid heat collector, and particularly to a solar cell hybrid collector for generating solar power using a reflecting mirror suitable for effectively utilizing expensive solar cells. The present invention also relates to a structure suitable for collecting heat.

〔発明の背景〕[Background of the invention]

従来の太陽電池ハイブリッド集熱器は・第1図のように
太陽光線iがガラス板2を透過後・反射@3で反射され
、太陽電池40表面にだけ集光した。裏面の集熱板6か
ら断熱材8を通り外箱に放熱する割合が大きかったので
、太陽電池面積が大きく熱損失も大きくなる欠点があっ
た。第1図において・集熱管7には冷却水が流れており
、太陽電池の過熱を防止すると共に温水も供給できる。
In the conventional solar cell hybrid heat collector, as shown in FIG. 1, sunlight i passes through the glass plate 2 and is reflected at reflection@3, concentrating only on the surface of the solar cell 40. Since a large proportion of heat was radiated from the heat collecting plate 6 on the back surface to the outer box through the heat insulating material 8, there was a drawback that the solar cell area was large and heat loss was also large. In FIG. 1, cooling water flows through the heat collecting pipe 7, which prevents overheating of the solar cells and also allows hot water to be supplied.

しかし、太陽電池は集熱板の片面だけに設置しているた
め、高価な太陽電池面積と反射鏡開口面積の比が大きく
なる欠点があった。さらに、この反射鏡の形状は複合放
物線であるため、その焦点は太陽電池の端部にあり、局
所的に集光する場合が多く、太陽電池の出力が低下する
場合があった。
However, since the solar cells are installed only on one side of the heat collecting plate, there is a drawback that the ratio of the area of the expensive solar cells to the aperture area of the reflector becomes large. Furthermore, since the shape of this reflecting mirror is a compound parabola, its focal point is at the end of the solar cell, and the light is often concentrated locally, which may reduce the output of the solar cell.

別の大きな欠点は、太陽電池の表面はガラス板又は透明
電極が設置されているため、光の入射角が60度を超す
場合の多い従来例では1表面で反射する光が多くて・電
気出力が低下する欠点があった。
Another major drawback is that the surface of a solar cell is covered with a glass plate or a transparent electrode, so in conventional systems, where the incident angle of light is often over 60 degrees, a lot of light is reflected from one surface.・Electric output There was a drawback that the value decreased.

第2図は、従来の他の実施例であり、真空ガラス管11
の内部に設置した反射@3で円形の集熱管7に集光し・
集熱管表面に形成した太陽電池4で発電していた・集熱
管から反射鏡に熱が伝導しないように・その間隔が広い
必要があったので、太陽光線が反射後に漏洩して、熱効
率が低くなる欠点があった。特にこの実施例では、反射
鏡の形状は放物線であるから・太陽光線の反射鏡開口部
への入射角が0度の時は光漏洩はないが、入射角が大き
くなると、光が漏れる欠点があった。
FIG. 2 shows another conventional embodiment, in which a vacuum glass tube 11
The light is focused on the circular heat collecting tube 7 by the reflection @3 installed inside the
Electricity was generated using solar cells 4 formed on the surface of the heat collecting tube. - The distance between them had to be wide to prevent heat from being conducted from the heat collecting pipe to the reflecting mirror, so sunlight leaked after being reflected, resulting in low thermal efficiency. There was a drawback. In particular, in this embodiment, since the shape of the reflecting mirror is a parabola, there is no light leakage when the angle of incidence of sunlight on the opening of the reflecting mirror is 0 degrees, but as the angle of incidence increases, there is a drawback that light leaks. there were.

〔発明の目的ら 本発明の目的は、太陽電池への光入射角を小さくて、集
熱板からの熱損失も小さくした太陽電池ハイブリッド集
熱器を提供することにある。さらに、集熱板又は太陽電
池と反射鏡の間隔を小さくして、太陽光線の漏洩を少く
することにある。
[Object of the Invention] An object of the present invention is to provide a solar cell hybrid heat collector in which the incident angle of light to the solar cell is small and the heat loss from the heat collecting plate is also small. Furthermore, the distance between the heat collecting plate or the solar cell and the reflecting mirror is reduced to reduce the leakage of sunlight.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明では集熱板の両面
に太陽電池材料を付着させ、反射鏡を使ってその両面に
集光する方法を考案した。集熱板を共通の基板電極とし
て両面にpn接合を形成すれば、同一面積の基板で約1
.6倍の起電力が発生することに着目したのである。さ
らに5反射鏡を集熱板の下部にも設置して、その上に集
熱管を設けて、電池表面への光入射角を60度以下とす
る反射鏡と集熱板又は太陽電池の間隔も小さくする。
In order to achieve the above object, the present invention has devised a method in which solar cell material is attached to both sides of a heat collecting plate and light is focused on both sides using a reflecting mirror. If the heat collector plate is used as a common substrate electrode and pn junctions are formed on both sides, approximately 1
.. They focused on the fact that six times as much electromotive force was generated. In addition, a 5-reflector is installed at the bottom of the heat collector plate, and a heat collector tube is installed above it, so that the distance between the reflector and the heat collector plate or solar cell is adjusted so that the angle of incidence of light on the battery surface is 60 degrees or less. Make it smaller.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。太陽
光1は、ガラス板2を透過後に、反射鏡3(インポリウ
ド円と直線の血合せた形状)で反射又は直接に、集熱板
6の表面太陽電池4及び裏面太陽電池5に集光されて、
太陽光発電に利用される。太陽電池は同時に発熱するの
で、集熱板6からの熱は集熱管7で冷却される。反射鏡
3の温度も少し上昇するが、断熱材8を外箱との間に設
置すわば、裏面への熱損失は少くなる。太陽電池の裏面
にも反射鏡があるから、両面に集光できると共に・放熱
も少くできるのでちる。
An embodiment of the present invention will be described below with reference to FIG. After sunlight 1 passes through a glass plate 2, it is reflected by a reflecting mirror 3 (shaped like an impoliid circle and a straight line) or directly focused on the front solar cells 4 and back solar cells 5 of the heat collecting plate 6. hand,
Used for solar power generation. Since the solar cells generate heat at the same time, the heat from the heat collecting plate 6 is cooled by the heat collecting tube 7. The temperature of the reflecting mirror 3 also rises a little, but if the heat insulating material 8 is installed between it and the outer box, the heat loss to the back surface will be reduced. There is also a reflective mirror on the back of the solar cell, which allows light to be focused on both sides and also reduces heat dissipation.

第4図は、太陽電池と集熱板の賛造を拡大して示す。集
熱板6は集熱管7の下部に位置し、集熱板の表面と裏面
には各々太陽電池を形成する半導体材料の表面に透明電
極10(又はガラス板〕がある。透明′電極はS n 
02などを蒸着したものであり、その表面を薄いガラス
板で保護している。集熱管70表面は光の選択吸収面で
形成し、太陽光は吸収するが、赤外線はあやり放射しな
い。集熱管の直径は太くして、太陽電池表面への光入射
角の小さい光線を少くする。
Figure 4 shows an enlarged view of the solar cells and heat collector plates. The heat collecting plate 6 is located at the lower part of the heat collecting tube 7, and on the front and back sides of the heat collecting plate there are transparent electrodes 10 (or glass plates) on the surface of the semiconductor material forming the solar cells, respectively. n
02, etc., and its surface is protected with a thin glass plate. The surface of the heat collecting tube 70 is formed of a light selective absorption surface, and absorbs sunlight but does not emit infrared rays. The diameter of the heat collecting tube is increased to reduce the amount of light rays with a small angle of incidence on the solar cell surface.

第5図は、集熱管周囲の選択吸収面、及び太陽・電池表
面のガラス板の反射率の入射角依存性を示す。入射角が
60度以上になると、ガラス板表面の反射率は急に大き
くなり、80度では50qbに達するため、太陽電池の
発電効率が5%以下になってしまう欠点がある。ガラス
板がない場合でも、透明電極の表面状態はガラス板に近
いため、同様に効率が低くなる。故に、光の太陽電池表
面への入射角は60度以下にする必要がある。太陽熱の
選択吸収面の代表例としてクロムブラックをとると、第
5図に示すように、光の入射角が60度以上でも、反射
率はあまり増加しない。そこで、集熱管には選択吸収面
だけを付着し、集熱板には太陽電池を形成したのである
FIG. 5 shows the incidence angle dependence of the reflectance of the selective absorption surface around the heat collecting tube and the glass plate on the solar/cell surface. When the incident angle becomes 60 degrees or more, the reflectance of the glass plate surface suddenly increases and reaches 50 qb at 80 degrees, which has the disadvantage that the power generation efficiency of the solar cell becomes 5% or less. Even when there is no glass plate, the surface condition of the transparent electrode is similar to that of a glass plate, so the efficiency is similarly low. Therefore, the angle of incidence of light onto the solar cell surface needs to be 60 degrees or less. Taking chrome black as a typical example of a selective solar heat absorption surface, as shown in FIG. 5, the reflectance does not increase much even if the incident angle of light is 60 degrees or more. Therefore, only selective absorption surfaces were attached to the heat collecting tubes, and solar cells were formed on the heat collecting plates.

第6図のように本発明の太陽′社池コストは、従来より
少し低くなるのは、集光比(反射鏡開口巾/集熱板周囲
長〕が大きいからである。電気出力の5倍と熱出力の和
は、本発明は従来の約1.1倍となった。電気出力が熱
出力の5倍の価値があるとした理由は、発電熱効率は約
20%と仮定したからである。電気出力は従来と同等で
あるが、裏面への熱損失が少い(集光比が約2倍)ため
に、集熱量が増加したのである。すなわち、−・イブリ
ッド効率=(熱出力+電気出力×5)/光入力が52チ
から58係に向上した。
As shown in Fig. 6, the solar cell cost of the present invention is a little lower than that of the conventional one because the light collection ratio (reflector aperture width/heat collection plate perimeter) is large, which is 5 times the electrical output. The sum of the heat output and the heat output of the present invention is approximately 1.1 times that of the conventional method.The reason why the electric output is considered to be five times as valuable as the thermal output is because the heat generation efficiency is assumed to be approximately 20%. Although the electrical output is the same as before, the amount of heat collected has increased because there is less heat loss to the back side (the light collection ratio is approximately twice as high).In other words, −・Ibrid efficiency = (thermal output + Electrical output x 5)/optical input has been improved from 52 inches to 58 inches.

第7図は、本発明の両面太陽電池の製造方法例を示す。FIG. 7 shows an example of a method for manufacturing a double-sided solar cell of the present invention.

表面太陽電池4と裏面太陽電池を集熱板6の両面に製造
するために、真空容器130両側の放熱電極14から半
導体材料を含むガス供給口15がある。集熱板6と電極
14の間で放電する電源16も左右対称にある。この太
陽電池を自動的に連続して製造するには、リボン状の基
板を移動させ、その両面にp −n接合を形成する室を
設置する。本実施例は、ビン形アモルファス薄膜太陽電
池を対象としたが、リボン状シリコン鵠結晶に対しても
同様に適用できる。集熱管7には太陽電池を形成しない
ように・放電マスク17を設置した。
In order to manufacture the front solar cells 4 and the back solar cells on both sides of the heat collecting plate 6, there are gas supply ports 15 containing semiconductor material from the heat dissipation electrodes 14 on both sides of the vacuum container 130. The power sources 16 that discharge between the heat collecting plate 6 and the electrodes 14 are also symmetrical. To automatically and continuously manufacture this solar cell, a ribbon-shaped substrate is moved, and chambers for forming p-n junctions are installed on both sides of the ribbon-shaped substrate. Although this embodiment is directed to a bottle-shaped amorphous thin film solar cell, it can be similarly applied to a ribbon-shaped silicon crystal. A discharge mask 17 was installed on the heat collecting tube 7 to prevent the formation of solar cells.

第8図は・アモルファス太陽電池4.5の半導体や透明
電極IOを基板(ステンレス製電極、集熱板6)の両側
に、連続的に製造する装置(平面図)を示す。集熱板6
の両辺に太陽電池4.5を連続的に製造するためにbS
i材料とドープ材料(P、B)を放電により付着する。
FIG. 8 shows an apparatus (plan view) for continuously manufacturing semiconductors and transparent electrodes IO of an amorphous solar cell 4.5 on both sides of a substrate (stainless steel electrodes, heat collecting plate 6). Heat collecting plate 6
bS to continuously produce solar cells 4.5 on both sides of
The i material and doped materials (P, B) are deposited by discharge.

最後に、透明電極を付加するために一8n02  を蒸
着する必要がある。
Finally, it is necessary to deposit 18n02 to add a transparent electrode.

第9図は1本発明の変形例として、集熱板部分と反射鏡
を拡大したものである。第4図と比較すると、集熱板の
下部には、集熱板のない太陽電池を追加している。この
目的は、集熱板から反射鏡への熱伝導を少くすると共に
、光が集熱板と反射鏡の間を通過しないためである。
FIG. 9 is an enlarged view of a heat collecting plate portion and a reflecting mirror as a modification of the present invention. Comparing with FIG. 4, a solar cell without a heat collecting plate is added below the heat collecting plate. The purpose of this is to reduce heat conduction from the heat collecting plate to the reflecting mirror and to prevent light from passing between the heat collecting plate and the reflecting mirror.

第10図は、他の変形例を示し、集熱管を太陽電池の中
間に配置した。上部の太陽電池には集熱板があるが、下
部の集熱板の厚みは非常に薄くして・反射鏡への熱伝導
を少くした。
FIG. 10 shows another modification in which the heat collecting tube is placed between the solar cells. The upper solar cell has a heat collection plate, but the thickness of the lower heat collection plate has been made extremely thin to reduce heat conduction to the reflecting mirror.

第11図と第12図は1本発明の真空ガラス管形集熱器
に対する実施例を示す。従来は集熱板の表面片方だけに
太陽電池を設置していたが、本発明では反射鏡で赤外線
が下方に放射するのを防止しているため、集熱効率が向
上している、反射鏡の形状は、第11図は円と複合放物
線の組合せ、第12図は円と直線の組合せである。集熱
管7の冷却水の温度は、シリコン太陽電池の場合には約
50″Cであるがb GaAS の場合には100 ’
c近くにすることができる。反射鏡の形状を第12図で
は円と直線の組合せにした理由は、直線(集熱板)のイ
ンポリウド曲線は円であり、端部で直線を追加すると反
射鏡の開口中が大きくなる(集光比が大きい)からであ
る。
11 and 12 show an embodiment of a vacuum glass tube type heat collector of the present invention. Conventionally, solar cells were installed on only one surface of the heat collecting plate, but in the present invention, a reflector prevents infrared rays from radiating downward, improving heat collection efficiency. The shape shown in FIG. 11 is a combination of a circle and a compound parabola, and the shape shown in FIG. 12 is a combination of a circle and a straight line. The temperature of the cooling water in the heat collecting tube 7 is approximately 50'C in the case of a silicon solar cell, but 100'C in the case of bGaAS.
It can be made close to c. The reason why the shape of the reflecting mirror is a combination of a circle and a straight line in Fig. 12 is that the impolied curve of a straight line (heat collector plate) is a circle, and adding a straight line at the end increases the aperture of the reflecting mirror (collecting plate). This is because the light ratio is large).

集熱管には光の選択吸収面を付着しており、その直径は
大きくしている。これによって、下部の太陽電池への光
入射角の小さい光線を少くできる。
A light selective absorption surface is attached to the heat collecting tube, and its diameter is increased. As a result, it is possible to reduce the number of light rays with a small incident angle to the lower solar cell.

真空ガラス管内では太陽電池の表面にガラス板を追加す
る必要はなく、透明電極(ITOなど)があるが、その
表面反射率を小さくするためには。
In the vacuum glass tube, there is no need to add a glass plate to the surface of the solar cell, and there is a transparent electrode (such as ITO), but in order to reduce the surface reflectance.

光の入射角が大きい方が良い。反射鏡と集熱板の間隔を
なくして、光の漏洩がないようにするためには、第9図
のように下部に太陽電池(集熱板の薄い]を追加する。
The larger the angle of incidence of light, the better. In order to eliminate the gap between the reflector and the heat collecting plate to prevent light leakage, add a solar cell (with a thin heat collecting plate) at the bottom as shown in Figure 9.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、太陽光線は反射鏡によって集熱板の両
面に形成した太陽電池に集光できるため。
According to the present invention, sunlight can be focused by the reflecting mirror onto the solar cells formed on both sides of the heat collecting plate.

反射鏡の開口面積に対する太陽電池の面積の割合が約1
72となシ・太陽電池の製造コストが約2/3となる効
果がある。さらに、集熱板は反射鏡で囲まれているので
、放熱損失が少くなり、集熱効率が約1.2倍に向上す
る。太陽電池からの電気出力は従来と変らないが、電気
出力は熱出力の5倍の価値があるとしても、総合的なハ
イブリッド効率は約1.1倍となる効果がある。ここで
The ratio of the area of the solar cell to the aperture area of the reflecting mirror is approximately 1
This has the effect of reducing the manufacturing cost of solar cells by about 2/3. Furthermore, since the heat collection plate is surrounded by reflective mirrors, heat radiation loss is reduced, and heat collection efficiency is improved by approximately 1.2 times. The electrical output from the solar cells remains the same, but even though the electrical output is five times more valuable than the thermal output, the overall hybrid efficiency is about 1.1 times more effective. here.

と定義する。It is defined as

集熱板の両面に太陽電池を形成する自動的な方法は、金
属製共通電極の両面に例えばアモルファス薄膜をグロー
放電等により製造できるので、連続的に大量に製作でき
るため、製造コストが低減する。
An automatic method for forming solar cells on both sides of a heat collector plate can produce, for example, an amorphous thin film on both sides of a metal common electrode by glow discharge, so it can be produced continuously in large quantities, reducing manufacturing costs. .

さらに、集熱管の直径を大きくしたシ、反射鏡の形状を
インポリウド曲線と直線の組合せにして。
Furthermore, we increased the diameter of the heat collecting tube and changed the shape of the reflector to a combination of an impoliid curve and a straight line.

太陽電池への光入射角を60度以下になるように設計し
たので、太陽電池の変換効率を従来の約1.2倍にでき
る効果がある。
Since it is designed so that the angle of incidence of light on the solar cell is 60 degrees or less, it has the effect of increasing the conversion efficiency of the solar cell by about 1.2 times compared to conventional solar cells.

集熱板を含む部分と反射鏡の間隔を小さくするために、
太陽電池だけ(電極が薄い)の部分を追加できるので、
太陽光が反射鏡と集熱体のギャップ間をリークするのを
防止できる効果がある。これによって・集光効率が向上
して・総合的なハイブリッド効率が約1.1倍にするこ
とができる。
In order to reduce the distance between the part containing the heat collecting plate and the reflector,
Since you can add only the solar cell (thin electrode),
This has the effect of preventing sunlight from leaking through the gap between the reflector and the heat collector. This improves the light collection efficiency and increases the overall hybrid efficiency by about 1.1 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の太陽電池ハイブリッド集熱器
の断面図、第3図は本発明の一実施例の断面図、第4図
はその集熱板の拡大図、第5図及び第6図はその効果の
従来との比較線図、第7図は製造装置の断面図、第8図
はその平面図・第9図及び第1θ図は他の実施例の断面
図、第11図及び第12図は真空管形への実施例の断面
図であるO 1・・・太陽光線、2・・・ガラス板、3・・・反射鏡
、4・・・表面太陽電池55・・・裏面太陽電池、6・
・・集熱板(電極)・7・・・集熱管、8・・・断熱材
、9・・・外箱、10・・・透明電極、11・・・真空
ガラス管、12・・・選択吸収面、13・・・真空容器
、14・・・放電電極・15・・・ガス供給口・16・
・・電源、17・・・放電マス入MP、、(JK) $6図 人爵影セ面糟(ml) $″f図
1 and 2 are cross-sectional views of a conventional solar cell hybrid heat collector, FIG. 3 is a cross-sectional view of an embodiment of the present invention, FIG. 4 is an enlarged view of the heat collector plate, and FIGS. Fig. 6 is a comparison diagram of the effect with the conventional one, Fig. 7 is a sectional view of the manufacturing device, Fig. 8 is a plan view thereof, Fig. 9 and 1θ are sectional views of other embodiments, and Fig. 11 is a sectional view of the manufacturing device. The figure and FIG. 12 are cross-sectional views of the vacuum tube type embodiment. Backside solar cell, 6.
... Heat collecting plate (electrode) 7... Heat collecting tube, 8... Heat insulating material, 9... Outer box, 10... Transparent electrode, 11... Vacuum glass tube, 12... Selection Absorption surface, 13... Vacuum vessel, 14... Discharge electrode, 15... Gas supply port, 16.
...Power supply, 17...MP with discharge mass,, (JK) $6 Figure Jinshakage Semen Kasu (ml) $''f Figure

Claims (1)

【特許請求の範囲】 1、カラス板・反射鏡・集熱板からなる太陽熱集熱器に
おいて、集熱板の両面に形成した丸陽電池に入射角が6
0度以下で集光する反射鏡を設け。 集熱板を太陽電池の共通基板として太陽光発電をすると
共に、集熱板からの熱で温水を供給することを特徴とす
る太陽電池ハイブリッド集熱器。
[Claims] 1. In a solar heat collector consisting of a glass plate, a reflector, and a heat collecting plate, an incident angle of 6 is applied to the round solar cells formed on both sides of the heat collecting plate.
Equipped with a reflector that focuses light below 0 degrees. A solar cell hybrid heat collector characterized by generating solar power using a heat collecting plate as a common substrate for solar cells and supplying hot water using the heat from the heat collecting plate.
JP58105663A 1983-06-15 1983-06-15 Solar battery hybrid heat collector Pending JPS59231358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105663A JPS59231358A (en) 1983-06-15 1983-06-15 Solar battery hybrid heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105663A JPS59231358A (en) 1983-06-15 1983-06-15 Solar battery hybrid heat collector

Publications (1)

Publication Number Publication Date
JPS59231358A true JPS59231358A (en) 1984-12-26

Family

ID=14413671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105663A Pending JPS59231358A (en) 1983-06-15 1983-06-15 Solar battery hybrid heat collector

Country Status (1)

Country Link
JP (1) JPS59231358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263549A (en) * 1990-03-13 1991-11-25 Kyocera Corp Solar energy collector
WO1999045596A1 (en) * 1998-03-05 1999-09-10 Muskatevc Mark S Method and apparatus for directing solar energy to solar energy collecting cells
WO2004025194A1 (en) * 2002-09-11 2004-03-25 Trajce Donev Reflector for solar collectors
KR100688337B1 (en) 2004-04-29 2007-02-28 김민수 Solar collector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263549A (en) * 1990-03-13 1991-11-25 Kyocera Corp Solar energy collector
US6087579A (en) * 1997-03-26 2000-07-11 Muskatevc; Mark S. Method and apparatus for directing solar energy to solar energy collecting cells
WO1999045596A1 (en) * 1998-03-05 1999-09-10 Muskatevc Mark S Method and apparatus for directing solar energy to solar energy collecting cells
WO2004025194A1 (en) * 2002-09-11 2004-03-25 Trajce Donev Reflector for solar collectors
KR100688337B1 (en) 2004-04-29 2007-02-28 김민수 Solar collector

Similar Documents

Publication Publication Date Title
US4166917A (en) Concentrating solar receiver
US6384320B1 (en) Solar compound concentrator of electric power generation system for residential homes
US6717045B2 (en) Photovoltaic array module design for solar electric power generation systems
US4395582A (en) Combined solar conversion
US8546686B2 (en) Solar energy collection system
EP2286467A2 (en) Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector
US8226253B2 (en) Concentrators for solar power generating systems
JP2006313810A (en) Light condensing solar power generator
US20100012169A1 (en) Energy Recovery of Secondary Obscuration
US3987780A (en) Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
TWI381141B (en) Solar energy system
JPS59231358A (en) Solar battery hybrid heat collector
CN204794873U (en) Thermoelectric cogeneration system of high spotlight photovoltaic power generation and component structure thereof
WO2015018132A1 (en) Tubular tracking concentration photovoltaic module
CN104917453B (en) High concentrating photovoltaic power generation co-generation unit and its Component Structure
Edmonds The performance of bifacial solar cells in static solar concentrators
CN114584065A (en) Photovoltaic power generation system and electric energy storage system
JP3206341B2 (en) Solar cell
CN205545129U (en) Be applied to dish formula reflection profile concentration photovoltaic system 's solar battery array module
JP3091755B1 (en) Concentrating solar power generator
RU2773716C1 (en) Concentrator photoelectric module with planar elements
JPH0469438B2 (en)
JPS5882578A (en) Solar cell
KR100602581B1 (en) Compound Parabolic Concentrator for Uniform Energy Distribution on the Receiver Surface
JPS61292970A (en) Radiator plate for solar cell