JPS59230637A - Preparation of molecular sieve carbon material - Google Patents

Preparation of molecular sieve carbon material

Info

Publication number
JPS59230637A
JPS59230637A JP58107395A JP10739583A JPS59230637A JP S59230637 A JPS59230637 A JP S59230637A JP 58107395 A JP58107395 A JP 58107395A JP 10739583 A JP10739583 A JP 10739583A JP S59230637 A JPS59230637 A JP S59230637A
Authority
JP
Japan
Prior art keywords
temperature
carbon material
molecular sieve
granulated
sieve carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58107395A
Other languages
Japanese (ja)
Inventor
Chuji Yuki
結城 仲治
Yoshiaki Kanai
金井 義彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP58107395A priority Critical patent/JPS59230637A/en
Publication of JPS59230637A publication Critical patent/JPS59230637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare a molecular sieve carbon material excellent in adsorptive separation capacity, by such a simple preparation method that a predetermined amount of a suitable sticky agent is compounded to fine powdery carbide obtained from non-caking coal while the obtained compound is well mixed to form a granulated substance which is then subjected to heat treatment under a suitable condition. CONSTITUTION:20-30wt% of an org. substance, which shows stickness at a room temp., is soluble in water at a room tem. and further has thermosetting property, such as an aqueous phenol resin solution or a starch size is compounded to fine powdery carbide obtained by carbonizing non-caking coal at 550- 800 deg.C while the obtained compound is granulated to form a granule with a particle size of 1-3mm.phi and this granule is heated at 160-270 deg.C for 1-4 hr. By this method, a molecular sieve carbon material excellent in adsorbing capacity and separation capacity and having high strength can be inexpensively and easily prepared.

Description

【発明の詳細な説明】 本発明は分子篩炭素材の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing a molecular sieve carbon material.

従来、分子篩炭素材の製造方法として、A、活性炭に樹
脂溶液を含浸せしめたのち、500〜850Cの温度で
炭化する方法(Walker、 et al :2nd
 Conf、On Ind、、Carbon & Qr
aphite 7 (1966))、B、重合まだは/
および縮合してフェノール樹脂あるいはフラン系樹脂を
作る原料物質を活性炭に吸着させ、重合または/および
縮合せしめたのち、400〜1000Cの温度で加熱処
理する方法(特公昭49−37036号公報)、C1石
炭あるいは木質系の炭化物に対し、天然ゴム、合成ゴム
、熱可塑性樹脂などを混合して成形したのち、400〜
1400Cの温度で乾留し、場合によってはこの乾留物
を水蒸気、二酸化炭素。
Conventionally, as a method for producing molecular sieve carbon materials, A. A method in which activated carbon is impregnated with a resin solution and then carbonized at a temperature of 500 to 850C (Walker, et al: 2nd
Conf, On Ind, Carbon & Qr
aphite 7 (1966)), B, Polymerization Madah/
and a method of adsorbing raw materials to produce phenolic resins or furan resins on activated carbon, polymerizing and/or condensing them, and then heat-treating them at a temperature of 400 to 1000 C (Japanese Patent Publication No. 37036/1983), C1 After molding coal or wood-based carbide by mixing natural rubber, synthetic rubber, thermoplastic resin, etc.,
Carbonization is performed at a temperature of 1400C, and in some cases, the carbonization product is converted into water vapor and carbon dioxide.

水蒸気と二酸化炭素の混合物を用いて600〜1000
Cの温度で賦活する方法(特開昭53−1195号公報
)、D、微粉状の粘結炭を造粒し炭化したのち、極めて
少量の水蒸気を通しながら650〜800Cの温度で賦
活する方法(特開昭55−71615号公報)、E1石
炭および木質系炭化物に常温ないし減圧下で200〜3
60Cの沸点をもって有機化合物を含浸せしめる方法(
特開昭4’l−106982号公報)、F、炭化物ある
いは活性炭を加熱しつ\メタン、ベンゼンなどを含むガ
スで処理して、炭化水素の熱分解によって生ずる炭素を
細孔壁に蒸着させて細孔径を縮小する方法(S 、 V
 、 Moore、 et al : Carbon、
 15゜177(1977))、G、活性炭を高温度で
熱処理する方法(特公昭49−18555号公報)など
が公知である。
600-1000 using a mixture of water vapor and carbon dioxide
C, a method of activating at a temperature (JP-A-53-1195); D, a method of granulating and carbonizing fine powdered coking coal, and then activating it at a temperature of 650 to 800 C while passing a very small amount of water vapor. (Japanese Unexamined Patent Publication No. 55-71615), E1 coal and woody carbide were heated to 200 to 3
A method of impregnating an organic compound with a boiling point of 60C (
(Japanese Unexamined Patent Publication No. 4'1-106982), F, carbide or activated carbon is heated and treated with gas containing methane, benzene, etc., and carbon produced by thermal decomposition of hydrocarbons is deposited on the pore walls. Methods of reducing pore size (S, V
, Moore, et al: Carbon,
15° 177 (1977)), G, and a method of heat-treating activated carbon at high temperatures (Japanese Patent Publication No. 18555/1983).

以上の方法でA、Bは何れも活性炭に樹脂を用いての処
理であわ、Gは活性炭を高温度で熱処理する方法で何れ
も活性炭を再処理するので生産費の高騰を招く。Cは炭
化物に熱可塑性化合物を混合し成形したのち、乾留する
工程を含むので成形物の膨張、成形物相互の融着、団塊
を招き易い。
In the above methods, both A and B involve treating activated carbon with a resin, and G involves heat treating activated carbon at high temperatures, which both involve reprocessing the activated carbon, leading to a rise in production costs. Since C involves the step of mixing a thermoplastic compound with a carbide, molding it, and then carbonizing it, it tends to cause expansion of the molded product, mutual fusion of the molded products, and formation of lumps.

、Dは炭化物を賦活する方法であるから細孔径の調製が
極めて困難であシ、生産費の高騰を招く。Eは炭化物に
特定範囲の沸点を有する有機化合物を含浸せしめる方法
であるから吸着容量は原料とする炭化物より相当低下す
ることがさけられない。
, D is a method of activating carbide, so it is extremely difficult to adjust the pore diameter, leading to a rise in production costs. Since E is a method in which carbide is impregnated with an organic compound having a boiling point within a specific range, the adsorption capacity is inevitably lower than that of the carbide used as the raw material.

Fは炭化物あるいは活性炭に炭化水素の熱分解によって
生ずる炭素を細孔壁に蒸着させる方法であるから、原料
の細孔容積を減少させないで細孔径を小さくするために
は、反応温度および細孔壁への蒸着量を制御するのが極
めて困難である。
F is a method in which carbon produced by thermal decomposition of hydrocarbons is deposited on the pore walls of carbide or activated carbon, so in order to reduce the pore diameter without reducing the pore volume of the raw material, it is necessary to adjust the reaction temperature and the pore walls. It is extremely difficult to control the amount of vapor deposited on the surface.

本発明は、か\る欠点に着目して、非粘着炭よシ得た微
粉状の炭化物に対し、好適な粘結剤を所定量配合しよく
混合゛じて造粒したのち、好適な条件で熱処理すること
によって吸着分離能がすぐれ、製造方法も簡単でかつ安
価で容易に提供できる分子篩炭素材の製造方法を発明し
たものである。
Focusing on these drawbacks, the present invention has developed a process in which a predetermined amount of a suitable binder is blended into a finely powdered carbide obtained from non-adhesive carbon, the mixture is thoroughly mixed and granulated, and then the mixture is granulated under suitable conditions. The present inventors have invented a method for producing a molecular sieve carbon material that has excellent adsorption and separation ability by heat treatment, is simple to produce, and can be easily provided at low cost.

即ち、本発明の具体的構成は、非粘結炭を550〜80
0Cの温度で炭化した微粉状の炭化物に対し、フェノー
ル樹脂水溶液、澱粉糊などの如き常温で粘着性を示しか
つ、常温で水溶性であシさらに熱硬化性を有する有機物
質を粘結剤として20〜30重量%配合し造粒したのち
、160〜270tZ’の温度で1〜4時間加熱するこ
とを特徴とするものである。
That is, the specific configuration of the present invention uses non-caking coal of 550 to 80
For the fine powder-like carbide carbonized at a temperature of 0C, an organic substance that exhibits adhesiveness at room temperature, is water-soluble at room temperature, and has thermosetting properties, such as an aqueous phenol resin solution or starch paste, is used as a binder. It is characterized in that after blending 20 to 30% by weight and granulating it, it is heated at a temperature of 160 to 270 tZ' for 1 to 4 hours.

次に本発明の詳細な説明すると、非粘結炭(亜炭、褐炭
を示す)を550〜800Cの温度で炭化して得た炭化
物を100メツシユ以下に微粉砕しこれに対し、フェノ
ール樹脂溶液、澱粉糊をそれぞれ単独に粘結剤として2
0〜30重量%を常温で配合しよく混合してから造粒機
を用いて粒径範囲例えば、1〜2あるいは2〜3tra
nφに常温で造粒したのち、加熱炉を用いて160〜2
70Cの温度で不活性雰囲気下で1〜4時間加熱処理す
るものである。
Next, to explain the present invention in detail, the carbide obtained by carbonizing non-caking coal (lignite, lignite) at a temperature of 550 to 800C is finely pulverized to 100 meshes or less, and a phenol resin solution, 2 starch pastes each as a binder
Blend 0 to 30% by weight at room temperature, mix well, and then use a granulator to adjust the particle size to 1 to 2 or 2 to 3 tram.
After granulation at room temperature to nφ, 160 to 2
Heat treatment is performed at a temperature of 70C in an inert atmosphere for 1 to 4 hours.

非粘結炭の炭化温度550Cの温度以下では得られる炭
化物の細孔壁がタール物質などの閉塞に隙容積が低下す
るので吸着容量も減少する。炭化温度が高いと炭化装置
の材質等に特別の考慮を払う必要があシ熱エネルギーの
消費という点でも不利である。
At temperatures below the carbonization temperature of non-caking coal of 550C, the pore walls of the resulting carbide become clogged with tar substances and the pore volume decreases, resulting in a decrease in adsorption capacity. If the carbonization temperature is high, special consideration must be given to the material of the carbonization device, which is also disadvantageous in terms of thermal energy consumption.

粘結剤の配合量20重量%以上では造粒物の強度は充分
とは云えない。また30重量%以上の配合では造粒物同
士の付着を招き団塊する傾向がある。
If the amount of the binder added is 20% by weight or more, the strength of the granulated product cannot be said to be sufficient. Furthermore, if the content is 30% by weight or more, the granules tend to adhere to each other and form clumps.

炭化温度160Cの温度以下では造粒物の熱硬化が充分
とは云えない。また270Cの温度以上では熱硬化と熱
分解も伴い造粒物の微細孔径を増大する傾向がある。熱
処理時間1時間以下で熱硬化は不充分であり、4時間以
上とするも品質の向上は見られない。
If the temperature is below the carbonization temperature of 160C, the thermal curing of the granules cannot be said to be sufficient. Furthermore, at temperatures above 270C, there is a tendency for the micropore diameter of the granules to increase due to thermal curing and thermal decomposition. Heat curing is insufficient if the heat treatment time is less than 1 hour, and no improvement in quality is observed even if the heat treatment time is 4 hours or more.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

実施例1 亜炭を5500で2時間炭化して得た炭化物を100メ
ツシユ以下に微粉砕したもの77重量%、澱粉糊23重
量%を配合しよく混合し押出成型機を用いて粒径2〜3
Bφのものを造粒した。この造粒物を110Cの温度で
2時間乾燥したのち、加熱炉を用いて160Cの温度で
窒素雰囲気下で4時間加熱処理した。乾燥した造粒物に
対し、93%の収率で製品が得られた。
Example 1 A carbide obtained by carbonizing lignite at 5500 for 2 hours was finely pulverized to 100 mesh or less. 77% by weight and 23% by weight of starch paste were blended, mixed well, and made into particles with a particle size of 2 to 3 using an extrusion molding machine.
Bφ was granulated. After drying this granulated product at a temperature of 110C for 2 hours, it was heat-treated in a heating furnace at a temperature of 160C in a nitrogen atmosphere for 4 hours. The product was obtained with a yield of 93% based on the dried granules.

本製品の吸着特性を二酸化炭素、エタン、ノルマルブタ
ン、インブタン(最少分子径はそれぞれ3.3A、4.
OK、4.3穴、5.0大)を用“て25Cにおける吸
着等温線を求めて第1図に示した。
The adsorption properties of this product are carbon dioxide, ethane, n-butane, and inbutane (minimum molecular diameters are 3.3A and 4.5A, respectively).
The adsorption isotherm at 25C was determined using a 4.3-hole, 5.0-sized tube, and is shown in FIG.

本図を検討すると二酸化炭素を吸着するが、他のガスを
殆んど吸着しない。分子径4. OX、およびそれ以上
の分子径を有するガスは吸着されない事を示している。
Examining this figure, it adsorbs carbon dioxide, but hardly any other gases. Molecular diameter 4. This indicates that OX and gases having a molecular diameter larger than that are not adsorbed.

したがって細孔径は約3.3 kであると推定される。Therefore, the pore diameter is estimated to be approximately 3.3k.

なお本製品の硬度2.0 K9 (木屋式硬度計)であ
った。
The hardness of this product was 2.0 K9 (Kiya type hardness tester).

実施例2 物を100メツシユ以下に粉砕したもの80重量%、フ
ェノール水溶液20重量%を常温で配合しよく混合して
押出成型機を用いて常温で粒径2〜3mmφのものを造
粒した。この造粒物を110Cの温度で2時間乾燥した
のち、加熱炉を用いて200Cの温度で窒素ガス雰囲気
下で4時間加熱処理した。乾燥した造粒物に対し、90
.1%の収率で製品が得られた。
Example 2 80% by weight of a product pulverized to 100 meshes or less and 20% by weight of an aqueous phenol solution were blended at room temperature, mixed well, and granulated into particles having a particle size of 2 to 3 mmφ at room temperature using an extruder. This granulated product was dried at a temperature of 110C for 2 hours, and then heat-treated in a heating furnace at a temperature of 200C for 4 hours in a nitrogen gas atmosphere. 90 for dry granules
.. The product was obtained with a yield of 1%.

実施例1と同様な方法で吸着等温線を求めた結果を第2
図に示しだ、本図を検討すると二酸化炭素は相当吸着す
るがエタン、ノルマルブタン、イソブタンは殆んど吸着
されないことがわかる。したがって本製品の細孔径は大
部分は約’3.3Aを有するものと推定する。本製品の
硬度は2.0 K9 (木屋式硬度計)であった。
The results of determining the adsorption isotherm using the same method as in Example 1 were used in the second example.
As shown in the figure, when examining this figure, it can be seen that carbon dioxide is adsorbed to a considerable extent, but ethane, normal butane, and isobutane are hardly adsorbed. Therefore, it is estimated that most of the pore diameters of this product are approximately 3.3A. The hardness of this product was 2.0 K9 (Kiya type hardness tester).

実施例3 褐炭を700Cの温度で2時間炭化して得た炭化物を1
00メツシユ以下に粉砕したもの70重量東フェノール
樹脂水溶液30重量%を常温で配合しよく混合して押出
成型機を用いて常温で粒径2〜3vmφのものを造粒し
た。造粒物を110Cの温度で2時間乾燥したのち、加
熱炉を用いて230Cの温度で窒素雰囲気下で4時間加
熱処理した。、乾燥した造粒物に対し、80.4%の収
率で得られた。
Example 3 Carbide obtained by carbonizing lignite at a temperature of 700C for 2 hours was
A mixture of 70% by weight and 30% by weight of an aqueous solution of East phenol resin pulverized to 0.00 mesh or less was blended at room temperature, mixed thoroughly, and granulated into particles having a particle size of 2 to 3 mmφ at room temperature using an extruder. After drying the granulated material at a temperature of 110C for 2 hours, it was heat-treated in a heating furnace at a temperature of 230C for 4 hours under a nitrogen atmosphere. , with a yield of 80.4% based on the dried granules.

実施例1と同様の方法で吸着等温線を求めた結果を第3
図に示した。この図を検討すると二酸化炭素を吸着する
が、エタン、ノルマルプクン、イソブタンを殆んで吸着
しないことを示している。
The results of determining the adsorption isotherm using the same method as in Example 1 are shown in the third example.
Shown in the figure. Examining this diagram shows that it adsorbs carbon dioxide, but hardly adsorbs ethane, normal phthalate, and isobutane.

したがって細孔径は約3.3Aよシなっていることが推
定される。本製品は硬度3. OKq (木屋式硬度計
)であった。
Therefore, the pore diameter is estimated to be approximately 3.3A. This product has a hardness of 3. It was OKq (Kiya type hardness tester).

実施例4 褐炭を8000の温度で2時間炭化して得た炭化物を1
00メツシユ以下に粉砕したもの75重量%、フェノー
ル水溶液25重量%を常温で配合しよく混合して押出成
型機を用いて常温で粒径2〜3mmφのものを造粒した
。この造粒物を110Cの温度で2時間乾燥したのち、
加熱炉を用いて270Cの温度で窒素雰囲気下で1時間
加熱処理した。乾燥した造粒物に対し、90%の収率で
得られだ。
Example 4 Carbide obtained by carbonizing lignite at a temperature of 8,000 ℃ for 2 hours was
75% by weight of the powder pulverized to 0.00 mesh or less and 25% by weight of an aqueous phenol solution were blended at room temperature, mixed well, and granulated with an extrusion molding machine at room temperature to a particle size of 2 to 3 mmφ. After drying this granule at a temperature of 110C for 2 hours,
Heat treatment was performed using a heating furnace at a temperature of 270C in a nitrogen atmosphere for 1 hour. A yield of 90% was obtained based on the dried granules.

実施例1と同様の方法の吸着等混線を第4図に示した。FIG. 4 shows the adsorption crosstalk in the same method as in Example 1.

この図を検討すると二酸化炭素の吸着量は可成シ多く、
またエタンも少量吸着し、ノルマルブタン、インフリン
ともに極めて僅かしか吸着されないことがわかる。した
がって細孔径は約4゜0によりなっていることが推定さ
れる。不製品・は硬度2.0 Kg (木屋式硬度計)
であった。
Considering this diagram, the amount of carbon dioxide adsorbed is quite large.
It can also be seen that a small amount of ethane is also adsorbed, and that both normal butane and insulin are adsorbed in very small amounts. Therefore, it is estimated that the pore diameter is approximately 4°. Unfinished products have a hardness of 2.0 Kg (Kiya type hardness tester)
Met.

実施例5 褐炭を800Cの温度で2時間炭化して得た炭化物を1
00メツシユ以下に粉砕したもの85重量%、フェノー
ル樹脂溶液15重量%を常温で配合しよく混合して押出
成型機を珀いて常温で粒径2〜3WIlφのものを造粒
した。この造粒物を110Cで2時間乾燥したのち、加
熱炉を用いて350Cの温度の窒素雰囲気下で2時間加
熱した。乾燥した造粒物に対し、製品の収率88%であ
った。
Example 5 Carbide obtained by carbonizing lignite at a temperature of 800C for 2 hours was
85% by weight of the powder pulverized to 0.00 mesh or less and 15% by weight of the phenolic resin solution were blended at room temperature, mixed well, and passed through an extruder to granulate particles with a particle size of 2 to 3 WIlφ at room temperature. This granulated product was dried at 110C for 2 hours, and then heated in a nitrogen atmosphere at 350C for 2 hours using a heating furnace. The product yield was 88% based on the dried granules.

本実施例は本発明の′限定外の条件で製造した場合を参
考として示したものである。
This example is shown for reference in the case of manufacturing under conditions outside the limitations of the present invention.

次に本製品の吸着特性を示す。Next, we will show the adsorption properties of this product.

実施例1と同様の方法で求めた吸着等温線を第5図に示
した。本図を検討すると第1図〜第4図に較へ二酸化炭
素、エタン、ノルマルブタン、イソブタンの吸着量が多
い事である。イソブタンの分子径が5.OAであるから
本製品の細孔径は約6゜OA以上よりなっているものと
推定される。
The adsorption isotherm obtained by the same method as in Example 1 is shown in FIG. Examining this figure, it is found that the adsorption amounts of carbon dioxide, ethane, n-butane, and isobutane are greater than those in Figures 1 to 4. The molecular diameter of isobutane is 5. Since it is OA, the pore diameter of this product is estimated to be approximately 6° OA or more.

以上の如く本発明による製品の細孔径は約3.3〜4.
3Aを有し、硬度は2.0〜3.0 Kpである。しか
し本発明の限定以外の方法での製品の細孔径は約6.O
A以上で大きく、−硬度も0.2 Kpで弱いことがわ
かる。
As described above, the pore size of the product according to the present invention is about 3.3 to 4.
3A, and the hardness is 2.0-3.0 Kp. However, the pore size of the product obtained by methods other than the limitations of the present invention is approximately 6. O
It can be seen that the hardness is large at A or above, and the -hardness is weak at 0.2 Kp.

最近、圧力変動吸着法で分る篩炭素材を用いて空気よシ
窒素、酸素の分離が行われているが、この場合用いる分
子篩の細孔径は約3〜4.3Aを有するものが適してい
ると云われている。本発明品の細孔径は約3,3〜4.
3人であるから、この方面の用途にも適していると考え
る。
Recently, the separation of nitrogen and oxygen from air has been carried out using a sieve carbon material determined by pressure fluctuation adsorption method, but in this case it is suitable that the molecular sieve used has a pore diameter of about 3 to 4.3A. It is said that there are. The pore diameter of the product of the present invention is approximately 3.3 to 4.
Since there are only three people, I think it is suitable for this purpose.

以上のことよシ本発明の方法によれば吸着性能。According to the method of the present invention, the adsorption performance is improved.

分離性能ともにすぐれ、強度も強い分子篩炭素材を安価
にして容易に製造できる。
A molecular sieve carbon material with excellent separation performance and strong strength can be easily manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図はそれぞれ実施例1乃至実施例5で製
造した製品について二酸化炭素、エタン。 ノルマルブタン、インブタンを用いて25trにおける
吸着等温線を示した図である。
Figures 1 to 5 show carbon dioxide and ethane for the products manufactured in Examples 1 to 5, respectively. FIG. 2 is a diagram showing adsorption isotherms at 25 tr using normal butane and inbutane.

Claims (1)

【特許請求の範囲】[Claims] 1、 非粘結炭を550〜800Cの温度で炭化した微
粉状の炭化物に対し、フェノール樹脂水溶液、澱粉糊な
どの如き常温で粘着性を示しかつ、常温で水溶性であり
さらに熱硬化性を有する有機物質を粘結剤として20〜
30重量係配合し造粒したのち、160〜270Cの温
度で1〜4時間加熱することを特徴とする分子篩炭素材
の製造方法。
1. Non-caking coal is carbonized at a temperature of 550 to 800 C to form a finely powdered carbide, which exhibits adhesiveness at room temperature, is water-soluble at room temperature, and has thermosetting properties, such as an aqueous phenol resin solution or starch paste. 20~
1. A method for producing a molecular sieve carbon material, which comprises blending and granulating the carbon material in a weight ratio of 30 to 30%, followed by heating at a temperature of 160 to 270C for 1 to 4 hours.
JP58107395A 1983-06-15 1983-06-15 Preparation of molecular sieve carbon material Pending JPS59230637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107395A JPS59230637A (en) 1983-06-15 1983-06-15 Preparation of molecular sieve carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107395A JPS59230637A (en) 1983-06-15 1983-06-15 Preparation of molecular sieve carbon material

Publications (1)

Publication Number Publication Date
JPS59230637A true JPS59230637A (en) 1984-12-25

Family

ID=14458049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107395A Pending JPS59230637A (en) 1983-06-15 1983-06-15 Preparation of molecular sieve carbon material

Country Status (1)

Country Link
JP (1) JPS59230637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968471A (en) * 1995-07-20 1999-10-19 Nippon Sanso Corporation Process for producing molecular sieve carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968471A (en) * 1995-07-20 1999-10-19 Nippon Sanso Corporation Process for producing molecular sieve carbon

Similar Documents

Publication Publication Date Title
US5250491A (en) Preparation of high activity, high density activated carbon
US5304527A (en) Preparation for high activity, high density carbon
EP0557208B1 (en) High activity, high density activated carbon and method for its preparation.
JPS62176908A (en) Preparation of molecular sieve comprising carbon
JPS59230637A (en) Preparation of molecular sieve carbon material
JPH11349320A (en) Production of activated carbon
JP3125808B2 (en) Activated carbon honeycomb structure and manufacturing method thereof
JPH03275139A (en) Globular fiber lump-activated carbon and its production
JPH03193616A (en) Activated carbon by high strength molding
KR20200055985A (en) Method for manufacturing high-efficiency activated carbon for removal of harmful gas using nano metal powder
JPH11349318A (en) Production of activated carbon
JP3282238B2 (en) Method for producing chemical activated carbon
JP3280094B2 (en) Method for producing molecular sieve carbon
SU1723033A1 (en) Method of carbon adsorbent preparation
JPH11349319A (en) Production of activated carbon
SU994405A1 (en) Process for producing carbonaceous adsorbent for gas adsorption chromatography
JPS5833172B2 (en) Method for producing granular molecular sieve carbon material from coal
JPS61200853A (en) Preparation of highly adsorbable substance
JP2003154261A (en) Formed adsorbent and production method thereof
SU1530570A1 (en) Method of producing carbon adsorbent
JPS6252116A (en) Production of formed activated carbon
JPS63201008A (en) Production of carbon for molecular sieve
SU1020372A1 (en) Method for producing granulated carbon adsorbent
JP2841668B2 (en) Method for manufacturing activated carbon moldings
KR20240080849A (en) Manufacturing method of active coke and active coke manufactured using the same