JP3900792B2 - Electron gun - Google Patents

Electron gun Download PDF

Info

Publication number
JP3900792B2
JP3900792B2 JP2000131521A JP2000131521A JP3900792B2 JP 3900792 B2 JP3900792 B2 JP 3900792B2 JP 2000131521 A JP2000131521 A JP 2000131521A JP 2000131521 A JP2000131521 A JP 2000131521A JP 3900792 B2 JP3900792 B2 JP 3900792B2
Authority
JP
Japan
Prior art keywords
electron gun
magnetic pole
electron
coil
electron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000131521A
Other languages
Japanese (ja)
Other versions
JP2001312986A (en
JP2001312986A5 (en
Inventor
浩士 牧野
博之 品田
金子  豊
久弥 村越
憲史 谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000131521A priority Critical patent/JP3900792B2/en
Priority to US09/652,606 priority patent/US6583413B1/en
Publication of JP2001312986A publication Critical patent/JP2001312986A/en
Priority to US10/404,451 priority patent/US7098455B2/en
Publication of JP2001312986A5 publication Critical patent/JP2001312986A5/ja
Priority to US11/452,989 priority patent/US7397031B2/en
Application granted granted Critical
Publication of JP3900792B2 publication Critical patent/JP3900792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,静電レンズに電磁レンズを重畳させた磁界重畳型電子銃に関するものであり,磁界重畳型電子銃の小型化,かつ安定動作の構造に関する。
【0002】
【従来の技術】
静電レンズの電界と電磁レンズの磁界を重畳させた磁界重畳型電子銃は,静電レンズのみにより構成される静電型電子銃と比較し,収差係数が小さく,短焦点化が可能などの特徴を持つ。磁界重畳型電子銃の従来例を以下に示す。
【0003】
Optik 57 , NO.3 (1980) p401に記載されている電子銃の構成図を図5に示す。電子銃は電子銃ヘッド部1,接地されたアノード電極2,真空容器3で構成されている。ここで電子銃ヘッド部1はタングステンチップで形成された電子源4と電磁レンズ部6,支柱25で構成されており,高電圧が印加された電子源4及び電磁レンズ部6が支柱25に釣り下がる構造になっている。また,電磁レンズ部6はコイル7,磁極23で構成されており,磁極23の一部は引き出し電極5を兼ねた構造になっている。 電子銃の機械的軸調整は,電子銃ヘッド部1が上記構造となっているため,支柱25を動かすことにより,電子源4及び電磁レンズ部6をアノード電極2に対して相対的に動かして行われる。また,電磁レンズ部6に対する電子源4の軸調整は機械的な組み立て精度で決まる。Optik 57 , NO.3 (1980) p401に記載されている電子銃の電子銃ヘッド部1近傍の構成と軸上電位分布,軸上磁界分布及び電子ビーム8軌道の模式図を図6に示す。電子源4に所望の加速電圧 -V0を印加し,引き出し電極5及び磁極23に電圧 -V0+V1を印加することにより,電子源4の先端から電子ビーム8が放出される。引き出し電極5及び磁極23は磁性体で構成されており,コイル7に電流を流すことにより軸上に磁界を発生させる。そして,電子源4より放出された電子ビーム8は軸上に発生した磁界により収束される。
【0004】
特開平2−297852に記載されている電子銃を図7に示す。電子銃は電子銃ヘッド部1,電磁レンズ部6,アノード電極2で構成されている。ここで,電子銃ヘッド部1は電子源4,サプレッサ電極9,支柱25により構成されており,電子源4とサプレッサ電極9が支柱25に釣り下がる構造となっている。電磁レンズ部6はコイル7,磁極a10,磁極b11,磁極c12,非磁性金属13,碍子24で構成されており,非磁性金属13はコイル7より発生した磁界の影響で,磁極a10,磁極b11間に引力が働く際,磁極の変形を防ぐために置かれている。また,磁極b11,磁極c12間は碍子24で隔てられており,磁極c12は引き出し電圧が印加され,引き出し電極5としての役割を果たしている。電子銃の機械的軸調整は,電子銃ヘッド部1が上記構造をとっているため,支柱25を動かすことにより,電子源4及びサップレッサ電極9が磁極c12に対して相対的に動かして行われる。特開平2−297852に記載されている電子銃の電子源4近傍の構成,及び軸上電位分布,軸上磁界分布と電子ビーム8の軌道の模式図を図8に示す。電子源4に加速電圧V0を印加し磁極c12に引き出し電圧-V0+V1を印加することにより,電子源4の先端から電子ビーム8が放出される。コイル7に電流を流すことにより引き出し電極5兼磁極c12と磁極a10の間に収束磁界を発生させる。この電子銃は,電磁レンズ部6により形成される軸上磁界分布が最大となる位置より下方に電子源4先端を配置する構造を特徴としている。
【0005】
特開平5−211848では,静電レンズにおける収差が最も顕著になる位置に,電磁レンズにより形成される磁束密度分布が最大となる位置を重畳する構造,及び重畳するよう電磁レンズの位置を制御する技術が開示されている。
【0006】
特開平10−188868では,引き出し電極とアノード電極の間の減速電界に磁界を重畳させる構造を開示している。
【0007】
特開平7−192674では,イオンポンプの磁石により形成される磁界を用いた磁界重畳型電子銃が開示されている。
【0008】
【発明が解決しようとする課題】
磁界重畳型電子銃において低収差化及び短焦点化は,電子源近傍に磁極を配置し,その形状を小型化すること,さらに電磁レンズの励磁を大きくすることで達成される。また,電子銃の機械的軸調整機構は,電磁レンズの中心に対して電子源の軸を合わせる調整機構が必要である。
【0009】
Optik 57 , NO.3 (1980) p401に示された電子銃のように,電磁レンズ部6を高電圧が印加された電子源4と一体化させた場合,真空容器3内を超高真空に保つためにはコイル7を密閉する必要がある。また,コイル7の発熱が電子源4近傍の局所的な真空度の劣化を招き,電子源4の電子放出特性の不安定化,放電などの問題を引き起こす可能性がある。電子銃の機械的軸調整機構については,電子銃ヘッド部1が一体となっているため,アノード電極2に対する電子銃ヘッド部1の軸調整のみが可能となる。電磁レンズに対する電子源4の軸調整は機械的な組み立て精度のみで決定されることになる。
【0010】
一方,特開平2−297852に示された電子銃のように,磁極と電子源4を分離させた場合,高電圧印加された電子銃ヘッド部1と接地された磁極a10との耐電圧を保証するため,磁極a10の内径を十分大きくしなければならない。また,この電子銃では電磁レンズが作り出す軸上磁界の最大となる位置より下方に電子源4を配置することを特徴としていることから,所望の焦点距離を得るためには,コイル7を約10000[AT]もの励磁で使用する必要があり,コイル7の大型化は避けられない。また,冷却水を流すスペースを必要とすることから電子銃自体が大きなものとなってしまう。電子銃の機械的軸調整の機構は,電子銃ヘッド部1が前記で示した構造をとるため,引き出し電極5を兼ねた磁極c12に対して電子銃ヘッド部1を相対的に移動させる機構となる。この軸調整機構では,電子源4と引き出し電極5間で高い電界強度が発生しているため,放電の危険性は免れない。
【0011】
これらの理由から,従来の技術による磁界重畳型電子銃では,電子源近傍の真空度劣化による電子放出の不安定及び放電の危険性,軸調整時の放電の危険性などの安定性に関する問題と,電子銃の大型化という問題が発生する。
【0012】
本発明の課題は,磁界重畳型電子銃において小型かつ安定に動作する,磁界重畳型電子銃を実現することである。
【0013】
【課題を解決するための手段】
本発明では上記課題を解決するために,電磁レンズを形成する磁極を複数に分割し,固定磁極と電子銃軸調整で動かすことが可能な可動磁極とに分割した。そして,固定磁極を接地電位とし,可動磁極を高電圧が印加された引き出し電極と,もしくは電子源と一体化し,可動磁極を小型化できるようにした。電子銃ヘッド部では,電子源に対して引き出し電極と可動磁極が一体となって相対的に移動させる調整機構を設けた。そして,電子銃ヘッド部が水平移動,もしくは傾斜のうち少なくとも1種類の移動する機構を設けることにより,高電圧が印加された電子源,引き出し電極,可動磁極が下磁極に対して相対的に水平移動,傾斜する構造にした。また,コイルを脱着可能の構造にし,電子銃ベーキング時にコイルが外せるようにし,電磁レンズを形成する固定磁極と下磁極の間を非磁性金属で充填した。
【0014】
さらに,電子銃ヘッド部に内部ヒータを設けることにより,ベーキング時に電子源近傍の温度が十分上がるようにした。
【0015】
【発明の実施の形態】
(実施例1)
本発明の第1の実施例を図を用いて説明する。 図1は本発明の実施形態における電子銃全体構成を説明するための断面図,図2はその平面図である。図は電子銃ヘッド部1,脱着可能コイル部26,固定磁極15,下磁極19,電子銃ヘッド部水平移動ネジ17,電子銃ヘッド部傾斜ネジ18,水平駆動部30,傾斜駆動部31,外部ヒータ20で構成される。ここで電子銃ヘッド部1は電子源4,サプレッサ電極9,引き出し電極5,可動磁極14,碍子24,内部ヒータ16で構成されており,電子源4,サップレッサ電極9,引き出し電極5,可動磁極14,内部ヒータ16が碍子24に釣り下られる構造になっている。また,脱着可能コイル部26は,コイル7,磁極23,コイル固定金具27で構成されており,コイル7はコイル固定金具27により磁極23に固定されている。そして,脱着可能コイル26はベーキングの際,電子銃から取り外すことができる構造になっている。可動磁極14と固定磁極15は空間を隔てて配置されている。
【0016】
電子銃ヘッド部1は傾斜駆動部31に固定され,さらに傾斜駆動部31が水平駆動部30の曲面に乗る構造になっている。電子銃ヘッド部傾斜ネジ18は水平駆動部30に取り付けられ,電子銃ヘッド部傾斜ネジ18は脱着可能コイル26の磁極23に取り付けられている。電子銃ヘッド部水平移動ネジ17は,水平駆動部30を押すことにより,電子銃ヘッド部1を下磁極19に対して相対的に水平方向に移動させる。また,電子銃ヘッド部傾斜ネジ18は,傾斜駆動部31を押すことにより,電子源4を支点として電子銃ヘッド部1を傾斜させる構造になっている。
【0017】
次に,電子銃ヘッド部1における電子源4と引き出し電極5の軸調整法を説明するため,電子銃ヘッド部を説明するための断面図を図3に,その平面図を図4に示す。図は電子源4,サプレッサ電極9,引き出し電極5,可動磁極14,碍子24,軸調整ネジ21,サプレッサ電極台座28,電子源加熱用支柱29で構成されている。電子源4は電子源加熱用支柱29に固定され,サプレッサ電極9はサプレッサ電極台座28に固定されている。また,引き出し電極5,可動磁極14は碍子24と一体になっており,サップレッサ電極台座28に取り付けられた軸調整ネジ21が碍子24を固定する構造になっている。電子源4に対する引き出し電極5の軸調整は,電子源4を装着する際に碍子24を軸調整ネジ21で押すことにより,碍子24と一体化した可動磁極14及び引き出し電極5を電子源4に対して相対的に平行移動させて中心を合わせた後に固定することで実施する。電子銃の機械的軸調整は,電子源4を装着する際行う,電子源4と引き出し電極及び可動磁極14の軸調整と,電子ビームを引き出した状態で行う,電子銃ヘッド部1とアノード電極2及び下磁極19の軸調整とを併用することにより行う。上記2つの軸調整を併用することにより,電磁レンズに対する電子源4の軸調整はより精密に行うことができる。
【0018】
可動磁極14と固定磁極15の間は耐電圧に十分な距離を確保する必要があるが,それらの距離を離しすぎると強い軸上磁界を発生できなくなり,電子銃の光学条件を同じにするためには,強い励磁が必要になる。
【0019】
固定磁極15と可動磁極14の耐電圧を考えると,それらの距離をS[mm],電子銃ヘッド部1の水平移動量を+1[mm],傾斜を+100[mrad]とした場合,軸調整により電子銃ヘッド部1の可動磁極14が最も固定磁極15に近づいた距離は約(S-1.5)[mm]となり,空間における耐電圧の保証値を5[kV/mm]とすると,可動磁極14と固定磁極15の空間の耐電圧は5(S-1.5)[kV]保証されることになる。
【0020】
次に固定磁極15と可動磁極14の位置関係と,コイルの励磁の関係を考える。図12は,可動磁極14と固定磁極15の間の距離Sとコイルの消費電力の関係を示しており,加速電圧10[kV]で,電子源4から160[mm]の位置にクロスオーバを形成したときの計算結果である。可動磁極14と固定磁極15の距離Sを離すことにより,コイルの消費電力が大きくなる。コイルの消費電力が17[W]以上になる条件では,コイルの発熱による電子銃の長期安定性に問題があるため,消費電力が17[W]以下になるよう距離Sを調整する必要がある。従ってこの場合,可動磁極14と固定磁極15の間の距離は10[mm]以下にすることが必要となる。また,図13は可動磁極14と固定磁極15の高さ方向の相対的距離tを変えた場合の計算結果であり,加速電圧10[kV]で,電子源4から160[mm]の位置にクロスオーバを形成したときの計算結果である。この計算結果よりt>0の条件,つまり可動磁極14を固定磁極15より相対的に高くすることにより少ない消費電力で同じ光学条件を実現することができる。
【0021】
図10は上記の電子銃構造において,1000[T]のコイル7に1[A]を流した場合の磁界分布の計算結果で,電子源4近傍を拡大したものである。計算結果の図は可動磁極14,固定磁極15,下磁極19で構成されており,計算結果として等磁力線を示している。また,可動磁極14及び下磁極の内径はF14[mm]で,可動磁極14と下磁極19の距離は8[mm]で計算を行った。この結果より,可動磁極14と固定磁極15の距離を8[mm]とした場合においても,その空間で磁気結合することにより,軸上に強い磁界を発生させることが可能であることがわかる。図11は図10と同条件の計算結果で軸上磁界分布を示したものである。電磁レンズの主面の位置で約0.07[Teslas]の磁界が発生することがわかる。特開平2−297852に示された電子銃では,高電圧が印加された電子源4と磁極a10との間の耐電圧をもたせるため,磁極a10の内径を大きくしている。また,軸上磁界分布が最大となる位置より下方に電子源4を配置していることから,電磁レンズの主面の位置で0.1[Teslas]の磁界を発生させるために,10000[AT]以上もの励磁を用いる必要がある。また,本発明の電子銃で上記条件におけるコイル7の発熱量は約15[W]で冷却水を使用する必要はない。
【0022】
上記の電子銃構造を用いることにより,磁界重畳型電子銃を小型にし,なお且つ安定に動作させることができた。
【0023】
(実施例2)
本発明の第2の実施例を図を用いて説明する。図9は本発明の電子銃のベーキング時の形態を説明するための断面図で,電子銃ヘッド部1,アノード電極2,下磁極19,固定磁極15,非磁性金属13,外部ヒータ20,プレートヒータ22,脱着可能コイル部26,水平駆動部30,傾斜駆動部31で構成され,非磁性金属13は固定磁極15と下磁極19の間に充填されている。ここで,電子銃ヘッド部1は可動磁極14,引き出し電極5,サプレッサ電極9,電子源4,内部ヒータ16,碍子24で構成されており,可動磁極14,引き出し電極5,サプレッサ電極9,電子源4,内部ヒータ16が碍子24に釣り下げられる構造になっている。脱着可能コイル部26はコイル7,コイル固定金具27,磁極23で構成されており,コイル7はコイル固定金具27により磁極23に固定されている。電子銃ベーキングの際は,脱着可能コイル部26を外しプレートヒータ22を取り付け,外部ヒータ20,プレートヒータ22,内部ヒータ16によりベーキングを行う。ベーキングでは,内部ヒータ16による電子銃ヘッド部1のベーキングを行うことにより,電子銃ヘッド部1は十分加熱される。また,固定磁極15と下磁路の間を非磁性金属13で充填することにより,外部ヒータ20とプレートヒータ22の熱を効率良く電子銃に行き渡らすことができる。これらの構成を用いることにより,ベーキングを効率的に行うことができ,電子銃の到達真空度の向上,電子源近傍の真空度の向上などの理由から,電子銃を安定に動作させることができる。
【0024】
尚,本実施例は上記本発明の実施の形態で示した電子銃の構造にそのまま適応でき,発明の効果を全く損なうものではない。
【0025】
(実施例3)
本発明の第3の実施例を図を用いて説明する。図14は本発明の電子銃の機械的軸調整をモータ駆動で行う場合の構成を示したもので,電子銃部42とモータ制御部41で構成されている。ここで電子銃部42は,電子銃ヘッド部1,水平駆動部30,脱着可能コイル部26,モータ固定金具32,水平駆動モータa33,水平駆動モータb34,水平駆動モータc35,水平駆動モータd36,傾斜駆動モータa37,傾斜駆動モータb38,傾斜駆動モータc39,傾斜駆動モータd40で構成されている。また,図15はその断面図を示したもので,脱着可能コイル26,電子銃ヘッド部1,水平駆動部30,傾斜駆動部31,水平駆動モータa33,水平駆動モータc35,傾斜駆動モータa37,傾斜駆動モータc39で構成されており,脱着可能コイル26はコイル7磁極23,コイル固定金具27で構成されている。ここで,それぞれのモータは電子銃の機械的軸調整のときのみ駆動し,水平駆動部30及び傾斜駆動部31を動かし,それ以外のときは水平駆動部30及び傾斜駆動部31が動かないよう固定した状態で停止しているものとする。電子銃の機械的軸調整は,それぞれのモータが水平駆動部30,傾斜駆動部31を押すことにより行われる。モータの制御はモータ制御部41により行われる。その制御は,水平駆動モータa33が時計方向に回転する場合,それと180°の位相関係にある水平駆動モータc35が反時計方向に回転し,なお且つそれぞれのモータが同一の回転速度で駆動することにより水平駆動部30を一定の力で押すように行われる。また,その他のモータについても上記と同様の制御を行うものとする。この構成では,電子銃の機械的軸調整を手動でなく電気的制御行なうことができるため,より簡単に機械的軸調整ができるようになる。
【0026】
尚,本実施例は上記本発明の実施の形態で示した電子銃の構造にそのまま適応でき,発明の効果を全く損なうものではない。
【0027】
(実施例4)
本発明の第4の実施例を図を用いて説明する。図16は本発明の電子銃を欠陥レビュー機能付きのSEM式回路パターン外観検査装置に搭載した場合の構成図である。図は電子銃部42,鏡体部60,ステージ部58,画像処理部57,画像表示装置59,偏向制御部54,レンズ制御部55,リターディング電源56,電子銃電源53で構成されている。
【0028】
電子銃部42は脱着可能コイル26,コイル7,固定磁極15,アノード電極2,下磁極19,可動磁極14,引き出し電極5,サップレッサ電極9,電子源4で構成されている。ここで,電子源4は電子銃電源53より電子源加熱電流Ifが供給され,所望の加速電圧V0が印加できる構造とする。さらに,電子源4に対して逆バイアスの電圧Vsがサプレッサ電極9に,正バイアスの電圧V1が引き出し電極5にそれぞれ印加できる構造となっていることとする。
【0029】
鏡体部60は可動絞り43,ブランキングプレート44,ファラデーカップ45,コンデンサレンズ47,半導体検出器49,検出器71,偏向器46,対物レンズ48,ExB62,反射板63で構成されている。ここで半導体検出器49は10MHz〜200MHzのサンプリング周波数で動作するものとし,試料50から発生した二次電子を半導体検出器49に吸引するため,高電圧が印加できる構造になっている。また,検出器71は〜10MHz程度のサンプリング周波数で動作する検出器であり,半導体検出器49と同様に高電圧が印加できる構造になっている。また,ExB62は検査条件とレビュー条件とで,ExB62の静電偏向器及び電磁偏向器の極性が反転できるようになっている。
【0030】
ステージ部58は,試料50,試料ホルダ51,碍子24,ステージ駆動装置52,試料室61で構成されている。ここで,試料50及び試料ホルダ51とステージ駆動装置52は,碍子24で電気的に絶縁されており,リターディング電圧Vrが印加可能な構造になっている。
【0031】
電子ビーム8は,V0の電圧が印加された電子源4に電子源加熱電流Ifを供給し,電子源4に対して正バイアスのV1を引き出し電極5に,逆バイアスのVsをサプレッサ電極9にそれぞれ印加することにより,V0のエネルギーで放出される。
【0032】
検査の条件において,放出された電子ビーム8は電子銃部42の脱着可能コイル26より発生される磁界により収束され,ブランキングプレート44にクロスオーバを形成する。そして,光学系の総合倍率が0.5〜1.5倍になるよう,コンデンサレンズ47の励磁を調整し,対物レンズ48で試料50にフォーカスさせられる。ここで,電子ビーム8のプローブ電流は可動絞り43の絞り径と電子ビーム8の放射角電流密度で決まり,20[nA]〜200[nA]まで調整可能となっている。また,試料50にはリターディング電源56からリターディング電圧Vrが印加されており,その印加電圧を調整することにより,電子ビーム8の入射エネルギーを調整できるものとする。
【0033】
偏向制御部54では偏向信号として10kHz〜200kHzの鋸状波を発生し,偏向器46で電子ビーム8を偏向させる。また,偏向制御部54は電子ビームを偏向する方向に対して直行する方向にステージ51を動かし,試料50に対して電子ビーム8が二次元的に走査するようステージ駆動装置52を制御するものとする。また,偏向制御部54では試料50に電子ビーム8を試料50に照射しない場合にファラデーカップ45で電子ビーム8を遮るようブランキングプレート44に電圧を印加できるものとする。
【0034】
試料50から発生した二次電子65は,試料50から発生した二次電子65のみ光軸から分離させるよう調整されたExB62で反射板63に当てられ半導体検出器49に吸引される。半導体検出器49で検出された二次電子65はADコンバータ64でデジタル信号に変換され画像処理部57で画像化される。
【0035】
画像処理部57では,最初に取り込んだ基準画像66と,ウェーハ上の基準画像66と異なる箇所で取り込んだ比較画像67との差画像を計算し,その差画像を欠陥画像68として画像表示装置59へ送る。また,画像処理部57は画像中に欠陥が存在する比較画像を画像表示装置59へ送ることができる。
【0036】
例えば,このSEM式回路パターン外観検査装置で0.1[mm]のパターン寸法のウェーハを検査する場合,試料50におけるプローブサイズは0.1[mm]以下であることが好ましい。
【0037】
対物レンズ48の焦点距離が30〜40[mm],かつプローブ電流が50〜150[nA]の条件で上記検査を行う場合,対物レンズ48の色収差を抑えるため光学系の総合倍率を0.5〜1.5倍で使用することが必然となり,電子銃の収差を抑える必要がある。静電型の電子銃でこの条件の検査を行う場合,物面側に定義した電子銃の色収差が45〜60[nm],球面収差が35〜50[nm]と大きいため,試料50におけるプローブサイズは0.15〜0.3[mm]となってしまう。ここで,本発明の電子銃を加速電圧10[kV],励磁800〜1000[AT]で使用することにより,物面側に換算した電子銃の焦点距離として8〜11[mm]を達成することができ,物面側に定義した電子銃の色収差は15〜20[nm],球面収差は1〜2[nm]となり,試料50におけるプローブサイズは0.05〜0.1[mm]を達成することができる。また,本発明の電子銃を5〜10倍の倍率で使用し,コンデンサレンズ47と対物レンズ48で0.1〜0.5に縮小する光学系を採用することにより,ブランキングプレート44,可動絞り43,ファラデーカップ45に付着したコンタミネーションの影響を緩和することができる。例えば,全てのレンズを1倍の倍率で使用した場合のコンタミネーションによる像ドリフト量を0.5[mm]とすると,上記光学条件を採用することにより,そのドリフトは0.05〜0.1[mm]まで減らすことができる。
【0038】
一方,検出した回路パターン上の欠陥を高分解能で鮮明な画像で確認するためには,光学条件をレビューの条件にして欠陥画像の観察を行う。レビューの条件においては,コイル7の励磁を,電子ビーム69が可動絞りより上方にクロスオーバをつくり,かつプローブ電流が100[pA]〜5[nA]になるよう調整する。そして,光学系の総合倍率が0.2〜0.3になるようコンデンサレンズ47の励磁を調整し,対物レンズ48で試料50にフォーカスされる。試料50から発生した二次電子70は,ExB62を検査の調整に対して反転した極性で使用することにより検出器71で検出される。
【0039】
そして,検出された二次電子70は画像表示装置59で画像化される。
【0040】
本発明の電子銃をレビュー機能付きSEM式回路パターン外観検査装置に搭載し,電子銃を上記のように調整することにより検査条件とレビュー条件を瞬時に切り替え,なお且つ大電流で安定な検査装置を実現することができる。
【0041】
【発明の効果】
以上に述べたように,本発明によれば静電レンズの電界と電磁レンズの磁界を重畳させた電子銃を小型かつ安定に動作させることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態における電子銃全体構成を説明するための断面図。
【図2】本発明の実施形態における電子銃全体構成を説明するための平面図。
【図3】本発明の電子銃の電子銃ヘッド部構成を説明するための断面図。
【図4】本発明の電子銃の電子銃ヘッド部構成を説明するための平面図。
【図5】従来の磁界重畳型電子銃の構成を説明するための図。
【図6】従来の磁界重畳型電子銃の電子源近傍の軸上電位分布,軸上磁界分布,電子ビーム軌道を説明するための図。
【図7】従来の磁界重畳型電子銃の構成を説明するための図。
【図8】従来の磁界重畳型電子銃の電子源近傍の軸上電位分布,軸上磁界分布,電子ビーム軌道を説明するための図。
【図9】本発明の電子銃のベーキング時の形態を説明するための断面図。
【図10】本発明の電子銃の磁界分布計算結果を説明するための図。
【図11】本発明の電子銃の軸上磁界分布計算結果を説明するための図。
【図12】本発明電子銃の可動磁極と固定磁極間の距離とコイル消費電力の関係を説明するための図。
【図13】本発明電子銃の可動磁極と固定磁極の相対的な高さ関係とコイル消費電力の関係を説明するための図。
【図14】本発明電子銃のモータによる機械的軸調整の方法を説明するための平面図。
【図15】本発明電子銃のモータによる機械的軸調整の方法を説明するための断面図。
【図16】本発明の電子銃を欠陥レビュー機能付きSEM式回路パターン外観検査装置に適応させた場合の図。
【符号の説明】
1…電子銃ヘッド部1,2…アノード電極2,3…真空容器3,
4…電子源4,5…引き出し電極5,6…電磁レンズ部6,7…コイル7,
8…電子ビーム8,9…サプレッサ電極9,10…磁極a10,11…磁極b11,
12…磁極c12,13…非磁性金属13
14…可動磁極14,15…固定磁極15,16…内部ヒータ16,
17…電子銃ヘッド部水平移動ネジ17,
18…電子銃ヘッド部傾斜ネジ18,19…下磁極19,20…外部ヒータ20,
21…軸調整ネジ21,22…プレートヒータ22,23…磁極23,24…碍子24,
25…支柱25,26…脱着可能コイル26,27…コイル固定金具27,
28…サップレッサ電極台座28,29…電子源加熱用支柱29,
30…水平駆動部30,31…傾斜駆動部31,32…モータ固定金具32,
33…水平駆動モータa33,34…水平駆動モータb34,
35…水平駆動モータc35,36…水平駆動モータd36,
37…傾斜駆動モータa37,38…傾斜駆動モータb38,
39…傾斜駆動モータc39,40…傾斜駆動モータd40,
41…モータ制御部41,42…電子銃部42,43…可動絞り43,
44…ブランキングプレート44,45…ファラデーカップ45,46…偏向器46,
47…コンデンサレンズ47,48…対物レンズ48,49…半導体検出器49,
50…試料50,51…試料ホルダ51,52…ステージ駆動装置52,
53…電子銃電源53,54…偏向制御部54,55…レンズ制御部55,
56…リターディング電源56,57…画像処理部57,58…ステージ部58,
59…画像表示装置59,60…鏡体部60,61…試料室61,62…ExB62,
63…反射板63,64…ADコンバータ64,65…二次電子65,
66…基準画像66,67…取得画像67,68…欠陥画像68,
69…レビュー条件での電子ビーム69,70…レビュー条件での二次電子70,
71…検出器71。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field superposition type electron gun in which an electromagnetic lens is superposed on an electrostatic lens, and relates to a downsized and stable structure of the magnetic field superposition type electron gun.
[0002]
[Prior art]
The magnetic field superposition type electron gun in which the electric field of the electrostatic lens and the magnetic field of the electromagnetic lens are superposed has a smaller aberration coefficient and a shorter focal length than an electrostatic type electron gun composed only of an electrostatic lens. Has characteristics. A conventional example of a magnetic field superposition type electron gun is shown below.
[0003]
FIG. 5 shows a configuration diagram of an electron gun described in Optik 57, NO. 3 (1980) p401. The electron gun includes an electron gun head unit 1, a grounded anode electrode 2, and a vacuum vessel 3. Here, the electron gun head unit 1 is composed of an electron source 4 formed of a tungsten chip, an electromagnetic lens unit 6 and a support column 25, and the electron source 4 and the electromagnetic lens unit 6 to which a high voltage is applied are connected to the support column 25. The structure is lowered. The electromagnetic lens unit 6 is composed of a coil 7 and a magnetic pole 23, and a part of the magnetic pole 23 has a structure also serving as the extraction electrode 5. Since the electron gun head unit 1 has the above-described structure, the electron gun mechanical axis adjustment is performed by moving the support column 25 to move the electron source 4 and the electromagnetic lens unit 6 relative to the anode electrode 2. Done. The axis adjustment of the electron source 4 with respect to the electromagnetic lens unit 6 is determined by mechanical assembly accuracy. FIG. 6 shows a schematic diagram of the configuration in the vicinity of the electron gun head portion 1 of the electron gun described in Optik 57, NO. 3 (1980) p401, the axial potential distribution, the axial magnetic field distribution, and the electron beam 8 orbit. An electron beam 8 is emitted from the tip of the electron source 4 by applying a desired acceleration voltage −V 0 to the electron source 4 and applying a voltage −V 0 + V 1 to the extraction electrode 5 and the magnetic pole 23. The extraction electrode 5 and the magnetic pole 23 are made of a magnetic material, and generate a magnetic field on the axis by passing a current through the coil 7. The electron beam 8 emitted from the electron source 4 is converged by a magnetic field generated on the axis.
[0004]
FIG. 7 shows an electron gun described in JP-A-2-297852. The electron gun includes an electron gun head unit 1, an electromagnetic lens unit 6, and an anode electrode 2. Here, the electron gun head unit 1 includes an electron source 4, a suppressor electrode 9, and a support column 25, and the electron source 4 and the suppressor electrode 9 are suspended from the support column 25. The electromagnetic lens unit 6 includes a coil 7, a magnetic pole a10, a magnetic pole b11, a magnetic pole c12, a nonmagnetic metal 13, and an insulator 24. The nonmagnetic metal 13 is affected by the magnetic field generated from the coil 7, and thus the magnetic pole a10 and the magnetic pole b11. It is placed to prevent the magnetic pole from deforming when attractive force is applied between them. The magnetic pole b11 and the magnetic pole c12 are separated by an insulator 24, and the magnetic pole c12 serves as the extraction electrode 5 to which an extraction voltage is applied. The mechanical axis adjustment of the electron gun is performed by moving the support column 25 so that the electron source 4 and the suppressor electrode 9 are moved relative to the magnetic pole c12 because the electron gun head unit 1 has the above structure. . FIG. 8 shows a schematic diagram of the configuration in the vicinity of the electron source 4 of the electron gun described in JP-A-2-297852, the axial potential distribution, the axial magnetic field distribution, and the trajectory of the electron beam 8. The electron beam 8 is emitted from the tip of the electron source 4 by applying the acceleration voltage V0 to the electron source 4 and applying the extraction voltage -V0 + V1 to the magnetic pole c12. By passing a current through the coil 7, a converging magnetic field is generated between the extraction electrode 5 / magnetic pole c12 and the magnetic pole a10. This electron gun is characterized by a structure in which the tip of the electron source 4 is disposed below the position where the axial magnetic field distribution formed by the electromagnetic lens unit 6 is maximized.
[0005]
In Japanese Patent Laid-Open No. 5-21848, a structure in which a position where the magnetic flux density distribution formed by the electromagnetic lens is maximized is superimposed on a position where the aberration in the electrostatic lens is most noticeable, and the position of the electromagnetic lens is controlled so as to be superimposed. Technology is disclosed.
[0006]
Japanese Patent Laid-Open No. 10-188868 discloses a structure in which a magnetic field is superimposed on a deceleration electric field between an extraction electrode and an anode electrode.
[0007]
Japanese Patent Laid-Open No. 7-192673 discloses a magnetic field superposition type electron gun using a magnetic field formed by a magnet of an ion pump.
[0008]
[Problems to be solved by the invention]
In the magnetic field superposed electron gun, the reduction in aberration and the shortening of focus are achieved by arranging magnetic poles in the vicinity of the electron source, miniaturizing the shape, and enlarging the excitation of the electromagnetic lens. The mechanical axis adjustment mechanism of the electron gun requires an adjustment mechanism that aligns the axis of the electron source with the center of the electromagnetic lens.
[0009]
Optik 57, NO.3 (1980) Like the electron gun shown in p401, when the electromagnetic lens unit 6 is integrated with the electron source 4 to which a high voltage is applied, the inside of the vacuum vessel 3 is brought to an ultra-high vacuum. In order to keep it, the coil 7 needs to be sealed. In addition, the heat generated by the coil 7 may cause local deterioration of the vacuum near the electron source 4 and may cause problems such as unstable electron emission characteristics of the electron source 4 and discharge. Regarding the mechanical axis adjustment mechanism of the electron gun, since the electron gun head unit 1 is integrated, only the axis adjustment of the electron gun head unit 1 with respect to the anode electrode 2 is possible. The axis adjustment of the electron source 4 with respect to the electromagnetic lens is determined only by mechanical assembly accuracy.
[0010]
On the other hand, when the magnetic pole and the electron source 4 are separated as in the electron gun disclosed in JP-A-2-297852, the withstand voltage between the electron gun head unit 1 to which a high voltage is applied and the grounded magnetic pole a10 is guaranteed. Therefore, the inner diameter of the magnetic pole a10 must be made sufficiently large. In addition, this electron gun is characterized in that the electron source 4 is disposed below the position where the on-axis magnetic field created by the electromagnetic lens is maximized. Therefore, in order to obtain a desired focal length, the coil 7 is approximately 10,000. [AT] It is necessary to use it with excitation, and the enlargement of the coil 7 is inevitable. In addition, the electron gun itself becomes large because a space for flowing cooling water is required. The mechanism for adjusting the mechanical axis of the electron gun includes a mechanism for moving the electron gun head unit 1 relative to the magnetic pole c12 also serving as the extraction electrode 5 because the electron gun head unit 1 has the structure described above. Become. In this axis adjustment mechanism, since a high electric field strength is generated between the electron source 4 and the extraction electrode 5, the risk of discharge is inevitable.
[0011]
For these reasons, the conventional magnetic field superposition type electron gun has problems related to stability such as instability of electron emission due to vacuum deterioration near the electron source, risk of discharge, and risk of discharge during axis adjustment. , The problem of increasing the size of the electron gun occurs.
[0012]
An object of the present invention is to realize a magnetic field superposition type electron gun that operates in a small and stable manner in a magnetic field superposition type electron gun.
[0013]
[Means for Solving the Problems]
In the present invention, in order to solve the above-described problem, the magnetic pole forming the electromagnetic lens is divided into a plurality of parts and divided into a fixed magnetic pole and a movable magnetic pole that can be moved by adjusting the electron gun axis. The fixed magnetic pole is set to ground potential, and the movable magnetic pole is integrated with the extraction electrode to which a high voltage is applied or an electron source so that the movable magnetic pole can be miniaturized. The electron gun head is provided with an adjustment mechanism that moves the extraction electrode and the movable magnetic pole integrally with the electron source. Then, by providing a mechanism for moving the electron gun head part horizontally or at least one of tilting, the electron source to which a high voltage is applied, the extraction electrode, and the movable magnetic pole are relatively horizontal with respect to the lower magnetic pole. It has a moving and tilting structure. In addition, the coil was made removable so that it could be removed during electron gun baking, and the space between the fixed magnetic pole and the lower magnetic pole forming the electromagnetic lens was filled with a nonmagnetic metal.
[0014]
In addition, by providing an internal heater in the electron gun head, the temperature in the vicinity of the electron source is sufficiently raised during baking.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view for explaining the entire configuration of an electron gun in an embodiment of the present invention, and FIG. 2 is a plan view thereof. The figure shows an electron gun head part 1, a detachable coil part 26, a fixed magnetic pole 15, a lower magnetic pole 19, an electron gun head part horizontal movement screw 17, an electron gun head part inclination screw 18, a horizontal driving part 30, an inclination driving part 31, and an external part. The heater 20 is used. Here, the electron gun head unit 1 is composed of an electron source 4, a suppressor electrode 9, an extraction electrode 5, a movable magnetic pole 14, an insulator 24, and an internal heater 16, and the electron source 4, the suppressor electrode 9, the extraction electrode 5, and the movable magnetic pole. 14, the internal heater 16 is hung down by the insulator 24. The detachable coil portion 26 includes a coil 7, a magnetic pole 23, and a coil fixing bracket 27, and the coil 7 is fixed to the magnetic pole 23 by the coil fixing bracket 27. The removable coil 26 can be removed from the electron gun during baking. The movable magnetic pole 14 and the fixed magnetic pole 15 are arranged with a space therebetween.
[0016]
The electron gun head unit 1 is fixed to the tilt driving unit 31, and the tilt driving unit 31 is mounted on the curved surface of the horizontal driving unit 30. The electron gun head part inclination screw 18 is attached to the horizontal drive part 30, and the electron gun head part inclination screw 18 is attached to the magnetic pole 23 of the detachable coil 26. The electron gun head portion horizontal movement screw 17 moves the electron gun head portion 1 in the horizontal direction relative to the lower magnetic pole 19 by pushing the horizontal drive portion 30. The electron gun head tilting screw 18 is structured to tilt the electron gun head 1 with the electron source 4 as a fulcrum by pushing the tilt driving unit 31.
[0017]
Next, in order to explain the axis adjustment method of the electron source 4 and the extraction electrode 5 in the electron gun head unit 1, FIG. 3 is a sectional view for explaining the electron gun head unit, and FIG. 4 is a plan view thereof. The figure includes an electron source 4, a suppressor electrode 9, an extraction electrode 5, a movable magnetic pole 14, an insulator 24, a shaft adjusting screw 21, a suppressor electrode base 28, and an electron source heating column 29. The electron source 4 is fixed to an electron source heating column 29, and the suppressor electrode 9 is fixed to a suppressor electrode base 28. Further, the extraction electrode 5 and the movable magnetic pole 14 are integrated with the insulator 24, and the shaft adjusting screw 21 attached to the suppressor electrode base 28 fixes the insulator 24. The axis of the extraction electrode 5 with respect to the electron source 4 is adjusted by pressing the lever 24 with the axis adjustment screw 21 when the electron source 4 is mounted, so that the movable magnetic pole 14 integrated with the lever 24 and the extraction electrode 5 are attached to the electron source 4. On the other hand, it is carried out by relatively moving in parallel and aligning the center and then fixing. The mechanical axis adjustment of the electron gun is performed when the electron source 4 is mounted, the axes of the electron source 4, the extraction electrode and the movable magnetic pole 14 are adjusted, and the electron beam is extracted. The electron gun head unit 1 and the anode electrode 2 and the axis adjustment of the lower magnetic pole 19 are used in combination. By using the two axis adjustments together, the axis adjustment of the electron source 4 with respect to the electromagnetic lens can be performed more precisely.
[0018]
It is necessary to secure a sufficient distance for the withstand voltage between the movable magnetic pole 14 and the fixed magnetic pole 15, but if these distances are too far apart, a strong on-axis magnetic field cannot be generated and the optical conditions of the electron gun are made the same. Requires strong excitation.
[0019]
Considering the withstand voltage of the fixed magnetic pole 15 and the movable magnetic pole 14, the distance between them is S [mm], and the horizontal movement amount of the electron gun head unit 1 is + 1 [mm], tilt + In the case of 100 [mrad], the distance that the movable magnetic pole 14 of the electron gun head unit 1 is closest to the fixed magnetic pole 15 by the axis adjustment is about (S-1.5) [mm], and the guaranteed value of withstand voltage in space is 5 If [kV / mm], the withstand voltage of the space between the movable magnetic pole 14 and the fixed magnetic pole 15 is guaranteed to be 5 (S-1.5) [kV].
[0020]
Next, the positional relationship between the fixed magnetic pole 15 and the movable magnetic pole 14 and the relationship between coil excitation will be considered. FIG. 12 shows the relationship between the distance S between the movable magnetic pole 14 and the fixed magnetic pole 15 and the power consumption of the coil. When the acceleration voltage is 10 [kV], a crossover is made from the electron source 4 to 160 [mm]. It is a calculation result when forming. By separating the distance S between the movable magnetic pole 14 and the fixed magnetic pole 15, the power consumption of the coil is increased. Under conditions where the coil power consumption is 17 [W] or more, there is a problem with the long-term stability of the electron gun due to the heat generated by the coil, so it is necessary to adjust the distance S so that the power consumption is 17 [W] or less. . Therefore, in this case, the distance between the movable magnetic pole 14 and the fixed magnetic pole 15 needs to be 10 [mm] or less. FIG. 13 shows a calculation result when the relative distance t in the height direction between the movable magnetic pole 14 and the fixed magnetic pole 15 is changed. The acceleration voltage is 10 [kV] and the electron source 4 is at a position of 160 [mm]. It is a calculation result when a crossover is formed. From this calculation result, the same optical condition can be realized with less power consumption by making the condition of t> 0, that is, by making the movable magnetic pole 14 relatively higher than the fixed magnetic pole 15.
[0021]
FIG. 10 shows the calculation result of the magnetic field distribution when 1 [A] is passed through the 1000 [T] coil 7 in the above-described electron gun structure, and the vicinity of the electron source 4 is enlarged. The calculation result diagram is composed of a movable magnetic pole 14, a fixed magnetic pole 15, and a lower magnetic pole 19, and shows isomagnetic lines as the calculation result. Moreover, the inner diameter of the movable magnetic pole 14 and the lower magnetic pole was F14 [mm], and the distance between the movable magnetic pole 14 and the lower magnetic pole 19 was 8 [mm]. From this result, it can be seen that even when the distance between the movable magnetic pole 14 and the fixed magnetic pole 15 is 8 [mm], it is possible to generate a strong magnetic field on the axis by magnetic coupling in that space. FIG. 11 shows the axial magnetic field distribution as a result of calculation under the same conditions as in FIG. It can be seen that a magnetic field of about 0.07 [Teslas] is generated at the position of the main surface of the electromagnetic lens. In the electron gun disclosed in JP-A-2-297852, the inner diameter of the magnetic pole a10 is increased in order to provide a withstand voltage between the electron source 4 to which a high voltage is applied and the magnetic pole a10. In addition, since the electron source 4 is arranged below the position where the axial magnetic field distribution becomes maximum, in order to generate a magnetic field of 0.1 [Teslas] at the position of the main surface of the electromagnetic lens, 10000 [AT] or more It is necessary to use thing excitation. In the electron gun of the present invention, the heating value of the coil 7 under the above conditions is about 15 [W], and it is not necessary to use cooling water.
[0022]
By using the above-mentioned electron gun structure, the magnetic field superposition type electron gun can be reduced in size and can be operated stably.
[0023]
(Example 2)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a cross-sectional view for explaining the configuration of the electron gun of the present invention at the time of baking. The electron gun head portion 1, the anode electrode 2, the lower magnetic pole 19, the fixed magnetic pole 15, the nonmagnetic metal 13, the external heater 20, and the plate The heater 22, the detachable coil portion 26, the horizontal driving portion 30, and the tilting driving portion 31 are configured, and the nonmagnetic metal 13 is filled between the fixed magnetic pole 15 and the lower magnetic pole 19. Here, the electron gun head section 1 is composed of a movable magnetic pole 14, an extraction electrode 5, a suppressor electrode 9, an electron source 4, an internal heater 16, and an insulator 24. The movable magnetic pole 14, the extraction electrode 5, the suppressor electrode 9, and an electron The source 4 and the internal heater 16 are structured so as to be suspended from the insulator 24. The detachable coil portion 26 includes a coil 7, a coil fixing bracket 27, and a magnetic pole 23, and the coil 7 is fixed to the magnetic pole 23 by the coil fixing bracket 27. At the time of electron gun baking, the removable coil portion 26 is removed, the plate heater 22 is attached, and baking is performed by the external heater 20, the plate heater 22, and the internal heater 16. In baking, the electron gun head unit 1 is sufficiently heated by baking the electron gun head unit 1 with the internal heater 16. Also, by filling the space between the fixed magnetic pole 15 and the lower magnetic path with the nonmagnetic metal 13, the heat of the external heater 20 and the plate heater 22 can be efficiently distributed to the electron gun. By using these configurations, baking can be performed efficiently, and the electron gun can be operated stably for reasons such as improving the ultimate vacuum of the electron gun and improving the vacuum near the electron source. .
[0024]
The present embodiment can be directly applied to the structure of the electron gun shown in the embodiment of the present invention, and does not impair the effects of the invention at all.
[0025]
(Example 3)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 14 shows a configuration in the case where the mechanical axis adjustment of the electron gun of the present invention is performed by a motor drive, which is composed of an electron gun unit 42 and a motor control unit 41. Here, the electron gun unit 42 includes an electron gun head unit 1, a horizontal drive unit 30, a detachable coil unit 26, a motor fixing bracket 32, a horizontal drive motor a33, a horizontal drive motor b34, a horizontal drive motor c35, a horizontal drive motor d36, It is composed of an inclination drive motor a37, an inclination drive motor b38, an inclination drive motor c39, and an inclination drive motor d40. FIG. 15 is a cross-sectional view showing the detachable coil 26, the electron gun head unit 1, the horizontal drive unit 30, the tilt drive unit 31, the horizontal drive motor a33, the horizontal drive motor c35, the tilt drive motor a37, The detachable coil 26 is composed of a coil 7 magnetic pole 23 and a coil fixing bracket 27. Here, each motor is driven only when adjusting the mechanical axis of the electron gun, and the horizontal drive unit 30 and the tilt drive unit 31 are moved. In other cases, the horizontal drive unit 30 and the tilt drive unit 31 do not move. Assume that it is stopped in a fixed state. The mechanical axis adjustment of the electron gun is performed by the respective motors pushing the horizontal drive unit 30 and the tilt drive unit 31. The motor control is performed by the motor control unit 41. The control is such that when the horizontal drive motor a33 rotates in the clockwise direction, the horizontal drive motor c35 having a phase relationship of 180 ° with it rotates in the counterclockwise direction, and each motor is driven at the same rotational speed. Thus, the horizontal driving unit 30 is pushed with a constant force. The other motors are controlled in the same manner as described above. In this configuration, the mechanical axis adjustment of the electron gun can be electrically controlled instead of manually, so that the mechanical axis adjustment can be performed more easily.
[0026]
The present embodiment can be directly applied to the structure of the electron gun shown in the embodiment of the present invention, and does not impair the effects of the invention at all.
[0027]
Example 4
A fourth embodiment of the present invention will be described with reference to the drawings. FIG. 16 is a configuration diagram when the electron gun of the present invention is mounted on an SEM circuit pattern appearance inspection apparatus with a defect review function. The figure includes an electron gun unit 42, a mirror unit 60, a stage unit 58, an image processing unit 57, an image display device 59, a deflection control unit 54, a lens control unit 55, a retarding power source 56, and an electron gun power source 53. .
[0028]
The electron gun section 42 includes a detachable coil 26, a coil 7, a fixed magnetic pole 15, an anode electrode 2, a lower magnetic pole 19, a movable magnetic pole 14, an extraction electrode 5, a suppressor electrode 9, and an electron source 4. Here, the electron source 4 is configured to be supplied with an electron source heating current If from an electron gun power source 53 and to apply a desired acceleration voltage V0. Further, it is assumed that the reverse bias voltage Vs can be applied to the suppressor electrode 9 and the positive bias voltage V1 can be applied to the extraction electrode 5 with respect to the electron source 4.
[0029]
The lens body 60 includes a movable diaphragm 43, a blanking plate 44, a Faraday cup 45, a condenser lens 47, a semiconductor detector 49, a detector 71, a deflector 46, an objective lens 48, ExB 62, and a reflector 63. Here, it is assumed that the semiconductor detector 49 operates at a sampling frequency of 10 MHz to 200 MHz, and a high voltage can be applied to attract the secondary electrons generated from the sample 50 to the semiconductor detector 49. The detector 71 is a detector that operates at a sampling frequency of about 10 MHz, and has a structure in which a high voltage can be applied in the same manner as the semiconductor detector 49. ExB62 can reverse the polarity of the electrostatic deflector and the electromagnetic deflector of ExB62 according to the inspection condition and the review condition.
[0030]
The stage unit 58 includes a sample 50, a sample holder 51, an insulator 24, a stage driving device 52, and a sample chamber 61. Here, the sample 50 and the sample holder 51 and the stage driving device 52 are electrically insulated by the insulator 24 and have a structure to which the retarding voltage Vr can be applied.
[0031]
The electron beam 8 supplies an electron source heating current If to the electron source 4 to which a voltage of V0 is applied, and a positive bias V1 is extracted to the electron source 4 and the reverse bias Vs is applied to the suppressor electrode 9. By applying each, it is released with V0 energy.
[0032]
Under the inspection conditions, the emitted electron beam 8 is converged by the magnetic field generated by the removable coil 26 of the electron gun section 42, and forms a crossover on the blanking plate 44. The excitation of the condenser lens 47 is adjusted so that the total magnification of the optical system is 0.5 to 1.5 times, and the object 50 is focused on the sample 50. Here, the probe current of the electron beam 8 is determined by the aperture diameter of the movable aperture 43 and the radiation angle current density of the electron beam 8, and can be adjusted from 20 [nA] to 200 [nA]. Further, a retarding voltage Vr is applied to the sample 50 from a retarding power source 56, and the incident energy of the electron beam 8 can be adjusted by adjusting the applied voltage.
[0033]
The deflection controller 54 generates a sawtooth wave of 10 kHz to 200 kHz as a deflection signal, and the deflector 46 deflects the electron beam 8. The deflection control unit 54 moves the stage 51 in a direction orthogonal to the direction in which the electron beam is deflected, and controls the stage driving device 52 so that the electron beam 8 scans the sample 50 two-dimensionally. To do. The deflection control unit 54 can apply a voltage to the blanking plate 44 so that the Faraday cup 45 blocks the electron beam 8 when the sample 50 is not irradiated with the electron beam 8.
[0034]
The secondary electrons 65 generated from the sample 50 are applied to the reflector 63 by the ExB 62 adjusted so that only the secondary electrons 65 generated from the sample 50 are separated from the optical axis, and are attracted to the semiconductor detector 49. The secondary electrons 65 detected by the semiconductor detector 49 are converted into digital signals by the AD converter 64 and imaged by the image processing unit 57.
[0035]
The image processing unit 57 calculates a difference image between the reference image 66 acquired first and the comparison image 67 acquired at a location different from the reference image 66 on the wafer, and the difference image is used as a defect image 68 to the image display device 59. Send to. Further, the image processing unit 57 can send a comparative image in which a defect exists in the image to the image display device 59.
[0036]
For example, when inspecting a wafer having a pattern size of 0.1 [mm] with this SEM type circuit pattern visual inspection apparatus, the probe size in the sample 50 is preferably 0.1 [mm] or less.
[0037]
When the above inspection is performed under the conditions where the focal length of the objective lens 48 is 30 to 40 [mm] and the probe current is 50 to 150 [nA], the total magnification of the optical system is set to 0.5 to 1.5 in order to suppress the chromatic aberration of the objective lens 48. It is inevitable that the lens will be used twice, and it is necessary to suppress the aberration of the electron gun. When this condition is inspected with an electrostatic electron gun, the chromatic aberration of the electron gun defined on the object side is as large as 45 to 60 [nm] and the spherical aberration is as large as 35 to 50 [nm]. The size is 0.15 to 0.3 [mm]. Here, by using the electron gun of the present invention at an acceleration voltage of 10 [kV] and excitation of 800 to 1000 [AT], the focal length of the electron gun converted to the object side is 8 to 11 [mm]. The chromatic aberration of the electron gun defined on the object side is 15 to 20 [nm], the spherical aberration is 1 to 2 [nm], and the probe size in the sample 50 is 0.05 to 0.1 [mm]. it can. Further, by using the electron gun of the present invention at a magnification of 5 to 10 times and adopting an optical system that reduces to 0.1 to 0.5 with the condenser lens 47 and the objective lens 48, the blanking plate 44, the movable diaphragm 43, the Faraday. The influence of contamination attached to the cup 45 can be mitigated. For example, if the amount of image drift due to contamination is 0.5 [mm] when all lenses are used at a magnification of 1 ×, adopting the above optical conditions will reduce that drift to 0.05 to 0.1 [mm]. Can do.
[0038]
On the other hand, in order to confirm the defect on the detected circuit pattern with a high-resolution and clear image, the defect image is observed under the optical condition as the review condition. Under the review conditions, the excitation of the coil 7 is adjusted so that the electron beam 69 creates a crossover above the movable diaphragm and the probe current is 100 [pA] to 5 [nA]. Then, the excitation of the condenser lens 47 is adjusted so that the total magnification of the optical system is 0.2 to 0.3, and the object 50 is focused on the sample 50. The secondary electrons 70 generated from the sample 50 are detected by the detector 71 by using the ExB 62 with the polarity reversed with respect to the inspection adjustment.
[0039]
The detected secondary electrons 70 are imaged by the image display device 59.
[0040]
The electron gun of the present invention is mounted on a SEM circuit pattern visual inspection apparatus with a review function, and the inspection condition and the review condition are instantaneously switched by adjusting the electron gun as described above, and the inspection apparatus is stable with a large current. Can be realized.
[0041]
【The invention's effect】
As described above, according to the present invention, the electron gun in which the electric field of the electrostatic lens and the magnetic field of the electromagnetic lens are superimposed can be operated in a small and stable manner.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining an entire configuration of an electron gun in an embodiment of the present invention.
FIG. 2 is a plan view for explaining an entire configuration of an electron gun according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view for explaining the configuration of an electron gun head portion of an electron gun according to the present invention.
FIG. 4 is a plan view for explaining the configuration of an electron gun head portion of an electron gun according to the present invention.
FIG. 5 is a view for explaining the configuration of a conventional magnetic field superposition electron gun.
6 is a diagram for explaining an on-axis potential distribution, an on-axis magnetic field distribution, and an electron beam trajectory in the vicinity of an electron source of a conventional magnetic field superposition electron gun. FIG.
FIG. 7 is a view for explaining the configuration of a conventional magnetic field superposition type electron gun.
FIG. 8 is a diagram for explaining an on-axis potential distribution, an on-axis magnetic field distribution, and an electron beam trajectory in the vicinity of an electron source of a conventional magnetic field superposition type electron gun.
FIG. 9 is a cross-sectional view for explaining a form during baking of the electron gun of the present invention.
FIG. 10 is a diagram for explaining a magnetic field distribution calculation result of the electron gun of the present invention.
FIG. 11 is a diagram for explaining a calculation result of an on-axis magnetic field distribution of the electron gun of the present invention.
FIG. 12 is a diagram for explaining the relationship between the distance between the movable magnetic pole and the fixed magnetic pole of the electron gun of the present invention and the coil power consumption.
FIG. 13 is a diagram for explaining the relationship between the relative height relationship between the movable magnetic pole and the fixed magnetic pole of the electron gun of the present invention and the coil power consumption.
FIG. 14 is a plan view for explaining a method of adjusting the mechanical axis by the motor of the electron gun of the present invention.
FIG. 15 is a cross-sectional view for explaining a method of adjusting a mechanical axis by a motor of an electron gun of the present invention.
FIG. 16 is a diagram when the electron gun of the present invention is applied to an SEM circuit pattern appearance inspection apparatus with a defect review function.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron gun head part 1, 2 ... Anode electrode 2, 3 ... Vacuum vessel 3,
4 ... Electron sources 4, 5 ... Extraction electrodes 5, 6 ... Electromagnetic lens sections 6, 7 ... Coil 7,
8 ... Electron beam 8, 9 ... Suppressor electrode 9, 10 ... Magnetic pole a10, 11 ... Magnetic pole b11,
12 ... Magnetic poles c12, 13 ... Nonmagnetic metal 13
14 ... movable magnetic poles 14, 15 ... fixed magnetic poles 15,16 ... internal heater 16,
17 ... Electron gun head horizontal movement screw 17,
18 ... Electron gun head tilting screw 18, 19 ... Lower magnetic pole 19, 20 ... External heater 20,
21 ... Shaft adjusting screws 21, 22 ... Plate heaters 22, 23 ... Magnetic poles 23, 24 ... Insulator 24,
25... Supports 25 and 26. Detachable coils 26 and 27.
28 ... Suppressor electrode base 28, 29 ... Electron source heating column 29,
30 ... Horizontal drive unit 30, 31 ... Inclination drive unit 31, 32 ... Motor fixing bracket 32,
33 ... Horizontal drive motor a33, 34 ... Horizontal drive motor b34,
35 ... Horizontal drive motor c35, 36 ... Horizontal drive motor d36,
37: Inclination drive motor a37, 38 ... Inclination drive motor b38,
39: Inclination drive motor c39, 40 ... Inclination drive motor d40,
41 ... Motor control units 41, 42 ... Electron gun units 42, 43 ... Movable diaphragm 43,
44 ... Blanking plates 44, 45 ... Faraday cups 45, 46 ... Deflectors 46,
47 ... condenser lenses 47, 48 ... objective lenses 48, 49 ... semiconductor detector 49,
50 ... Sample 50, 51 ... Sample holder 51,52 ... Stage driving device 52,
53 ... Electron gun power supply 53, 54 ... Deflection control unit 54, 55 ... Lens control unit 55,
56 ... retarding power supply 56, 57 ... image processing unit 57, 58 ... stage unit 58,
59 ... Image display device 59, 60 ... Mirror body part 60, 61 ... Sample chamber 61, 62 ... ExB62,
63 ... reflectors 63, 64 ... AD converters 64, 65 ... secondary electrons 65,
Reference image 66, 67 ... Acquired image 67, 68 ... Defect image 68,
69 ... Electron beam 69 under review conditions 70, Secondary electron 70 under review conditions,
71... Detector 71.

Claims (3)

電子源と、該電子源を制御するための静電レンズ及び電磁レンズとを有し,
該電磁レンズは、
少なくとも1つの固定磁極と、
該固定磁極に対して相対的に、前記電子源と一体となって移動可能な移動磁極とを備えることを特徴とする電子銃。
An electron source, and an electrostatic lens and an electromagnetic lens for controlling the electron source,
The electromagnetic lens is
At least one fixed magnetic pole;
An electron gun comprising: a moving magnetic pole movable relative to the fixed magnetic pole integrally with the electron source.
請求項1記載の電子銃において、
前記可動磁極を可動させるためのモータを備えたことを特徴とする請求項1記載の電子銃。
The electron gun according to claim 1,
The electron gun according to claim 1, further comprising a motor for moving the movable magnetic pole.
請求項1記載の電子銃において、
前記電磁レンズを構成する該可動磁極に高電圧が印加され,該固定磁極が接地電位であることを特徴とする請求項1記載の電子銃。
The electron gun according to claim 1,
2. The electron gun according to claim 1, wherein a high voltage is applied to the movable magnetic pole constituting the electromagnetic lens, and the fixed magnetic pole is at a ground potential.
JP2000131521A 1999-09-01 2000-04-26 Electron gun Expired - Lifetime JP3900792B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000131521A JP3900792B2 (en) 2000-04-26 2000-04-26 Electron gun
US09/652,606 US6583413B1 (en) 1999-09-01 2000-08-30 Method of inspecting a circuit pattern and inspecting instrument
US10/404,451 US7098455B2 (en) 1999-09-01 2003-04-02 Method of inspecting a circuit pattern and inspecting instrument
US11/452,989 US7397031B2 (en) 1999-09-01 2006-06-15 Method of inspecting a circuit pattern and inspecting instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131521A JP3900792B2 (en) 2000-04-26 2000-04-26 Electron gun

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005218166A Division JP3901199B2 (en) 2005-07-28 2005-07-28 SEM circuit pattern inspection system

Publications (3)

Publication Number Publication Date
JP2001312986A JP2001312986A (en) 2001-11-09
JP2001312986A5 JP2001312986A5 (en) 2005-03-03
JP3900792B2 true JP3900792B2 (en) 2007-04-04

Family

ID=18640403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131521A Expired - Lifetime JP3900792B2 (en) 1999-09-01 2000-04-26 Electron gun

Country Status (1)

Country Link
JP (1) JP3900792B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324119A (en) * 2005-05-19 2006-11-30 Hitachi Ltd Electron gun
US8159118B2 (en) 2005-11-02 2012-04-17 United Technologies Corporation Electron gun
JP2008175726A (en) * 2007-01-19 2008-07-31 Tohoku Univ Electron beam irradiating device
JP6095338B2 (en) * 2012-11-28 2017-03-15 株式会社日立製作所 Electron gun and charged particle beam device
JP6218403B2 (en) * 2013-03-15 2017-10-25 株式会社マーストーケンソリューション X-ray tube equipped with a field emission electron gun and X-ray inspection apparatus using the same
JP6779847B2 (en) 2017-09-11 2020-11-04 株式会社ニューフレアテクノロジー Charged particle device, charged particle drawing device and charged particle beam control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151159A (en) * 1981-03-13 1982-09-18 Internatl Precision Inc Objective lens of electron beam device
JPS60127645A (en) * 1983-12-14 1985-07-08 Hitachi Ltd Field emission type electron gun
JPS61131351A (en) * 1984-11-30 1986-06-19 Internatl Precision Inc Objective lens of electron beam device
JP2775071B2 (en) * 1989-02-22 1998-07-09 日本電信電話株式会社 Charged particle beam generator
JP2835265B2 (en) * 1992-08-27 1998-12-14 株式会社東芝 Magnetic field immersion type electron gun and method of operating magnetic field immersion type electron gun
JPH06139976A (en) * 1992-10-21 1994-05-20 Jeol Ltd Field emission electron gun

Also Published As

Publication number Publication date
JP2001312986A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
CN101379584B (en) Particle-optical component
JP6591681B2 (en) Charged particle beam apparatus and scanning electron microscope
US7067809B2 (en) Method and apparatus for multiple charged particle beams
US6787780B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a semiconductor device
JP2002516026A (en) Correction device for correcting lens defects in particle-optical apparatus
US20010028038A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method a semiconductor device
US20050035291A1 (en) Dual beam system
JP2006054074A (en) Charged particle beam column
TW201214497A (en) Electron beam device with dispersion compensation, and method of operating same
JP3323021B2 (en) Scanning electron microscope and sample image observation method using the same
JP4527289B2 (en) Particle optics including detection of Auger electrons
US20030189180A1 (en) Multi-beam exposure apparatus using a multi- axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US6703624B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US6580074B1 (en) Charged particle beam emitting device
JP3900792B2 (en) Electron gun
JPH0628145B2 (en) Focused ion beam column
US20010028043A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a multi-axis electron lens and fabrication method of a semiconductor device
Grzelakowski et al. A flange‐on type low energy electron microscope
JP3901199B2 (en) SEM circuit pattern inspection system
JP4790511B2 (en) Charged particle beam equipment
JP2003151484A (en) Scanning type charged particle beam device
CN111971774B (en) charged particle beam device
JPH11283544A (en) Electron beam irradiating device
US20220199355A1 (en) Apparatus for and method of local control of a charged particle beam
JP3474082B2 (en) Electron beam equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R151 Written notification of patent or utility model registration

Ref document number: 3900792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

EXPY Cancellation because of completion of term