JPS5923113B2 - Semiconductor equipment for ultra-high frequencies - Google Patents

Semiconductor equipment for ultra-high frequencies

Info

Publication number
JPS5923113B2
JPS5923113B2 JP53023248A JP2324878A JPS5923113B2 JP S5923113 B2 JPS5923113 B2 JP S5923113B2 JP 53023248 A JP53023248 A JP 53023248A JP 2324878 A JP2324878 A JP 2324878A JP S5923113 B2 JPS5923113 B2 JP S5923113B2
Authority
JP
Japan
Prior art keywords
electrode
bonding wire
diameter
high frequency
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53023248A
Other languages
Japanese (ja)
Other versions
JPS54115067A (en
Inventor
愛一郎 奈良
政夫 住吉
秀彰 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53023248A priority Critical patent/JPS5923113B2/en
Publication of JPS54115067A publication Critical patent/JPS54115067A/en
Publication of JPS5923113B2 publication Critical patent/JPS5923113B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05009Bonding area integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05073Single internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • H01L2224/48456Shape
    • H01L2224/48458Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 この発明はショットキダイオードなどの超高周波用半導
体装置に係り、特にその電極形状の改良関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ultra-high frequency semiconductor devices such as Schottky diodes, and particularly to improvements in the shape of electrodes thereof.

以下、ショットキダイオードを例にとり説明する。The following will explain the Schottky diode as an example.

ショットキダイオードは、超高周波帯における制御変換
素子として重要な位置を占めており、そのしや断固波数
fcの高いことが必須条件である。
A Schottky diode occupies an important position as a control conversion element in an ultra-high frequency band, and a high wave number fc is an essential condition.

ショットキダイオードの基板のキャリヤ濃度が一定の場
合には、理論的な考察よりショットキダイオードのショ
ットキ接合電極(以下「S電極」と略称する)の面積が
小さくなるにつれてそのしや断固波数fcも増大するこ
とが解明されているので、最近ではs電極の半径が5μ
m程度以下のものまで開発されている。第1図はショッ
トキダイオードのオーバレイ構造のs電極を説明するた
めの断面図である。
When the carrier concentration of the Schottky diode substrate is constant, theoretical considerations suggest that as the area of the Schottky junction electrode (hereinafter abbreviated as "S electrode") of the Schottky diode becomes smaller, the absolute wave number fc also increases. Since it has been clarified that the radius of the s electrode is 5μ,
Even devices with a size of about m or less have been developed. FIG. 1 is a cross-sectional view for explaining an s-electrode of an overlay structure of a Schottky diode.

図において、1は半導体基板、2は半導体基板1の主面
上に設けられ上記主面の一部を露出させた窓を有する絶
縁保護膜、3は絶縁保護膜2の窓内の半導体基板1上お
よび上記窓の周辺部の絶縁保護膜2上に形成されたs電
極、4はs電極3上に形成されたボンディング用電極、
5は直径10μm程度の金線からなリボンディング用電
極4上に接続されたボンディングワイヤである。このよ
うなオーバレイ構造のs電極では、微少なs電極3でも
これとボンディングワイヤ5とを容易に接続できるので
、従来広く使用されていた。
In the figure, 1 is a semiconductor substrate, 2 is an insulating protective film provided on the main surface of the semiconductor substrate 1 and has a window exposing a part of the main surface, and 3 is the semiconductor substrate 1 inside the window of the insulating protective film 2. s electrode formed on the insulating protective film 2 on the upper and peripheral parts of the window; 4 is a bonding electrode formed on the s electrode 3;
A bonding wire 5 is connected to the rebonding electrode 4 made of a gold wire with a diameter of about 10 μm. Such an s-electrode having an overlay structure has been widely used in the past because even a minute s-electrode 3 can be easily connected to the bonding wire 5.

しかしながら、s電極3の絶縁保護膜2上にはみ出たオ
ーバレイの部分と半導体基板1との間に、絶縁保護膜2
の厚さと誘電率とで決まる容量が形成され、この容量が
、s電極3の接合容量Cjと並列に入るため、高周波特
性に悪影響を及ぽしていた。これに対して、オーバレイ
の無い構造のs電極では、これを例えばメッキ法などに
より形成することが可能であり、浮遊容量をほとんど無
視できるものの、微少なS電極ではこれとボンデイング
ワイヤとを接続することが容易ではないという問題点が
ある。
However, between the overlay portion of the s electrode 3 that protrudes onto the insulating protective film 2 and the semiconductor substrate 1, the insulating protective film 2
A capacitance determined by the thickness and dielectric constant of the s-electrode 3 is formed, and this capacitance enters in parallel with the junction capacitance Cj of the s-electrode 3, thereby adversely affecting the high frequency characteristics. On the other hand, in the case of an S electrode with a structure without overlay, it is possible to form this by, for example, a plating method, and the stray capacitance can be almost ignored. The problem is that it is not easy.

次に、この問題点について具体的に説明する。Next, this problem will be specifically explained.

通常、ボンデイングワイヤを直接接続する要のあるS電
極の形状は、シヨツトキ接合電界効果トランジスタのゲ
ート電極などを例外として除くと次の理由により円形で
ある。すなわち、半導体基板のS電極の周辺部において
、S電極の逆方向リーク電流が発生し易いため、S電極
の周囲長をできるだけ短かくすることが望ましく、同一
面積であれば、最小の周囲長をもつ円が専ら用いられて
きたのである。一方、ボンデイングワイヤは、その径が
10μm程度以上ないと非常に切れ易く、実用上使用す
ることができない。
Generally, the shape of the S electrode to which a bonding wire must be directly connected is circular for the following reason, with the exception of the gate electrode of a shotgun field effect transistor. In other words, since reverse leakage current of the S electrode is likely to occur in the peripheral area of the S electrode of the semiconductor substrate, it is desirable to make the peripheral length of the S electrode as short as possible. The motsu yen has been used exclusively. On the other hand, unless the bonding wire has a diameter of about 10 μm or more, it is extremely easy to break and cannot be used practically.

このために、オーバレイのないS電極とボンデイングワ
イヤとを重ねて接続する場合に、上記S電極の径が上記
ボンデイグワイヤの径より小さいときには、上記S電翫
と上記ポンデイングワイヤとの位置合わせを正確に行う
ことができないので、上記S電極の面積を小さくしてし
や断周波数Fcの増大を図ることが容易ではなかつた。
For this reason, when connecting an S electrode without an overlay and a bonding wire in an overlapping manner, if the diameter of the S electrode is smaller than the diameter of the bonding wire, it is necessary to accurately align the S electrode and the bonding wire. Therefore, it is not easy to increase the shear cutoff frequency Fc by reducing the area of the S electrode.

第2図は半径4μm程度の円形のS電極上に直径1.0
μm程度のボンデイングワイヤを重ね合わせこれを実体
顕微鏡で観察した状態を示す図である。
Figure 2 shows a circular S electrode with a radius of about 4 μm and a diameter of 1.0 μm.
It is a diagram showing a state in which bonding wires of about μm size are stacked and observed with a stereomicroscope.

図に示すように、破線で示す半径4μm程度のS電極3
aは直径10μm程度のボンデイングワイヤ5aの影に
隠れて観察することができないので、作業者の熟練によ
る勘にたよつて、S電極3aの真上と思われるポンチイ
ンクワイア5aの部分にポンチインク用ウエツジを押し
つけてS電極3aとボンデイングワイヤ5aとを接続し
ていた。このように、ポンチインクワイアとこれより小
さい直径のS電極とを接続する作業は上記S電極の面積
を小さくしてしや断周波数Fcの増大を図る上で大きな
障害になつていた。ところで、発明者らの行なつた実験
結果によれば半導体基板のS電極の周辺部にこの半導体
基板と反対の伝導形のガードリング層を設けることによ
つて、逆方向リーク電流の少ないS電極を上記半導体基
板上に形成し得るので、必ずしもS電極の形状を円にす
る必要のないことが確認された。
As shown in the figure, an S electrode 3 with a radius of about 4 μm indicated by a broken line
Since point a cannot be observed because it is hidden in the shadow of the bonding wire 5a, which has a diameter of about 10 μm, the operator relied on his/her experienced intuition to place the punch ink on the part of the punch ink wire 5a that seemed to be directly above the S electrode 3a. The wedge was pressed to connect the S electrode 3a and the bonding wire 5a. As described above, the work of connecting the punch inquire and the S electrode having a smaller diameter has been a major obstacle in reducing the area of the S electrode and increasing the shear cutting frequency Fc. By the way, according to the experimental results conducted by the inventors, by providing a guard ring layer of a conductivity type opposite to that of the semiconductor substrate around the S electrode of the semiconductor substrate, the S electrode with less reverse leakage current can be formed. It was confirmed that the shape of the S electrode does not necessarily have to be circular because it can be formed on the semiconductor substrate.

この発明は、上述の実験結果にもとずいてなされたもの
で、電極が通常の円形ならばこの上にボンデイングすべ
く重ね合わせたボンディングワイヤに隠れて重ね合わせ
状態の識別困難な上記電極を同一面積に保持しつつ変形
して上記ボンデイングワイヤの側面から一部が露出する
ような所定形状にすることによつて、上記電極と上記ボ
ンデイングワイヤとの位置合わせを精度よく行い得るよ
うにして、上記電極の面積の減少を図り、その高周波特
性の向上を図り得る超高周波用半導体装置を提供するこ
とを目的とする。第3図はこの発明による一実施例のダ
円形状のS電極の上にボンデイングワイヤを重ね合わせ
、これを実体顕微鏡で観察した状態を説明するための図
である。
This invention was made based on the above-mentioned experimental results, and if the electrode is a normal circular shape, the above-mentioned electrode is hidden by the bonding wire that is overlapped to be bonded on top of it, making it difficult to identify the overlapping state. By deforming the bonding wire to a predetermined shape such that a portion thereof is exposed from the side surface of the bonding wire while maintaining the same area, the electrode and the bonding wire can be precisely aligned. It is an object of the present invention to provide a super high frequency semiconductor device that can reduce the area of electrodes and improve its high frequency characteristics. FIG. 3 is a diagram for explaining a state in which a bonding wire is superimposed on a circular S electrode according to an embodiment of the present invention, and the bonding wire is observed using a stereoscopic microscope.

図において、3bはこの実施例のS電極で、第2図に示
したS電極3aと同一面積のダ円形である。
In the figure, 3b is the S electrode of this embodiment, which has a circular shape with the same area as the S electrode 3a shown in FIG.

このS電極3bの短径と平行にボンデイングワイヤ5a
が重ねてある。そこで、S電極3bの長径2R1を直径
10μm程度のボンデイングワイヤ5aの両側へそれぞ
れ長さDl,D2だけ露見するようにすると、これらの
長さDl,D2をそれぞれ実体顕微鏡で目測しながら、
S電極3bとボンデイングワイヤ5aとを正確に位置合
わせすることができる。実際の作業では100倍前後の
倍率の実体顕微鏡を使用するので、確認できる長さ(D
,+D2)として、D1+D2≧1.0μmが必要であ
る。一方、ボンデイングワイヤの直径が実用上10pm
程度以上ないと切れ易く使用できないため、S電極3b
の長径2R1の限界は次式のようになる。2R1≧10
μm+1μm=11μm・・・・・・・・・〔1〕とこ
ろが、S電極3bの長径2R1をどんどん長くすると、
S電極3bのボンデイングワイヤ5aの両側から露出す
る長さDl,D2は大きくなり、S電極3bとボンデイ
ングワイヤ5aとの位置合わせが容易になるが、S電極
3bの短径2R2が短かくなりすぎて、ボンデイングワ
イヤ5aとS電極3bとの接触面積が小さくなり、ボン
デイングワイヤ5aの直列抵抗の増加を引きおこすこと
になる。
A bonding wire 5a is placed parallel to the short axis of this S electrode 3b.
are stacked on top of each other. Therefore, if the long axis 2R1 of the S electrode 3b is exposed on both sides of the bonding wire 5a having a diameter of about 10 μm by lengths Dl and D2, respectively, while visually measuring these lengths Dl and D2 with a stereomicroscope,
The S electrode 3b and the bonding wire 5a can be accurately aligned. In actual work, a stereo microscope with a magnification of around 100x is used, so the length that can be confirmed (D
, +D2), it is necessary that D1+D2≧1.0 μm. On the other hand, the diameter of the bonding wire is practically 10 pm.
If the S electrode 3b is
The limit of the major axis 2R1 is as shown in the following equation. 2R1≧10
μm+1μm=11μm・・・・・・・・・[1] However, if the long diameter 2R1 of the S electrode 3b is made longer and longer,
The lengths Dl and D2 of the S electrode 3b exposed from both sides of the bonding wire 5a become larger, making it easier to align the S electrode 3b and the bonding wire 5a, but the minor axis 2R2 of the S electrode 3b becomes too short. As a result, the contact area between the bonding wire 5a and the S electrode 3b becomes smaller, causing an increase in the series resistance of the bonding wire 5a.

したがつて、S電極3bを形成するための通常の写真製
版の精度を考慮に入れて、S電極3bの短径2R2の限
界は次のようになる。2R2−>4μm ・・・・・
・・・・・・・・・・・・・ 〔〕ところで、上記〔1
〕式および〔〕式の条件を満たすダ円形のS電極と同一
面積の円形のS電極の直径2R0の限界は次のようにな
る。
Therefore, taking into account the accuracy of normal photolithography for forming the S electrode 3b, the limit of the short diameter 2R2 of the S electrode 3b is as follows. 2R2->4μm・・・・・・
・・・・・・・・・・・・ [] By the way, the above [1]
The limit of the diameter 2R0 of a circular S electrode having the same area as the circular S electrode that satisfies the conditions of formulas [] and [] is as follows.

上述のように、実用上の使用限界である1.0μm程度
の直径のボンデイングワイヤとこのボンデイングワイヤ
の断面積より小さい面積のS電極との位置合わせを精度
よく行うことができる。
As described above, it is possible to accurately align the bonding wire with a diameter of about 1.0 μm, which is the limit of practical use, and the S electrode with an area smaller than the cross-sectional area of the bonding wire.

よつて、この実施例のS電極3bでは、上記〔l〕式を
満たす直径2R0の円面積までS電極3bの面積の減少
を図り、そのしや断周波数Fcの増大を容易に図り得る
シヨツキダイオードを提供することができる。第4図は
この発明による他の実施例のS電極の上にボンデイング
ワイヤを重ね合わせ、これを実体顕微鏡で観察した状態
を示す図である。
Therefore, in the S electrode 3b of this embodiment, it is possible to reduce the area of the S electrode 3b to a circular area of diameter 2R0 that satisfies the above formula [l], and to easily increase the shear cut-off frequency Fc. A diode can be provided. FIG. 4 is a diagram showing a state in which a bonding wire is superimposed on the S electrode of another embodiment of the present invention, and this is observed with a stereoscopic microscope.

図において、3cはこの実施例のS電極で、このS電極
3cは半円形と長方形とを組合わせた形状であるほかは
、第3図に示したS電極3bと同様である。
In the figure, 3c is the S electrode of this embodiment, and this S electrode 3c is the same as the S electrode 3b shown in FIG. 3, except that it has a shape that is a combination of a semicircle and a rectangle.

したがつて、S電極3cの効果もS電極3bと同様であ
ることは容易に理解できよう。なお、これまで、微少な
S電極を有するシヨツトキダイオードについて述べてき
たが、この発明はこれに限らず、この他のPn接合電極
もしくはオーミツク電極などの微少な電極を有する超高
周波用半導体装置にも適用することができる。以上、説
明したように、この発明によれば、半導体基体の主面上
に設けられた電極が通常の円形ならばこの上にボンデイ
ングすべく重ね合わせたボンデイングワイヤに隠れて重
ね合わせ状態の識別困難なものにおいて、上記電極を同
一面積に保持しつつ上記ボンデイングワイヤの側面から
一部が露出するような所定形状にしてあるので、゛上記
電極と上記ボンデイングワイヤとの位置合わせを精度よ
く行うことができる。よつて、上記電極の面積の減少を
図り、その高周波特性の向上を図り得る超高周波用半導
体装置を提供することができる。
Therefore, it can be easily understood that the effect of the S electrode 3c is also the same as that of the S electrode 3b. Although the Schottky diode having a minute S electrode has been described so far, the present invention is not limited to this, and can be applied to ultra-high frequency semiconductor devices having minute electrodes such as other Pn junction electrodes or ohmic electrodes. can also be applied. As explained above, according to the present invention, if the electrode provided on the main surface of the semiconductor substrate is a normal circle, it will be hidden by the bonding wire that is overlapped to be bonded thereon, making it difficult to identify the overlapping state. In the present invention, the electrodes are held in the same area and are shaped in a predetermined manner such that a portion thereof is exposed from the side surface of the bonding wire, so that the electrodes and the bonding wire can be precisely aligned. can. Therefore, it is possible to provide an ultra-high frequency semiconductor device that can reduce the area of the electrode and improve its high frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシヨツトキダイオードのオーバレイ構造のS電
極を説明するための断面図、第2図は半径4μm程度の
円形のS電極上に直径10μm程度のボンデイングワイ
ヤを重ね合わせ、これを実体顕微鏡で観察した状態を示
す図、第3図はこの発明による一実施例のS電極の上に
ボンデイングワイヤを重ね合わせ、これを実体顕微鏡で
観察した状態を説明するための図、第4図はこの発明に
よる他の実施例のS電極の上にボンデイングワイヤを重
ね合わせ、これを実体顕微鏡で観察した状態を示す図で
ある。 図において、1は半導体基板、2は絶縁保護膜、3,3
a,3b,3cはそれぞれS電極、4はボンデイング用
電極、5,5aはそれぞれボンデイングワイヤを示す。
Figure 1 is a cross-sectional view to explain the S electrode of the overlay structure of the Schottky diode, and Figure 2 is a circular S electrode with a radius of approximately 4 μm overlaid with a bonding wire of approximately 10 μm in diameter, which is examined using a stereomicroscope. A diagram showing the observed state, FIG. 3 is a diagram for explaining the state in which a bonding wire is superimposed on the S electrode of an embodiment of the present invention, and observed with a stereomicroscope, and FIG. 4 is a diagram showing the state observed with a stereomicroscope. FIG. 7 is a diagram showing a state in which a bonding wire is superimposed on the S electrode of another example according to the present invention, and the bonding wire is observed with a stereoscopic microscope. In the figure, 1 is a semiconductor substrate, 2 is an insulating protective film, 3, 3
a, 3b, and 3c are S electrodes, 4 is a bonding electrode, and 5 and 5a are bonding wires, respectively.

Claims (1)

【特許請求の範囲】 1 半導体基体の主面上に設けられた電極が通常の円形
ならばこの上にボンディングすべく重ね合わせたボンデ
ィングワイヤに隠れて重ね合わせ状態の識別困難なもの
において、上記電極を同一面積に保持しつつ変形して上
記ボンディングワイヤの側面から一部が露出するような
所定形状としたことを特徴とする超音周波用半導体装置
。 2 電極がショットキ接合電極であることを特徴とする
特許請求の範囲第1項記載の超高周波用半導体装置。 3 電極の形状をダ円形状にしたことを特徴とする特許
請求の範囲第1項記載の超高周波用半導体装置。
[Scope of Claims] 1. If the electrode provided on the main surface of the semiconductor substrate is a normal circular shape, the electrode is hidden by the bonding wire overlaid to be bonded thereon, making it difficult to identify the overlapping state. An ultrasonic frequency semiconductor device characterized in that the bonding wire is deformed into a predetermined shape such that a portion thereof is exposed from the side surface of the bonding wire while maintaining the same area. 2. The super high frequency semiconductor device according to claim 1, wherein the electrode is a Schottky junction electrode. 3. The super high frequency semiconductor device according to claim 1, wherein the electrode has a circular shape.
JP53023248A 1978-02-28 1978-02-28 Semiconductor equipment for ultra-high frequencies Expired JPS5923113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53023248A JPS5923113B2 (en) 1978-02-28 1978-02-28 Semiconductor equipment for ultra-high frequencies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53023248A JPS5923113B2 (en) 1978-02-28 1978-02-28 Semiconductor equipment for ultra-high frequencies

Publications (2)

Publication Number Publication Date
JPS54115067A JPS54115067A (en) 1979-09-07
JPS5923113B2 true JPS5923113B2 (en) 1984-05-30

Family

ID=12105287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53023248A Expired JPS5923113B2 (en) 1978-02-28 1978-02-28 Semiconductor equipment for ultra-high frequencies

Country Status (1)

Country Link
JP (1) JPS5923113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074404A1 (en) 2016-10-17 2018-04-26 アドバンスト・ソフトマテリアルズ株式会社 Spherical powder containing crosslinked body formed having polyrotaxane, and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074404A1 (en) 2016-10-17 2018-04-26 アドバンスト・ソフトマテリアルズ株式会社 Spherical powder containing crosslinked body formed having polyrotaxane, and method for producing same

Also Published As

Publication number Publication date
JPS54115067A (en) 1979-09-07

Similar Documents

Publication Publication Date Title
JP5004800B2 (en) Solderable top metal for silicon carbide devices
US4151545A (en) Semiconductor electric circuit device with plural-layer aluminum base metallization
JP2003069044A (en) Semiconductor device and manufacturing method thereof
KR930011702B1 (en) High power semiconductor device
JPS5923113B2 (en) Semiconductor equipment for ultra-high frequencies
US20230352601A1 (en) Schottky barrier diode
JP3503146B2 (en) Method for manufacturing semiconductor device
US4698901A (en) Mesa semiconductor device
JPS6364905B2 (en)
JPH01270348A (en) Schottky barrier semiconductor device
JPH05190662A (en) Semiconductor device
TW501176B (en) Semiconductor wafer and semiconductor device
CN104282633A (en) Semiconductor package and fabrication method thereof, semiconductor structure, semiconductor substrate and fabrication method thereof
JPS5930538Y2 (en) semiconductor equipment
JP2526534Y2 (en) Shot barrier diode device
JPS61115332A (en) Semiconductor device and manufacture thereof
JPS61170056A (en) Electrode material for semiconductor device
JP2023124329A (en) Transformer element, semiconductor device, method for manufacturing transformer element, and method for manufacturing semiconductor device
KR910004592Y1 (en) Diode
KR820001144B1 (en) Semiconductor
JPS5823951B2 (en) semiconductor equipment
JPH0258244A (en) Assembly of semiconductor device
JPH036817A (en) Manufacture of multilayer electrode of semiconductor element
JPH01319974A (en) Semiconductor device
JPS627161A (en) Semiconductor device