JPS59230242A - Ion implantation device - Google Patents

Ion implantation device

Info

Publication number
JPS59230242A
JPS59230242A JP10466283A JP10466283A JPS59230242A JP S59230242 A JPS59230242 A JP S59230242A JP 10466283 A JP10466283 A JP 10466283A JP 10466283 A JP10466283 A JP 10466283A JP S59230242 A JPS59230242 A JP S59230242A
Authority
JP
Japan
Prior art keywords
magnet
slit
mass
ion
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10466283A
Other languages
Japanese (ja)
Other versions
JPH0234428B2 (en
Inventor
Katsunobu Abe
安部 勝信
Takeshi Koike
武 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10466283A priority Critical patent/JPS59230242A/en
Publication of JPS59230242A publication Critical patent/JPS59230242A/en
Publication of JPH0234428B2 publication Critical patent/JPH0234428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Abstract

PURPOSE:To enable homogeneous implantation to be performed on a wafer by using a mass-separating magnet as a reducing system and a deflecting magnet as a magnifying system and synchronously scanning the field intensities of both magnets and the position of a mass-separating slit. CONSTITUTION:Ion beams 4 discharged through the discharge slit 31 of an ion source 1 are deflected by the magnetic field of a mass-separatig magnet 32 before specified ions are selected by a mass-separating slit 33. Ion beams of a specific mass discharged from the slit 33 becomes incident upon a deflecting magnet 34 to make parallel beams which are then imaged upon an imaging position 35. These ion beams irradiate wafers 7 placed in the periphery of a rotary disk 9 located in front of the position 35. A magnetic-field power source 37, a motor 38 for moving the slit 33 and a deflecting magnetic-field power source 39 are controlled by a controlling part 40, thereby delivering signals synchronous with the field scanning of a magnet 32 to the motor 38 and the power source 39. As a result, homogeneous implantation can be performed on the wafers 7 by selecting ions of a desired mass.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はウェハへのイオン打込装置に係り、特に、ウェ
ハを固定しイオンビームを移動させる方式のイオン打込
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ion implantation apparatus for wafers, and particularly to an ion implantation apparatus of a type in which a wafer is fixed and an ion beam is moved.

〔発明の背景〕[Background of the invention]

半導体素子の需要が増加するにしたがってその素材であ
るウェハへのイオン注入作業の効率化が重要な問題とな
り、生産性と打込み精度の向上を図った各種のイオン打
込装置が開発されつつある。
As the demand for semiconductor devices increases, increasing the efficiency of ion implantation into wafers, which are the raw material for semiconductor devices, has become an important issue, and various ion implantation devices are being developed that aim to improve productivity and implantation accuracy.

例えば多数のウェハを同一円周上に取り付けた回転円板
にイオンビームを走査して打込む方式の装置、或いは多
数のウェハを同一円周上に取り付けた回転円板を回転さ
せると共にその直径方向に往復動させ、イオンビームは
固定させる方式の装置である。とれらのイオン打込装置
は一長一短あるが、後者のイオンビーム固定方式のイオ
ン打込装置は、回転円板の運動の関係上大形で複雑な構
成となっていた。
For example, a device that scans and implants an ion beam onto a rotating disk with a large number of wafers mounted on the same circumference, or a device that rotates a rotating disk with a large number of wafers mounted on the same circumference and directs the ion beam in the diametrical direction. This is a system in which the ion beam is moved back and forth while the ion beam is fixed. These ion implantation devices have advantages and disadvantages, but the latter ion implantation device, which uses a fixed ion beam, is large and has a complicated structure due to the movement of the rotating disk.

第1図はイオン打込装置の基本構成を示した原理図であ
る。1はイオン源、2はイオン源ハウジング、3は電磁
石であシ、イオン源1から放出加速されたイオンビーム
4は電磁石3で質量分離される。この分離されたイオン
の中で所要のイオンだけが分析管5に取り付けたスリッ
ト6によって選択され、打込室8中のウェハ7に注入さ
れる。
FIG. 1 is a principle diagram showing the basic configuration of an ion implantation device. 1 is an ion source, 2 is an ion source housing, and 3 is an electromagnet. An ion beam 4 emitted and accelerated from the ion source 1 is mass-separated by the electromagnet 3. Of the separated ions, only desired ions are selected by a slit 6 attached to the analysis tube 5 and implanted into the wafer 7 in the implantation chamber 8.

異なる質量のイオンを注入するときは電磁石3の磁力を
変化させることによって行なわれるが、イオン量を増加
させるためにはそれに適応した気体をイオン源ハウジン
グ2内に導入する。なお、イオン源ハウジング2、分析
管5および打込室8内は高真空状態に排気して、イオン
ビーム4の移動を防げないようにしている。
Ions of different masses are implanted by changing the magnetic force of the electromagnet 3, but in order to increase the amount of ions, a suitable gas is introduced into the ion source housing 2. Note that the interiors of the ion source housing 2, analysis tube 5, and implantation chamber 8 are evacuated to a high vacuum state so that movement of the ion beam 4 cannot be prevented.

ウェハ7に到着したイオンビーム4はスリット6を通過
しているので、紙面に垂直な方向が長い矩形断面となっ
ている。したがって、ウェハ7にイオンを均一に注入す
るためには、イオンビーム4を走査するか或いはウェハ
7を往復動させる必要がある。
Since the ion beam 4 that has arrived at the wafer 7 passes through the slit 6, it has a rectangular cross section that is long in the direction perpendicular to the plane of the paper. Therefore, in order to uniformly implant ions into the wafer 7, it is necessary to scan the ion beam 4 or move the wafer 7 back and forth.

第2図は従来のウェハ移動方式のイオン打込装置の要部
断面図である。この装置は回転円板9の同一半径上にウ
ェハ7を多数装着し、回転円板9を回転させると同時に
Y−Y’力方向回転軸11を往復動させてイオン注入を
行う方式である。ウェハ7はカセット25に挿入され、
ばね26によって回転円板9に取り付けられる。この回
転円板9に直結した回転軸11はパルスモータ16によ
シ軸15と一対の傘歯車13を介して回転させられる。
FIG. 2 is a sectional view of a main part of a conventional wafer moving type ion implantation apparatus. In this apparatus, a large number of wafers 7 are mounted on the same radius of a rotating disk 9, and ions are implanted by rotating the rotating disk 9 and simultaneously reciprocating the rotating shaft 11 in the Y-Y' force direction. The wafer 7 is inserted into the cassette 25,
It is attached to the rotating disk 9 by a spring 26. A rotating shaft 11 directly connected to the rotating disk 9 is rotated by a pulse motor 16 via a shaft 15 and a pair of bevel gears 13 .

また、回転軸11はギヤハウジング12に装着された回
転真空シール10を貫通させて打込室8の真空を保持し
ている。
Further, the rotating shaft 11 penetrates a rotating vacuum seal 10 attached to the gear housing 12 to maintain the vacuum in the driving chamber 8.

ギヤハウジング12はベローズ14.23によって打込
室8に取り付けた7ランジ21にボールベアリング20
を介して移動可能に結合させると共に、ギヤハウジング
12とベローズ23の間に気密に固定した雌ねじ板24
にねじ棒22を螺合させている。即ち、打込室8は回転
真空シール10、ベローズ14.23によって真空が保
持され、ギヤハウジング12はベローズ14,23によ
ってY−Y’力方向往復移動できるごとく構成されてい
る。したがって、打込室8の容積は移動時の余裕を持た
せて大きくする必要がある。
The gear housing 12 has a ball bearing 20 mounted on a 7 flange 21 attached to the driving chamber 8 by a bellows 14.23.
A female screw plate 24 is movably coupled through the gear housing 12 and the bellows 23 and is airtightly fixed between the gear housing 12 and the bellows 23.
A threaded rod 22 is screwed together. That is, the driving chamber 8 is kept under vacuum by the rotary vacuum seal 10 and the bellows 14, 23, and the gear housing 12 is configured to be able to reciprocate in the Y-Y' force direction by the bellows 14, 23. Therefore, the volume of the driving chamber 8 needs to be large enough to allow for movement.

このようなイオン打込装置の動作の概略を次に説明する
。パルスモータ19を回転させるとねじ棒22が回転し
てギヤハウジング12および回転円板9をY−Y’力方
向移動させてイオンビーム4の中心と回転軸11の中心
との距離であるR寸法を変化させる。また、パルスモー
タ16を回転させると回転円板9を回転させることがで
きる。
An outline of the operation of such an ion implantation device will be explained below. When the pulse motor 19 is rotated, the threaded rod 22 rotates and moves the gear housing 12 and the rotating disk 9 in the Y-Y' force direction, thereby increasing the R dimension, which is the distance between the center of the ion beam 4 and the center of the rotating shaft 11. change. Moreover, when the pulse motor 16 is rotated, the rotating disk 9 can be rotated.

したがって、パルスモータ16,19を同時に回転させ
ると多数のウェハ7に同時に均一なイオン注入を行うこ
とができる。普通は回転円板9に25枚のウェハ7が取
シ付けであるので、1回の打込み操作によって25枚の
打込みウェハ7が得られることになる。
Therefore, if the pulse motors 16 and 19 are rotated simultaneously, uniform ion implantation can be performed on a large number of wafers 7 at the same time. Since 25 wafers 7 are normally attached to the rotating disk 9, 25 implanted wafers 7 can be obtained by one implanting operation.

しかるに打込室8内にギヤハウジング12を設けてベロ
ーズ14.23で移動可能に接続しているため、構造が
複雑となって打込室8の容積が大きくなる。したがって
、回転円板9を交換する際の真空排気時間が長くなシ生
産効率はその分だけ低下する。、また、回転軸11は傘
歯車13で駆動されるので、回転軸11に水管を設けて
回転円板9を水冷する等の直接冷却方式の採用が困難で
ある。更に、ウェハ7はカセット25やばね26を用い
て装着しているので、ウェハ7の取り付けが面倒である
等の欠点をもっている。
However, since the gear housing 12 is provided in the driving chamber 8 and movably connected to it by bellows 14, 23, the structure becomes complicated and the volume of the driving chamber 8 becomes large. Therefore, the evacuation time when replacing the rotary disk 9 is long, and the production efficiency is reduced accordingly. Furthermore, since the rotating shaft 11 is driven by the bevel gear 13, it is difficult to employ a direct cooling method such as providing a water pipe on the rotating shaft 11 and cooling the rotating disk 9 with water. Furthermore, since the wafer 7 is mounted using the cassette 25 and the spring 26, there are drawbacks such as the troublesome mounting of the wafer 7.

また、従来の装置はウエン・を交換する際に回転円板9
、ギヤハウジング12、モータ16.19等を含む駆動
機構が大がかりな開閉機構を用いて開放動作させてウェ
ハ7を露出させておシ、移動部分の重量が大きくなって
開閉動作に時間を要し、大きい設置床面積を必要とする
等の問題点をもっていた。
In addition, in the conventional device, when replacing the wet cloth, the rotating disk 9
, the drive mechanism including the gear housing 12, motor 16, 19, etc. is opened using a large-scale opening/closing mechanism to expose the wafer 7, and the weight of the moving parts becomes large and it takes time to open/close the opening/closing operation. However, there were problems such as requiring a large installation floor space.

更に機械走査方式の欠点は寿命が短いということである
。走査を行うためにベローズ14.23は上下動を繰返
すのでその劣化は回避できない。
A further disadvantage of the mechanical scanning method is that it has a short lifespan. Since the bellows 14, 23 repeatedly move up and down to perform scanning, their deterioration cannot be avoided.

適宜交換しなければならないが多大の費用と時間を必要
とする。ウェハ7を固定してイオンビーム4を磁場によ
って走査する方式の従来装置は、イオンを分離するため
の分離磁場と、分離選択したイオンをウェハ7に照射す
るための偏向磁場とで構成されるが、イオンビームを走
査することによって生じるウェハ7上のビーム巾の変化
を防止する補正磁場を別途設置しており、大形磁場を3
個必要とすることになり装置が大形化する等の欠点をも
っている。
They must be replaced as appropriate, but this requires a great deal of cost and time. A conventional device in which the wafer 7 is fixed and the ion beam 4 is scanned by a magnetic field is composed of a separation magnetic field for separating ions and a deflection magnetic field for irradiating the separated and selected ions onto the wafer 7. A correction magnetic field is separately installed to prevent changes in the beam width on the wafer 7 caused by scanning the ion beam, and the large magnetic field is
This has drawbacks such as the need for multiple units, resulting in an increase in the size of the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を解消し、小形で操作し易
く高能率で高精度に作動するイオン打込装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide an ion implantation device that is small, easy to operate, and operates with high efficiency and precision.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、質量分離磁石を縮小系、
偏向磁石を拡大系として用いると共に、質量分離磁石及
び偏向磁石の磁場強度及び質量分離スリットの位置とを
同期して走査し、イオン源から放出されたイオンをウェ
ハに均一に打込むごとく構成したことにある。
The feature of the present invention is that the mass separation magnet is a reduced system,
In addition to using a deflection magnet as an enlargement system, the magnetic field strength of the mass separation magnet and deflection magnet and the position of the mass separation slit are scanned in synchronization, so that the ions emitted from the ion source are uniformly implanted into the wafer. It is in.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例であるイオン打込装置のイオ
ン光学系統図である。イオン源1の出射スリット31よ
シ出射されたイオンビーム4は質量分離磁石32の磁場
で偏向され、質量分離スリット33で特定のイオンが選
択される。このスリットを出た特定質量のイオンビーム
は偏向磁石34に入射し、ここで偏向されたイオンビー
ムは平行なビームとなって結像位置35に結像する。
FIG. 3 is an ion optical system diagram of an ion implantation apparatus which is an embodiment of the present invention. The ion beam 4 emitted from the exit slit 31 of the ion source 1 is deflected by the magnetic field of the mass separation magnet 32, and specific ions are selected by the mass separation slit 33. The ion beam of a specific mass that has exited this slit is incident on the deflection magnet 34, and the ion beam deflected here becomes a parallel beam and is imaged at the imaging position 35.

結像位置35の手前にある回転円板9の周辺に配置され
たウェハ7はこのイオンビームに照射される。
The wafer 7 placed around the rotating disk 9 in front of the imaging position 35 is irradiated with this ion beam.

回転円板9は駆動モータ36によって回転させられてお
シ、質量分離磁石32の磁場を変化させるための磁場電
源37、質量分離スリット33を移動させる%−”j 
38、偏向磁石34の磁場を変化させる偏向磁場電源3
9等は制御部40からの信号によって制御されている。
The rotating disk 9 is rotated by a drive motor 36, and a magnetic field power supply 37 for changing the magnetic field of the mass separation magnet 32 moves the mass separation slit 33.
38, deflection magnetic field power supply 3 that changes the magnetic field of the deflection magnet 34
9 etc. are controlled by signals from the control section 40.

即ち、質量分離磁石32の磁場走査と同期した信号をモ
ータ38及び偏向磁石電源39に送出することによって
、所望の質量のイオンを選択してウェハ7に均一な打込
みを行う。
That is, by sending a signal synchronized with the magnetic field scanning of the mass separation magnet 32 to the motor 38 and the deflection magnet power supply 39, ions of a desired mass are selected and uniformly implanted into the wafer 7.

なお、磁場強度をB1磁場半径をrl イオンの加速電
圧をV1イオンの質量数をMとすると、次式の関係が得
られる。
Note that when the magnetic field strength is B1, the magnetic field radius is rl, and the ion acceleration voltage is V1, the ion mass number is M, the following relationship is obtained.

Br−144VvV これはM、Vを一定にして磁場強度Bを変化させた時の
イオンビームの軌跡を磁場半径rの変化として知ること
ができる。また、磁場強度Bは分離磁石電源37及び偏
向磁石電源39の出力電流に比例して変化し、上記式の
展開により磁場半径rは磁石強度Bに反比例することが
理解できる。
Br-144VvV This can be understood as the trajectory of the ion beam when M and V are kept constant and the magnetic field strength B is changed as a change in the magnetic field radius r. Furthermore, it can be understood that the magnetic field strength B changes in proportion to the output currents of the separation magnet power supply 37 and the deflection magnet power supply 39, and that the magnetic field radius r is inversely proportional to the magnet strength B by expanding the above equation.

イオン源の物点Sである出射スリット31から出射され
たイオンの中の特定イオンを質量分離磁石32の磁場に
よって偏向させると、磁場半径R1、R2、Rsの軌道
を辿り質量分離スリット33の面上にPl、P2 、P
sの結像点を作る。
When a specific ion among the ions emitted from the exit slit 31, which is the object point S of the ion source, is deflected by the magnetic field of the mass separation magnet 32, it follows a trajectory with magnetic field radii R1, R2, and Rs, and reaches the surface of the mass separation slit 33. Pl, P2, P on top
Create an image point of s.

そとでこの質量分離スリット33を移動させると共に質
量分離磁石32の磁場強度を変化させる。
Then, the mass separation slit 33 is moved and the magnetic field strength of the mass separation magnet 32 is changed.

また、偏向磁石34でイオンビームを偏向させる場合も
質量分離磁石32の磁場掃引と同期して行い、イオンビ
ームが’1 e r2 *  rlの軌道を通って平行
に出射し、結像位置35の同一面上に結像Pl’l P
2’ 、 Ps’  を得る。
Furthermore, when the ion beam is deflected by the deflection magnet 34, it is performed in synchronization with the magnetic field sweep of the mass separation magnet 32, so that the ion beam is emitted in parallel through a trajectory of '1 e r2 * rl, and is focused at the imaging position 35. Image formed on the same plane Pl'l P
2' and Ps' are obtained.

ウェハ゛7は結像P!’ 、 P2’ * Ps”  
の前方に置かれているので、どのウェハ7の面において
もイオンビーム4の形状は一定となる。更にイオンビー
ムの一様性を得るために偏向磁石34は拡大系としてい
る。例えば出射スリット31のスリット(9) 巾を2閣とし、質量分離磁石32の縮小率を172とす
ると、Pt I P2 s p3の結像巾は1mとなる
(収差量を入れても2WIR以内)。これを拡大率10
倍の偏向磁石34の結像P1’ * P2’ + P3
’の結像巾は10閣となシ(収差量を加えても20mm
入ウェハつをその前方に置いた場合でもウェハ7面上で
の像中を30m以内にすることは極めて容易である。
Wafer 7 is imaged P! ' , P2' * Ps"
Since the ion beam 4 is placed in front of the wafer 7, the shape of the ion beam 4 is constant on any surface of the wafer 7. Furthermore, in order to obtain uniformity of the ion beam, the deflection magnet 34 is an expanding system. For example, if the width of the slit (9) of the exit slit 31 is 2 mm and the reduction ratio of the mass separation magnet 32 is 172, the imaging width of Pt I P2 s p3 will be 1 m (within 2 WIR even including the amount of aberration). . Magnify this by 10
Image formation of double deflection magnet 34 P1' * P2' + P3
'The imaging width is 10mm (20mm even if aberration is added)
Even when two wafers are placed in front of the wafer, it is extremely easy to keep the distance within the image on the wafer 7 surface within 30 m.

本実施例の装置で質量分離スリット33が唯一の機械走
査部となっているが、このスリットは全てのイオン打込
装置に必須のものであシ特に追加したものではない。こ
の質量分離スリット33を磁場走査と同期して移動させ
るという制御が追加されるだけである。なお、質量分離
スリット33は小さな部品で直線移動させればよいので
容易である。
In the apparatus of this embodiment, the mass separation slit 33 is the only mechanical scanning section, but this slit is essential to all ion implantation apparatuses and is not particularly added. Only the control for moving this mass separation slit 33 in synchronization with magnetic field scanning is added. Note that the mass separation slit 33 is a small component that can be easily moved in a straight line.

ウェハ7へのイオン打込を均一にするには、ウェハ7が
実装されている回転円板9の半径Rに反比例した速度で
磁場走査を行う。また、このときは同期して行っている
質量分離スリット33及び(10) 偏向磁場の走査もRに反比例した速度で行うことになる
。このようにすれば完全に均一なイオン打込が可能とな
る。
In order to uniformly implant ions into the wafer 7, magnetic field scanning is performed at a speed inversely proportional to the radius R of the rotating disk 9 on which the wafer 7 is mounted. Further, at this time, the scanning of the mass separation slit 33 and the deflection magnetic field (10), which are performed synchronously, is also performed at a speed inversely proportional to R. In this way, completely uniform ion implantation becomes possible.

本実施例のイオン打込装置は次のような効果をもってい
る。
The ion implantation apparatus of this embodiment has the following effects.

1、 ウェハ7を取シ付けた回転円板9は回転軸11を
横移動させることなく回転させるだけであるので、打込
室8は小形となり真空排気時間は短縮して打込能率は向
上する。
1. Since the rotating disk 9 to which the wafer 7 is attached only rotates the rotating shaft 11 without moving it laterally, the implanting chamber 8 becomes smaller, the evacuation time is shortened, and implanting efficiency is improved. .

2、打込室8は清浄でなければならないが、上記の如く
回転軸11を横移動させる機械系が存在しないので汚染
物を拡散させることはない。
2. The driving chamber 8 must be clean, but since there is no mechanical system for moving the rotary shaft 11 laterally as described above, contaminants will not be diffused.

3、偏向磁石34は1個ですみ従来の磁場走査方式で必
要としている補正磁場が不要となるので、比較的安価で
小形の装置が得られる。
3. Since only one deflection magnet 34 is required and the correction magnetic field required in the conventional magnetic field scanning method is not required, a relatively inexpensive and compact device can be obtained.

4、回、転円板9の構造が簡単であるのでウェハ7の冷
却も簡単に実施できる。
4. Since the rotating disk 9 has a simple structure, the wafer 7 can be cooled easily.

〔発明の効果〕 本発明のイオン打込装置は、回転円板上のウェハにイオ
ンビームを移動させ乍ら均一なイオン打(11) 込を行うことができるので、小形高能率であるという効
果が得られる。
[Effects of the Invention] The ion implantation apparatus of the present invention can carry out uniform ion implantation (11) while moving the ion beam to the wafer on the rotating disk, so it has the advantage of being small and highly efficient. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン打込装置の基本構成を示した原理図、第
2図は従来のウェハ移動方式のイオン打込装置の要部断
面図、第3図は本発明の一実施例であるイオン打込装置
のイオン光学系統図である。 1・・・イオン源、4・・・イオンビーム、7・・・ウ
ェハ、8・・・打込室、9・・・回転円板、31・・・
出射スリット、32・・・質量分離磁石、33・・・質
量分離スリット、34・・・偏向磁石、35・・・結像
位置、36・・・駆動モータ、37・・・分離磁石電源
、38・・・スリットモータ、39・・・偏向磁石電源
、40・・・制御部。 代理人 弁理士 長崎博男 (ほか1名) (12) 第 2図
Fig. 1 is a principle diagram showing the basic configuration of an ion implantation device, Fig. 2 is a sectional view of main parts of a conventional wafer movement type ion implantation device, and Fig. 3 is an ion implantation device according to an embodiment of the present invention. FIG. 3 is an ion optical system diagram of the implantation device. DESCRIPTION OF SYMBOLS 1... Ion source, 4... Ion beam, 7... Wafer, 8... Implanting chamber, 9... Rotating disk, 31...
Output slit, 32... Mass separation magnet, 33... Mass separation slit, 34... Deflection magnet, 35... Imaging position, 36... Drive motor, 37... Separation magnet power supply, 38 ... Slit motor, 39 ... Deflection magnet power supply, 40 ... Control unit. Agent Patent attorney Hiroo Nagasaki (and 1 other person) (12) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、 イオン源と、このイオン源より放出されたイオン
を分離する質量分離磁石及び質量分離スリットと、上記
イオン流を変位させる偏向磁石及び上記分離イオンをウ
ェハに打込むイオン打込室とを有するイオン打込装置に
おいて、上記質量分離磁石を縮小系、上記偏向磁石を拡
大系として用いると共に、上記質量分離磁石及び上記偏
向磁石の磁場強度及び上記質量分離スリットの位置とを
同期して走査し、上記イオン源から放出されたイオンを
上記ウェハに均一に打込むごとく構成したことを特徴と
するイオン打込装置。
1. It has an ion source, a mass separation magnet and a mass separation slit that separate the ions emitted from the ion source, a deflection magnet that displaces the ion flow, and an ion implantation chamber that implants the separated ions into the wafer. In the ion implantation device, the mass separation magnet is used as a reduction system and the deflection magnet is used as an enlargement system, and the magnetic field intensities of the mass separation magnet and the deflection magnet and the position of the mass separation slit are scanned in synchronization with each other, An ion implantation apparatus characterized in that the ion implantation apparatus is configured to uniformly implant ions emitted from the ion source into the wafer.
JP10466283A 1983-06-10 1983-06-10 Ion implantation device Granted JPS59230242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10466283A JPS59230242A (en) 1983-06-10 1983-06-10 Ion implantation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10466283A JPS59230242A (en) 1983-06-10 1983-06-10 Ion implantation device

Publications (2)

Publication Number Publication Date
JPS59230242A true JPS59230242A (en) 1984-12-24
JPH0234428B2 JPH0234428B2 (en) 1990-08-03

Family

ID=14386673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10466283A Granted JPS59230242A (en) 1983-06-10 1983-06-10 Ion implantation device

Country Status (1)

Country Link
JP (1) JPS59230242A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237165A2 (en) * 1986-01-29 1987-09-16 Eaton Corporation Treating work pieces with electro-magnetically scanned ion beams
EP0263876A1 (en) * 1986-04-09 1988-04-20 Varian Associates, Inc. Ion beam scanning method and apparatus
US4804852A (en) * 1987-01-29 1989-02-14 Eaton Corporation Treating work pieces with electro-magnetically scanned ion beams
US4922106A (en) * 1986-04-09 1990-05-01 Varian Associates, Inc. Ion beam scanning method and apparatus
EP0621628A1 (en) * 1993-03-11 1994-10-26 Diamond Semiconductor Group Inc. Ion implanter
US5834786A (en) * 1996-07-15 1998-11-10 Diamond Semiconductor Group, Inc. High current ribbon beam ion implanter
WO2008042094A2 (en) * 2006-09-29 2008-04-10 Axcelis Technologies, Inc. New and improved beam line architecture for ion implanter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678342U (en) * 1979-11-13 1981-06-25
JPS56156662A (en) * 1980-05-02 1981-12-03 Hitachi Ltd Device for ion implantation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678342U (en) * 1979-11-13 1981-06-25
JPS56156662A (en) * 1980-05-02 1981-12-03 Hitachi Ltd Device for ion implantation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237165A2 (en) * 1986-01-29 1987-09-16 Eaton Corporation Treating work pieces with electro-magnetically scanned ion beams
EP0263876A1 (en) * 1986-04-09 1988-04-20 Varian Associates, Inc. Ion beam scanning method and apparatus
US4922106A (en) * 1986-04-09 1990-05-01 Varian Associates, Inc. Ion beam scanning method and apparatus
US4804852A (en) * 1987-01-29 1989-02-14 Eaton Corporation Treating work pieces with electro-magnetically scanned ion beams
EP0621628A1 (en) * 1993-03-11 1994-10-26 Diamond Semiconductor Group Inc. Ion implanter
US5834786A (en) * 1996-07-15 1998-11-10 Diamond Semiconductor Group, Inc. High current ribbon beam ion implanter
WO2008042094A2 (en) * 2006-09-29 2008-04-10 Axcelis Technologies, Inc. New and improved beam line architecture for ion implanter
WO2008042094A3 (en) * 2006-09-29 2008-05-22 Axcelis Tech Inc New and improved beam line architecture for ion implanter
US7507978B2 (en) 2006-09-29 2009-03-24 Axcelis Technologies, Inc. Beam line architecture for ion implanter
JP2010505234A (en) * 2006-09-29 2010-02-18 アクセリス テクノロジーズ, インコーポレイテッド Improved novel beamline architecture for ion implanters
KR101354632B1 (en) * 2006-09-29 2014-02-04 액셀리스 테크놀러지스, 인크. New and improved beam line architecture for ion implanter

Also Published As

Publication number Publication date
JPH0234428B2 (en) 1990-08-03

Similar Documents

Publication Publication Date Title
US7078714B2 (en) Ion implanting apparatus
US7902527B2 (en) Apparatus and methods for ion beam implantation using ribbon and spot beams
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
JPS59230242A (en) Ion implantation device
Fischer The scanning heavy ion microscope at GSI
US2922904A (en) Target window for x-ray microscopes
US3638015A (en) Aperture plate control mechanism for electron microscopes
US2305452A (en) Method and device for depicting the intensity distribution in a beam of slow neutrons
JPS6131590B2 (en)
US2247524A (en) Electronic microscope
JP3900792B2 (en) Electron gun
US3508049A (en) Corpuscular-ray microscope with an objective lens which also forms a condenser-lens field
GB2118361A (en) Scanning electron beam apparatus
US3737659A (en) Field of view adjusting device
JP3901199B2 (en) SEM circuit pattern inspection system
US6933511B2 (en) Ion implanting apparatus
JP2708002B2 (en) Ion implanter
KR0143433B1 (en) Ion implanter
KR20150134080A (en) Fouced Ion Beam Apparatus
JPS58201241A (en) Control method for ion implanting angle
JPH03257747A (en) Ion source
JPS63216256A (en) Charged particle beam device
JP2990086B2 (en) Ion implanter
JPH0746591B2 (en) Ion implanter
JP2002175771A (en) Ion implanting equipment