JP3091755B1 - Concentrating solar power generator - Google Patents

Concentrating solar power generator

Info

Publication number
JP3091755B1
JP3091755B1 JP11293527A JP29352799A JP3091755B1 JP 3091755 B1 JP3091755 B1 JP 3091755B1 JP 11293527 A JP11293527 A JP 11293527A JP 29352799 A JP29352799 A JP 29352799A JP 3091755 B1 JP3091755 B1 JP 3091755B1
Authority
JP
Japan
Prior art keywords
light
medium
photoelectric conversion
refractive index
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11293527A
Other languages
Japanese (ja)
Other versions
JP2001119055A (en
Inventor
寛之 大塚
強志 上松
義昭 矢澤
謙 筒井
芳▲徳▼ 宮村
信一 村松
純子 峯邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11293527A priority Critical patent/JP3091755B1/en
Application granted granted Critical
Publication of JP3091755B1 publication Critical patent/JP3091755B1/en
Publication of JP2001119055A publication Critical patent/JP2001119055A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

【要約】 【課題】 集光装置と光電変換装置との界面の反射率を
低減させ、実質的に光学効率あるいは発電量を高めた集
光型太陽光発電装置を提供する。 【解決手段】 受光面と反射面とを有し、前記受光面と
前記反射面とで挟まれた空間が前記受光面の外部より高
い屈折率を有する媒質で充填された集光装置と、少なく
とも表面の一部が前記集光装置に接する光電変換装置と
を有する集光型太陽光発電装置であって、前記媒質内の
少なくとも光電変換装置に接する領域の屈折率が、前記
媒質内のその他の領域の屈折率より高くなっている。ま
た、前記媒質内の前記受光面に接する領域の屈折率が前
記媒質内で最も低く、かつ、前記媒質内の前記光電変換
装置に接する領域の屈折率が前記媒質内で最も高くなっ
ている。
The present invention provides a concentrating photovoltaic power generation device in which the reflectance at the interface between a condensing device and a photoelectric conversion device is reduced, and the optical efficiency or the amount of generated power is substantially increased. A light-collecting device having a light-receiving surface and a reflecting surface, wherein a space sandwiched between the light-receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light-receiving surface. A concentrating solar power generation device having a photoelectric conversion device having a part of the surface in contact with the light collection device, wherein a refractive index of at least a region in contact with the photoelectric conversion device in the medium is other than that in the medium. It is higher than the refractive index of the region. Further, the refractive index of a region in contact with the light receiving surface in the medium is the lowest in the medium, and the refractive index of a region in the medium contacting the photoelectric conversion device is the highest in the medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集光型太陽光発電
装置、特に、集光装置と光電変換装置との界面での反射
率低減に適用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concentrating photovoltaic power generation device, and more particularly to a technique effective when applied to reduce the reflectance at the interface between a condensing device and a photoelectric conversion device.

【0002】[0002]

【従来の技術】集光型太陽光発電装置には、太陽光を追
尾するタイプと追尾しないタイプがあり、前者は主に数
10から数100倍の高倍集光型で用いられ、後者は2
倍から5倍程度の低倍集光型で用いられている。この非
追尾型で低倍集光型太陽光発電装置は、例えば、「プロ
トタイプ・フォトボルタイック・ルーフ・タイルズ」、
1990年、第13回・ヨーロピアン・フォトボルタイ
ック・ソーラー・エネルギー・コンファレンス予稿集、
1483ページから1486ページに記載されている。
この集光型太陽光発電装置の集光装置は、一般に、ガラ
スやアクリルといった空気より屈折率が高い媒質と、そ
の媒質の一部を囲む反射鏡で形成されており、一旦媒質
に進入した光が反射鏡で反射した後、集光装置の受光面
に達したとき、受光面に対し浅い角度の光は全反射さ
れ、光を閉じこめることができるのが特徴である。ま
た、これらの集光型太陽光発電装置には、光電変換装置
として、主に結晶シリコン太陽電池が利用されており、
その表面は2重反射を利用して反射率を低減させるテク
スチャ構造を有している。
2. Description of the Related Art There are two types of concentrator photovoltaic power generators: those that track sunlight and those that do not. The former is mainly used as a high-power concentrator of several tens to several hundreds of times, and the latter is used as a high-power concentrator.
It is used in a low-magnification light-condensing type of about twice to five times. This non-tracking, low-magnification, concentrator photovoltaic device, for example, "Prototype photovoltaic roof tiles",
Proceedings of the 13th European Photovoltaic Solar Energy Conference in 1990,
It is described on pages 1483 to 1486.
The concentrating device of this concentrating solar power generation device is generally formed of a medium having a higher refractive index than air, such as glass or acrylic, and a reflecting mirror surrounding a part of the medium. When the light reaches the light receiving surface of the light condensing device after being reflected by the reflecting mirror, light having a shallow angle with respect to the light receiving surface is totally reflected and can be confined. In addition, these concentrating solar power generation devices mainly use crystalline silicon solar cells as photoelectric conversion devices,
The surface has a texture structure that reduces the reflectance using double reflection.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の技術では、集光装置外部から入射した太陽光線を光
電変換装置に集めなければならないという原理上、光電
変換装置に入射する光の何割かの成分は光電変換装置の
受光面に対し、浅い角度で入射する。この場合に、光電
変換装置の受光面に対して55度以下の入射角の光線は
テクスチャ構造によって2重反射できないため、集光装
置と光電変換装置との界面での反射率を理想的に低減す
ることは難しく、実質的に光学効率の低下を招いてい
た。また、集光型太陽光発電装置は、非集光型太陽光発
電装置と比較して、同じ光量を受けながらも、より狭い
光電変換装置に光を集めるため、光電変換装置の温度が
より上昇し、特性の劣化を招きやすいという問題点があ
った。本発明は、前記従来技術の問題点を解決するため
になされたものであり、本発明の目的は、集光型太陽光
発電装置において、太陽光が、光電変換装置に入射する
入射角を小さくすることにより、集光装置と光電変換装
置との界面の反射率を低減させ、実質的に光学効率ある
いは発電量を高めることが可能となる技術を提供するこ
とにある。また、本発明の他の目的は、集光型太陽光発
電装置において、反射率を低減するだけでなく光電変換
装置も冷却し、特性が劣化するのを防止することにあ
る。本発明の前記ならびにその他の目的と新規な特徴
は、本明細書の記述及び添付図面によって明らかにす
る。
However, in the above-mentioned prior art, in view of the principle that sunlight rays incident from the outside of the condensing device must be collected in the photoelectric conversion device, some of the light incident on the photoelectric conversion device is used. The component enters the light receiving surface of the photoelectric conversion device at a shallow angle. In this case, light rays having an incident angle of 55 degrees or less with respect to the light receiving surface of the photoelectric conversion device cannot be double-reflected due to the texture structure, and therefore, the reflectance at the interface between the condensing device and the photoelectric conversion device is ideally reduced. It is difficult to do so, which has substantially reduced the optical efficiency. Also, compared to non-concentrating solar power generation devices, the concentrating solar power generation device receives the same amount of light but collects light in a narrower photoelectric conversion device, so the temperature of the photoelectric conversion device rises more. However, there is a problem that the characteristics are easily deteriorated. The present invention has been made in order to solve the problems of the prior art, and an object of the present invention is to reduce the angle of incidence of sunlight in a concentrator photovoltaic device, which is incident on a photoelectric conversion device. Accordingly, it is an object of the present invention to provide a technique capable of reducing the reflectance at the interface between the light-collecting device and the photoelectric conversion device and substantially increasing the optical efficiency or the amount of power generation. It is another object of the present invention to provide a concentrator photovoltaic power generation device that not only reduces the reflectance but also cools the photoelectric conversion device to prevent deterioration in characteristics. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0004】[0004]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記の通りである。即ち、本発明は、受光面と反射面と
を有し、前記受光面と前記反射面とで挟まれた空間が前
記受光面の外部より高い屈折率を有する媒質で充填され
た集光装置と、少なくとも表面の一部が前記集光装置に
接する光電変換装置とを有する集光型太陽光発電装置で
あって、前記媒質内の少なくとも前記光電変換装置に接
する領域の屈折率が、前記媒質内のその他の領域の屈折
率より高いことを特徴とする。また、本発明は、受光面
と反射面とを有し、前記受光面と前記反射面とで挟まれ
た空間が前記受光面の外部より高い屈折率を有する媒質
で充填された集光装置と、少なくとも表面の一部が前記
集光装置に接する光電変換装置とを有する集光型太陽光
発電装置であって、前記媒質内の前記受光面に接する領
域の屈折率が前記媒質内で最も低く、かつ、前記媒質内
の前記光電変換装置に接する領域の屈折率が前記媒質内
で最も高いことを特徴とする。また、本発明は、受光面
と反射面とを有し、前記受光面と前記反射面とで挟まれ
た空間が前記受光面の外部より高い屈折率を有する媒質
で充填された集光装置と、少なくとも表面の一部が前記
集光装置に接する光電変換装置とを有する集光型太陽光
発電装置であって、前記媒質は、その屈折率が均一では
なく、前記媒質内を通過する光線の、前記光電変換装置
の受光面法線方向に対する角度が屈折率の異なる領域を
通過する度に小さくなることを特徴とする。また、本発
明は、前記媒質の前記光電変換装置に接する領域に、前
記集光装置内の他の媒質に比べて屈折率が高い冷却用の
流体を流すことを特徴とする。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows. That is, the present invention has a light-collecting device having a light-receiving surface and a reflective surface, wherein a space sandwiched between the light-receiving surface and the reflective surface is filled with a medium having a higher refractive index than the outside of the light-receiving surface. A photovoltaic power generation device having a photoelectric conversion device having at least a part of a surface in contact with the light collection device, wherein a refractive index of at least a region of the medium that is in contact with the photoelectric conversion device is within the medium. Is characterized by being higher than the refractive index of other regions. Further, the present invention provides a light-collecting device having a light receiving surface and a reflecting surface, wherein a space sandwiched between the light receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light receiving surface. A photovoltaic device having at least a part of the surface and a photoelectric conversion device that is in contact with the condensing device, wherein a refractive index of a region of the medium that is in contact with the light receiving surface is the lowest in the medium. And a region in the medium that is in contact with the photoelectric conversion device has a highest refractive index in the medium. Further, the present invention provides a light-collecting device having a light receiving surface and a reflecting surface, wherein a space sandwiched between the light receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light receiving surface. A photovoltaic power generation device having a photoelectric conversion device having at least a part of a surface in contact with the light collection device, wherein the medium has a non-uniform refractive index, and a light beam passing through the medium. The angle of the photoelectric conversion device with respect to the normal direction of the light-receiving surface decreases each time the light passes through a region having a different refractive index. Further, the invention is characterized in that a cooling fluid having a higher refractive index than other media in the light-collecting device flows in a region of the medium in contact with the photoelectric conversion device.

【0005】[0005]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。なお、実施の形態を説明す
るための全図において、同一機能を有するものは同一符
号を付け、その繰り返しの説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In all the drawings for describing the embodiments, components having the same functions are denoted by the same reference numerals, and repeated description thereof will be omitted.

【0006】[実施の形態1]図1は、本発明の実施の
形態1の集光型太陽光発電装置の構成を示す要部断面図
であり、図2は、図1に示す集光装置1の構成を示す分
解斜視図である。集光装置1は、3角系形状あるいは台
形形状の断面を有し、屈折率がそれぞれ異なるガラス3
種からなるプリズム(2,3,4)を利用した。用意し
た3種類のガラスは、屈折率が1.49であるフラワー
クラウンガラス2、屈折率が1.62である重バリウム
クラウンガラス3、屈折率が1.80であるタンタリウ
ムフリントガラス4である。図1に示すように、三角形
断面の頂角が屈折率の低い順に21度、19度、17度
のものを用意し、隣り合う辺の長さが等しくなるように
切り出した。これらを紫外線硬化樹脂によって接着し、
さらに、このプリズムの裏面に銀を蒸着し反射面5を形
成した。一方、光電変換装置としては、p型高抵抗結晶
シリコン半導体がベースである両面受光型太陽電池6を
用いた。
[First Embodiment] FIG. 1 is a sectional view of a main part showing a configuration of a concentrating solar power generation device according to a first embodiment of the present invention. FIG. 2 is a condensing device shown in FIG. FIG. 2 is an exploded perspective view showing the configuration of FIG. The light condensing device 1 has a triangular or trapezoidal cross section, and has different refractive indexes.
A seed prism (2, 3, 4) was used. The three kinds of prepared glasses are a flower crown glass 2 having a refractive index of 1.49, a heavy barium crown glass 3 having a refractive index of 1.62, and a tantalum flint glass 4 having a refractive index of 1.80. . As shown in FIG. 1, triangular sections having apical angles of 21 °, 19 °, and 17 ° in descending order of refractive index were prepared, and were cut out so that adjacent sides had the same length. These are adhered by ultraviolet curing resin,
Further, silver was deposited on the back surface of the prism to form a reflection surface 5. On the other hand, a double-sided solar cell 6 based on a p-type high-resistance crystalline silicon semiconductor was used as a photoelectric conversion device.

【0007】本実施の形態の集光型太陽光発電装置の製
造プロセスは以下の通りである。まず、ベースとなるp
型高抵抗結晶シリコン半導体の両面に、水酸化カリウム
溶液でテクスチャを形成し、次に、片面にリンを拡散す
る。引き続いて、両面に窒化膜をCVD法により堆積
し、最後に両面に櫛形電極を印刷によって形成する。こ
のようにして作成された両面受光型太陽電池6を、図1
に示す2個の集光装置1で挟むように、両面受光型太陽
電池6をエチレン・酢酸ビニル共重合体(EVA;以
下、単に、EVAと称する。)で接着し、太陽光発電装
置を完成させた。
The manufacturing process of the concentrator photovoltaic power generation device according to the present embodiment is as follows. First, the base p
A texture is formed with potassium hydroxide solution on both sides of the high-resistance crystalline silicon semiconductor, and then phosphorus is diffused on one side. Subsequently, a nitride film is deposited on both surfaces by a CVD method, and finally, comb electrodes are formed on both surfaces by printing. The double-sided light-receiving solar cell 6 thus produced is shown in FIG.
(2), a double-sided solar cell 6 is bonded with an ethylene-vinyl acetate copolymer (EVA; hereinafter, simply referred to as EVA) so as to be sandwiched between the two concentrating devices 1 shown in FIG. I let it.

【0008】本実施の形態の集光型太陽光発電装置で
は、集光装置1の受光面に対して垂直に照射された光線
は、図1に示すような軌跡7を描く。光線は、屈折率が
低い領域から高い領域へ境界を通過すると、界面に対す
る出射角が入射角に比べて小さくなるので、最終的に光
線は光電変換装置(両面受光型太陽電池6)に対して垂
直に近い角度で入射させることが可能である。これによ
って、大部分の入射光を光電変換装置(両面受光型太陽
電池6)表面に形成したテクスチャ上で2回反射させる
ことが可能となる。その結果、集光装置1と光電変換装
置(両面受光型太陽電池6)の界面の実効的な反射率が
低減し、短絡電流は増加する。
In the concentrator photovoltaic power generator according to the present embodiment, the light beam irradiated perpendicular to the light receiving surface of the concentrator 1 draws a locus 7 as shown in FIG. When a light beam passes through a boundary from a region having a low refractive index to a region having a high refractive index, the emission angle with respect to the interface becomes smaller than the incident angle, and finally the light beam is transmitted to the photoelectric conversion device (double-sided solar cell 6). It is possible to make it incident at an angle close to normal. This makes it possible to reflect most of the incident light twice on the texture formed on the surface of the photoelectric conversion device (double-sided light receiving solar cell 6). As a result, the effective reflectivity at the interface between the light condensing device 1 and the photoelectric conversion device (double-sided solar cell 6) decreases, and the short-circuit current increases.

【0009】また、集光装置1であるプリズムにおいて
も、光電変換装置に接する部分に比較的高い屈折率を有
する媒質を使用するため、この場合も集光装置1と光電
変換装置の界面での反射を低減させ、短絡電流を増加さ
せる働きがある。本実施の形態では、単一の屈折率の集
光装置1を有する場合と比べて、集光装置1と光電変換
装置の界面での反射率を7%低下させることができた。
また、作製した集光型太陽光発電装置は、光学効率85
%を維持させつつ、集光倍率を5.8倍にすることがで
きた。なお、本実施の形態において、図3に示すよう
に、3角形形状の断面を有し、屈折率がそれぞれ異なる
楔型のプリズム(2,3,4)を重ね合わせて、集光装
置1を構成するようにしてもよい。また、本実施の形態
における集光装置1では、屈折率がそれぞれ1.49、
1.62、1.80のガラスを使用したが、可視光の波
長域で透過率が100%に近く、屈折率の異なるもので
あれば本実施の形態と同様な集光効果を顕示させること
が可能である。また、本実施の形態では、屈折率の異な
るプリズム(2,3,4)を組み合わせて集光装置1を
形成したが、屈折率を連続的に変化させたプリズムを用
いても同様の結果を得ることが可能である。さらに、本
実施の形態では、光電変換装置として、両面櫛形電極を
有する結晶シリコン太陽電池を用いたが、両面受光が可
能であれば多結晶シリコンやアモルファスシリコン、II
I−V系化合物、II−VI系化合物太陽電池であっても構
わない。
Also, in the prism which is the condensing device 1, since a medium having a relatively high refractive index is used in a portion in contact with the photoelectric conversion device, the prism at the interface between the condensing device 1 and the photoelectric conversion device is also used in this case. It functions to reduce reflection and increase short-circuit current. In the present embodiment, the reflectance at the interface between the light-collecting device 1 and the photoelectric conversion device can be reduced by 7% as compared with the case where the light-collecting device 1 having a single refractive index is provided.
The fabricated concentrator photovoltaic power generation device has an optical efficiency of 85
%, And the light collection magnification was able to be increased to 5.8 times. In the present embodiment, as shown in FIG. 3, the condensing device 1 is formed by superposing wedge-shaped prisms (2, 3, 4) having a triangular cross section and having different refractive indices. It may be configured. In the light collecting device 1 according to the present embodiment, the refractive indexes are 1.49 and 1,49, respectively.
Although 1.62 and 1.80 glasses were used, if the transmittance is close to 100% in the wavelength region of visible light and the refractive index is different, the same light-collecting effect as in the present embodiment should be exhibited. Is possible. Further, in the present embodiment, the condensing device 1 is formed by combining prisms (2, 3, 4) having different refractive indexes. However, similar results can be obtained by using a prism whose refractive index is continuously changed. It is possible to get. Furthermore, in the present embodiment, a crystalline silicon solar cell having a double-sided comb-shaped electrode was used as the photoelectric conversion device. However, if double-sided light reception is possible, polycrystalline silicon, amorphous silicon,
It may be an IV compound or a II-VI compound solar cell.

【0010】[実施の形態2]図4は、本発明の実施の
形態2の集光型太陽光発電装置の構成を示す図である。
本実施の形態では、屈折率が1.47、厚みが2mmの
白板強化ガラス8を2枚と、屈折率が1.83、厚みが
1.2mmの重ニオビウムフリントガラス9を2枚を用
い、横幅20mm、52mm周期で配置した両面受光型
太陽電池10を両側から挟む格好で接着し、さらに、裏
面から120度に開いたV溝を有する反射シート11を
貼り集光型太陽光発電装置を完成させた。即ち、本実施
の形態では、屈折率の異なるガラスを組み合わせて集光
装置を構成する。この際、ガラス同士は紫外線硬化樹脂
で、太陽電池とガラスはEVAで接着し、両面受光型太
陽電池10の厚みによって、中央部の2枚のガラス間に
生じた隙間12はEVAで充填した。また、反射シート
11のV溝とガラスの間に生じた空間はそのままEVA
で充填した。完成した平板タイプの集光型太陽光発電装
置は、集光倍率2.6倍、光学効率91%であった。本
実施の形態では、集光装置の受光面側に屈折率が比較的
低いガラスを利用するため、集光装置の受光面の反射率
を増加させることなく集光倍率を高めることが可能であ
る。また、光電変換装置(両面受光型太陽電池10)の
受光面に対して、平行にガラスの屈折率を外側から中心
に向かって大きくしているため、図4に示す光線軌跡1
3のように、光電変換装置の受光面に対して光線は垂直
に近い角度で入射する。これにより、集光装置と光電変
換装置の界面でも反射率が高くならず、短絡電流を高め
る効果がある。なお、本実施の形態では、屈折率の異な
るガラスを組み合わせて集光装置を形成したが、屈折率
を連続的に変化させたガラス2枚を用いても同様の結果
を得ることが可能である。また、本実施の形態では、重
ニオビウムフリントガラス9を用いる代わりに、白板強
化ガラス8に直接、酸化チタンを堆積させても同様の効
果が得られる。酸化チタンの屈折率は堆積方法、条件等
によって若干異なってくるが、例えば、屈折率が2.1
の酸化チタンを100nm堆積した白板強化ガラスを用
いた場合、前記実施の形態より3%程度、発電量が増加
した。また、集光装置の厚みを3分の2にすることが可
能となり、上記実施の形態より集光型太陽光発電装置全
体の重量を30%軽くすることができた。
[Embodiment 2] FIG. 4 is a diagram showing a configuration of a concentrator photovoltaic power generator according to Embodiment 2 of the present invention.
In the present embodiment, two pieces of white plate tempered glass 8 having a refractive index of 1.47 and a thickness of 2 mm and two heavy niobium flint glasses 9 having a refractive index of 1.83 and a thickness of 1.2 mm are used. A double-sided light-receiving solar cell 10 having a width of 20 mm and a cycle of 52 mm is adhered so as to sandwich it from both sides, and a reflection sheet 11 having a V-groove opened 120 degrees from the back is attached to complete a concentrating solar power generation device. I let it. That is, in the present embodiment, a condensing device is configured by combining glasses having different refractive indexes. At this time, the glass was an ultraviolet curable resin, the solar cell and the glass were adhered by EVA, and the gap 12 formed between the two glasses in the center was filled with EVA due to the thickness of the double-sided solar cell 10. Further, the space created between the V-groove of the reflection sheet 11 and the glass is EVA as it is.
Filled with. The completed flat plate type concentrating solar power generation device had a converging magnification of 2.6 times and an optical efficiency of 91%. In this embodiment, since the glass having a relatively low refractive index is used on the light receiving surface side of the light collecting device, the light collection magnification can be increased without increasing the reflectance of the light receiving surface of the light collecting device. . Moreover, since the refractive index of the glass is increased from the outside toward the center in parallel with the light receiving surface of the photoelectric conversion device (double-sided solar cell 10), the ray trajectory 1 shown in FIG.
As shown in 3, the light beam enters the light receiving surface of the photoelectric conversion device at an angle close to perpendicular. Thereby, the reflectance does not increase even at the interface between the light-collecting device and the photoelectric conversion device, and there is an effect of increasing the short-circuit current. In this embodiment, the light-collecting device is formed by combining glasses having different refractive indexes. However, the same result can be obtained by using two glasses whose refractive indexes are continuously changed. . Further, in the present embodiment, the same effect can be obtained by directly depositing titanium oxide on the white plate strengthened glass 8 instead of using the heavy niobium flint glass 9. The refractive index of titanium oxide slightly varies depending on the deposition method, conditions, and the like.
When the white plate tempered glass on which the titanium oxide of 100 nm was deposited was used, the power generation amount increased by about 3% compared to the above embodiment. Further, the thickness of the light-collecting device can be reduced to two-thirds, and the weight of the entire light-collecting solar power generation device can be reduced by 30% compared to the above embodiment.

【0011】[実施の形態3]図5は、本発明の実施の
形態3の集光型太陽光発電装置の全体構成を示す斜視図
であり、図6は、図5に示すA−A’、B−B’線で切
り取った断面構造を示す断面図である。集光型太陽電池
は光照射強度が高いため、高温になりやすい。これは太
陽電池の特性の劣化を招き、特に開放電圧や変換効率を
低下させる。そのため、本実施の形態では、前記実施の
形態2における両面受光型太陽電池10の下側に位置す
る屈折率の高いガラスの代わりに、屈折率の高い液体1
4で充填させるようにしたものである。集光型太陽光発
電装置のフレーム15には、吸入口16および排出口を
設け、液体が循環できるようにしている。これにより、
両面受光型太陽電池10を液冷し、前記効果を維持した
まま両面受光型太陽電池10の温度上昇の問題を解決す
ることができた。屈折率の高い液体14としては、例え
ば、ヨウ素あるいはシュウ素系有機溶媒がある。本実施
の形態では、屈折率1.74のヨウ化メチルを使用し
た。本実施の形態の場合、屈折率1.80の媒質の代わ
りに屈折率1.74の媒質を導入したため光学効率が若
干低下したが、集光倍率を少し下げることで光学効率を
元通りの値に戻すことが可能である。なお、本実施の形
態では、両面受光型太陽電池10の下側に位置する屈折
率の高いガラスの代わりに、屈折率の高い液体14を充
填させたが、両面受光型太陽電池10の上側に位置する
ガラスの代わりに同様の液体を充填させても、同様の効
果を得ることができる。また、本来ならば、比重が2以
上もあるガラスが挿入される部分に比重が1よりわずか
に高い液体を封入したため、太陽光発電モジュール全体
の重量を20%程度軽くできた。これにより、本実施の
形態の集光型太陽光発電装置を実際に施工する場合に作
業者の負担を大幅に軽減することができる。以上、本発
明者によってなされた発明を、前記実施の形態に基づき
具体的に説明したが、本発明は、前記実施の形態に限定
されるものではなく、その要旨を逸脱しない範囲におい
て種々変更可能であることは勿論である。
[Embodiment 3] FIG. 5 is a perspective view showing the entire configuration of a concentrating solar power generation apparatus according to Embodiment 3 of the present invention, and FIG. 6 is a sectional view taken along the line AA 'of FIG. FIG. 3 is a cross-sectional view showing a cross-sectional structure taken along line BB ′. Concentrating solar cells tend to be hot due to their high light irradiation intensity. This causes deterioration of the characteristics of the solar cell, and particularly lowers the open-circuit voltage and the conversion efficiency. Therefore, in the present embodiment, the liquid 1 having a high refractive index is used instead of the glass having a high refractive index located below the dual-sided solar cell 10 of the second embodiment.
4 to be filled. A suction port 16 and a discharge port are provided in the frame 15 of the concentrator photovoltaic power generator so that the liquid can circulate. This allows
The two-sided solar cell 10 was liquid-cooled, and the problem of the temperature rise of the two-sided solar cell 10 could be solved while maintaining the above effects. Examples of the liquid 14 having a high refractive index include iodine or an iodine-based organic solvent. In this embodiment, methyl iodide having a refractive index of 1.74 is used. In the case of the present embodiment, although the medium having the refractive index of 1.74 was introduced in place of the medium having the refractive index of 1.80, the optical efficiency was slightly lowered. It is possible to return to. In the present embodiment, the liquid 14 having a high refractive index is filled in place of the glass having a high refractive index located below the double-sided solar cell 10. The same effect can be obtained even if the same liquid is filled instead of the located glass. In addition, originally, a liquid having a specific gravity slightly higher than 1 was sealed in a portion where glass having a specific gravity of 2 or more was inserted, so that the weight of the entire photovoltaic module could be reduced by about 20%. Thereby, when actually installing the concentrator photovoltaic power generator of the present embodiment, the burden on the operator can be significantly reduced. As described above, the invention made by the inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and can be variously modified without departing from the gist of the invention. Of course, it is.

【0012】[0012]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記の通りである。 (1)本発明によれば、太陽光が、光電変換装置に入射
する入射角を小さくすることができるので、集光装置
と、光電変換装置の受光面との界面の反射率を低減さ
せ、光学効率あるいは発電量を実質的に向上させること
が可能となる。 (2)本発明によれば、集光装置の媒質内の前記光電変
換装置に接する領域を流体で構成するようにしたので、
光電変換装置の温度上昇を抑制し、かつ、光電変換装置
の特性の劣化を抑え、しかも集光型太陽光発電装置全体
の重量を軽くすることが可能となる。
The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows. (1) According to the present invention, the incident angle at which sunlight enters the photoelectric conversion device can be reduced, so that the reflectance at the interface between the light-collecting device and the light receiving surface of the photoelectric conversion device is reduced, It is possible to substantially improve optical efficiency or power generation. (2) According to the present invention, the region in contact with the photoelectric conversion device in the medium of the light-collecting device is made of a fluid.
It is possible to suppress a rise in temperature of the photoelectric conversion device, suppress deterioration in characteristics of the photoelectric conversion device, and reduce the weight of the entire concentrating solar power generation device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の集光型太陽光発電装置
の構成を示す要部断面図である。
FIG. 1 is a cross-sectional view of a main part showing a configuration of a concentrating solar power generation device according to a first embodiment of the present invention.

【図2】図1に示す集光装置の構成を示す分解斜視図で
ある。
FIG. 2 is an exploded perspective view showing a configuration of the light collecting device shown in FIG.

【図3】本実施の形態の集光装置の他の例を示す要部断
面図である。
FIG. 3 is a cross-sectional view of a main part showing another example of the light collecting device of the present embodiment.

【図4】本発明の実施の形態2の集光型太陽光発電装置
の構成を示す図である。
FIG. 4 is a diagram illustrating a configuration of a concentrating solar power generation device according to a second embodiment of the present invention.

【図5】本発明の実施の形態3の集光型太陽光発電装置
の全体構成を示す斜視図である。
FIG. 5 is a perspective view showing an overall configuration of a concentrating solar power generation device according to Embodiment 3 of the present invention.

【図6】図5に示すA−A’、B−B’線で切り取った
断面構造を示す断面図である。
6 is a cross-sectional view showing a cross-sectional structure taken along line AA ′ and BB ′ shown in FIG.

【符号の説明】[Explanation of symbols]

1…集光装置、2…フラワークラウンガラスプリズム、
3…重バリウムクラウンガラスプリズム、4…タンタリ
ウムフリントガラスプリズム、5…反射面、6,10…
両面受光型太陽電池、7,13…光線の軌跡、8…白板
強化ガラス、9…重ニオビウムフリントガラスプリズ
ム、11…反射シート、12…隙間、14…液体、15
…フレーム、16…吸入口。
1. Concentrator, 2. Flower crown glass prism,
3: heavy barium crown glass prism, 4: tantalum flint glass prism, 5: reflection surface, 6, 10 ...
Double-sided light-receiving solar cell, 7, 13: ray trajectory, 8: white plate tempered glass, 9: heavy niobium flint glass prism, 11: reflection sheet, 12: gap, 14: liquid, 15
... frame, 16 ... inlet.

フロントページの続き (72)発明者 筒井 謙 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 宮村 芳▲徳▼ 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 村松 信一 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 峯邑 純子 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (56)参考文献 特開 平11−266032(JP,A) 特開 平10−221528(JP,A) 特開 平8−128737(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 Continued on the front page (72) Inventor Ken Tsutsui 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Yoshiyoshi Miyamura 1-280, Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi, Ltd. Inside the Central Research Laboratory (72) Inventor Shinichi Muramatsu 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi Central Research Laboratory (72) Inventor Junko Minemura 1-280, Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi Central Research Laboratory, Ltd. (56) reference Patent flat 11-266032 (JP, a) JP flat 10-221528 (JP, a) JP flat 8-128737 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受光面と反射面とを有し、前記受光面と
前記反射面とで挟まれた空間が前記受光面の外部より高
い屈折率を有する媒質で充填された集光装置と、 少なくとも表面の一部が前記集光装置に接する光電変換
装置とを有する集光型太陽光発電装置であって、 前記媒質内の少なくとも前記光電変換装置に接する領域
の屈折率が、前記媒質内のその他の領域の屈折率より高
いことを特徴とする集光型太陽光発電装置。
A light-collecting device having a light-receiving surface and a reflecting surface, wherein a space sandwiched between the light-receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light-receiving surface; At least a part of the surface is a concentrating solar power generation device having a photoelectric conversion device in contact with the light collection device, wherein the refractive index of at least a region of the medium that is in contact with the photoelectric conversion device is within the medium. A concentrating solar power generation device having a higher refractive index than other regions.
【請求項2】 受光面と反射面とを有し、前記受光面と
前記反射面とで挟まれた空間が前記受光面の外部より高
い屈折率を有する媒質で充填された集光装置と、 少なくとも表面の一部が前記集光装置に接する光電変換
装置とを有する集光型太陽光発電装置であって、 前記媒質内の前記受光面に接する領域の屈折率が前記媒
質内で最も低く、かつ、前記媒質内の前記光電変換装置
に接する領域の屈折率が前記媒質内で最も高いことを特
徴とする集光型太陽光発電装置。
2. A light-collecting device having a light receiving surface and a reflecting surface, wherein a space sandwiched between the light receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light receiving surface. A concentrator photovoltaic power generator having at least a part of the surface and a photoelectric conversion device that is in contact with the condensing device, wherein a refractive index of a region in the medium that is in contact with the light receiving surface is the lowest in the medium, A concentrating photovoltaic power generation device, wherein a refractive index of a region in the medium that is in contact with the photoelectric conversion device is the highest in the medium.
【請求項3】 前記媒質内の屈折率が、前記光電変換装
置と接する領域から距離が遠くなるにしたがって段階的
に低くなることを特徴とする請求項1または請求項2に
記載の集光型太陽光発電装置。
3. The light-converging type according to claim 1, wherein the refractive index in the medium gradually decreases as the distance from a region in contact with the photoelectric conversion device increases. Solar power generator.
【請求項4】 前記媒質内の屈折率が、前記光電変換装
置と接する領域から距離が遠くなるにしたがって連続的
に低くなることを特徴とする請求項1または請求項2に
記載の集光型太陽光発電装置。
4. The light condensing type according to claim 1, wherein the refractive index in the medium decreases continuously as the distance from a region in contact with the photoelectric conversion device increases. Solar power generator.
【請求項5】 受光面と反射面とを有し、前記受光面と
前記反射面とで挟まれた空間が前記受光面の外部より高
い屈折率を有する媒質で充填された集光装置と、 少なくとも表面の一部が前記集光装置に接する光電変換
装置とを有する集光型太陽光発電装置であって、 前記媒質は、その屈折率が均一ではなく、前記媒質内を
通過する光線の、前記光電変換装置の受光面法線方向に
対する角度が屈折率の異なる領域を通過する度に小さく
なることを特徴とする集光型太陽光発電装置。
5. A light-collecting device having a light receiving surface and a reflecting surface, wherein a space sandwiched between the light receiving surface and the reflecting surface is filled with a medium having a higher refractive index than the outside of the light receiving surface. A concentrator photovoltaic power generator having at least a part of the surface and a photoelectric conversion device that is in contact with the light concentrator, wherein the medium has a non-uniform refractive index and a light beam that passes through the medium. A concentrator photovoltaic power generator, wherein the angle of the photoelectric conversion device with respect to the normal direction of the light receiving surface decreases each time the light passes through a region having a different refractive index.
【請求項6】 前記集光装置は、前記光電変換装置を挟
むように2設けられ、 前記2個の集光装置は、前記受光面と前記反射面と前記
光電変換装置とを含む断面において、前記反射面が直線
あるいは曲線で構成されていることを特徴とする請求項
1ないし請求項のいずれか1項に記載の集光型太陽光
発電装置。
6. The light- condensing device is provided with two light- condensing devices sandwiching the photoelectric conversion device, and the two light-condensing devices have a cross section including the light receiving surface, the reflection surface, and the photoelectric conversion device. The concentrator photovoltaic power generation device according to any one of claims 1 to 5 , wherein the reflection surface is configured by a straight line or a curve.
【請求項7】 前記光電変換装置は、前記集光装置の媒
質内に設けられることを特徴とする請求項1ないし請求
項5のいずれか1項に記載の集光型太陽光発電装置。
7. The concentrator photovoltaic power generator according to claim 1, wherein the photoelectric converter is provided in a medium of the concentrator.
【請求項8】 前記集光装置と前記光電変換装置とは、
前記集光装置の前記受光面と、前記反射面と、前記光電
変換装置の受光面とが平行になるように配置されている
ことを特徴とする請求項7に記載の集光型太陽光発電装
置。
8. The light-collecting device and the photoelectric conversion device,
The concentrating photovoltaic power generation according to claim 7, wherein the light receiving surface of the light condensing device, the reflection surface, and the light receiving surface of the photoelectric conversion device are arranged in parallel. apparatus.
【請求項9】 前記媒質内の前記光電変換装置に接する
領域が、流体で構成されることを特徴とする請求項1な
いし請求項8のいずれか1項に記載の集光型太陽光発電
装置。
9. The concentrating solar power generation device according to claim 1, wherein a region in the medium that is in contact with the photoelectric conversion device is formed of a fluid. .
【請求項10】 前記流体は、ヨウ素あるいはシュウ素
系有機溶媒で構成されることを特徴とする請求項9に記
載の集光型太陽光発電装置。
10. The concentrator photovoltaic power generator according to claim 9, wherein the fluid is composed of iodine or an iodine-based organic solvent.
JP11293527A 1999-10-15 1999-10-15 Concentrating solar power generator Expired - Fee Related JP3091755B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11293527A JP3091755B1 (en) 1999-10-15 1999-10-15 Concentrating solar power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11293527A JP3091755B1 (en) 1999-10-15 1999-10-15 Concentrating solar power generator

Publications (2)

Publication Number Publication Date
JP3091755B1 true JP3091755B1 (en) 2000-09-25
JP2001119055A JP2001119055A (en) 2001-04-27

Family

ID=17795908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11293527A Expired - Fee Related JP3091755B1 (en) 1999-10-15 1999-10-15 Concentrating solar power generator

Country Status (1)

Country Link
JP (1) JP3091755B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983642A (en) * 2006-02-09 2007-06-20 易斌宣 Superhigh multiplying-power focusing solar battery
WO2012091082A1 (en) * 2010-12-28 2012-07-05 信越化学工業株式会社 Organic material optical sheet for condenser-type solar cell
ITBA20110025A1 (en) * 2011-05-21 2012-11-22 Daniele Mangia PHOTOVOLTAIC PANEL WITH DIEDRICAL GEOMETRY CELLS
KR101791130B1 (en) 2016-11-18 2017-10-27 엘지전자 주식회사 Solar cell module

Also Published As

Publication number Publication date
JP2001119055A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
US8039731B2 (en) Photovoltaic concentrator for solar energy system
US20100108133A1 (en) Thin Film Semiconductor Photovoltaic Device
JPH10255863A (en) Sensitized pigment solar battery
US20070227582A1 (en) Low aspect ratio concentrator photovoltaic module with improved light transmission and reflective properties
WO2008137002A2 (en) Guided -wave photovoltaic devices
JP2001148500A (en) Solar cell module
US20140319377A1 (en) Pulsed stimulated emission luminescent photovoltaic solar concentrator
WO2013047424A1 (en) Solar photovoltaic power generation device
US20100059108A1 (en) Optical system for bifacial solar cell
WO2013002093A1 (en) Photovoltaic power generation device
JP4438293B2 (en) Solar cell and installation method thereof
JP3091755B1 (en) Concentrating solar power generator
JP2003078156A (en) Thin film solar battery and light converging/reflecting element
JP2003086823A (en) Thin film solar battery
TWI553890B (en) Photovoltaic cell module
JP2004111742A (en) Solar cell
JP2003046103A (en) Thin film solar battery and method for installing the same
JP2004128419A (en) Solar cell
JP2004186334A (en) Solar battery, and condensing element therefor and its manufacturing method
JP2004172256A (en) Solar power generating device of linear light condensing-type
WO2014176881A1 (en) Tubular concentrating photovoltaic cell assembly
US20110259421A1 (en) Photovoltaic module having concentrator
JP2004111453A (en) Solar cell
CN213242571U (en) Light-gathering panel with TIR lens infinitesimal structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees