WO2016121226A1 - Charged particle beam device and scanning electron microscope - Google Patents

Charged particle beam device and scanning electron microscope Download PDF

Info

Publication number
WO2016121226A1
WO2016121226A1 PCT/JP2015/084074 JP2015084074W WO2016121226A1 WO 2016121226 A1 WO2016121226 A1 WO 2016121226A1 JP 2015084074 W JP2015084074 W JP 2015084074W WO 2016121226 A1 WO2016121226 A1 WO 2016121226A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
charged particle
particle beam
sample
power source
Prior art date
Application number
PCT/JP2015/084074
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 熊本
定好 松田
Original Assignee
松定プレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松定プレシジョン株式会社 filed Critical 松定プレシジョン株式会社
Priority to TW105122731A priority Critical patent/TWI680488B/en
Publication of WO2016121226A1 publication Critical patent/WO2016121226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to a charged particle beam apparatus and a scanning electron microscope. More specifically, the present invention relates to a charged particle beam apparatus and a scanning electron microscope that can improve performance.
  • Examples of the charged particle beam apparatus include a scanning electron microscope (hereinafter referred to as “SEM”), an EPMA (Electron Probe Micro Analyzer), an electron beam welding machine, an electron beam drawing apparatus, and an ion beam microscope. To do.
  • SEM scanning electron microscope
  • EPMA Electro Probe Micro Analyzer
  • the lens is devised to shorten the focus from the viewpoint of high resolution.
  • B in the magnetic flux density distribution B (z) on the optical axis of the lens.
  • the lens thickness that is, the z width of the B distribution.
  • Patent Document 1 listed below describes an SEM provided with two objective lenses (a first objective lens and a second objective lens) (hereinafter, a lens on the electron gun side with respect to a sample is used as a first objective lens).
  • the objective lens on the opposite side of the electron gun from the sample is called the second objective lens).
  • the second objective lens is used in a high-resolution observation mode during low acceleration with an acceleration voltage Vacc of 0.5 to 5 kV.
  • the first objective lens is used in a normal observation mode at an acceleration voltage Vacc of 0.5 to 30 kV.
  • Patent Document 1 the first objective lens and the second objective lens are not operated simultaneously.
  • the first objective lens and the second objective lens are switched by mode switching means for each mode.
  • mode switching means for each mode.
  • a part of the magnetic pole of the second objective lens is separated in terms of current potential through an electrical insulating portion. .
  • a voltage Vdecel is applied to a part of the magnetic pole and the sample.
  • the secondary electron (or backscattered electron) detector is placed further on the electron gun side than the first objective lens. Secondary electrons (or reflected electrons) generated in the sample portion pass through the first objective lens and enter the detector.
  • Patent Document 2 also discloses the configuration of the SEM.
  • the objective lens is disposed on the opposite side of the electron gun from the sample.
  • the secondary electrons are deflected by the electric field drawn from the secondary electron detector and captured by the secondary electron detector.
  • JP 2007-250223 A Japanese Patent Laid-Open No. 6-181041
  • An object of the present invention is to improve the performance of a charged particle beam apparatus and a scanning electron microscope.
  • a charged particle source an acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source, and the charged particle beam
  • the objective lens has a first objective lens installed on the side where the charged particle beam is incident on the sample, and the charged particle beam on the sample.
  • the charged particle beam device includes a first objective lens power source that varies an intensity of the first objective lens, and an intensity of the second objective lens.
  • a control device for controlling the first objective lens power source and the second objective lens power source. The control device includes the strength of the first objective lens and the second objective lens power source.
  • a function for simultaneously controlling, a function for focusing the charged particle beam on the sample only by the first objective lens, a function for focusing the charged particle beam on the sample only by the second objective lens, and a first objective The lens and the second objective lens are used at the same time, and the opening angle of the charged particle beam incident on the sample is varied by the first objective lens to focus on the sample.
  • a charged particle source an acceleration power source provided to accelerate the charged particle beam emitted from the charged particle source, connected to the charged particle source, and the charged particle beam are focused on the sample.
  • the objective lens is opposite to a side on which a charged particle beam is incident on a sample and a first objective lens that is installed on the side on which the charged particle beam is incident on the sample.
  • the charged particle beam device includes a first objective lens power source that varies the intensity of the first objective lens, and a second objective lens that varies the intensity of the second objective lens.
  • Objective lens power source, and a first control device that controls the first objective lens power source and the second objective lens power source.
  • the first control device includes the strength of the first objective lens and the second A function that controls the intensity of the objective lens independently
  • the charged particle beam device has a two-stage deflecting member that scans the charged particle beam two-dimensionally, and the two-stage deflecting member includes an upper deflecting member and a lower deflecting member.
  • a second deflection power source that varies the strength or voltage of the upper deflection member, a lower deflection power source that varies the strength or voltage of the lower deflection member, and a second that controls the upper deflection power source and the lower deflection power source.
  • the upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens, and the second control device includes an upper deflection power source and Vary the current ratio or voltage ratio of the lower deflection power supply.
  • a charged particle source an acceleration power source connected to the charged particle source provided to accelerate the charged particle beam emitted from the charged particle source, and the charged particle beam focused on the sample
  • the objective lens is provided on the side where the charged particle beam is incident on the sample.
  • the charged particle beam device includes a first objective lens power source that varies the intensity of the first objective lens, and a second objective lens that varies the intensity of the second objective lens.
  • the charged particle beam device has a two-stage deflection member that scans the charged particle beam two-dimensionally, and the two-stage deflection member includes an upper deflection member and a lower deflection member.
  • the upper deflection power source for varying the strength or voltage of the upper deflection member
  • the lower deflection power source for varying the strength or voltage of the lower deflection member
  • the upper deflection power source and the lower deflection power source for controlling the first objective lens power supply and the second objective lens power supply, wherein the first control device determines the strength of the first objective lens and the second Independently controls the intensity of the objective lens
  • the charged particle beam device has a two-stage deflection member that scans the charged particle beam two-dimensionally, and the two-stage deflection member includes an upper deflection member and a lower deflection member.
  • the upper deflection power source for varying the strength or voltage of the upper deflection member
  • the lower deflection power source for varying the strength or voltage of the lower
  • the upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens, and the lower deflection members are respectively A plurality of coils having different numbers of turns, and the second control device controls one of the plurality of coils to be used.
  • the deflection member is a deflection coil or a deflection electrode.
  • the distance between the first objective lens and the measurement sample surface is made shorter than the distance between the second objective lens and the measurement sample surface, and the second objective lens power supply is used.
  • the distance between the second objective lens and the measurement sample surface is made shorter than the distance between the first objective lens and the measurement sample surface.
  • the charged particle beam apparatus further includes a retarding power source for applying a negative potential to the sample and decelerating the charged particle beam.
  • the charged particle beam device further includes a detector arranged so as not to block a trajectory through which the charged particle beam passes, and the detector is attached to a lower portion of the upper device that emits the charged particle beam toward the sample. It is done.
  • the distance between the detector and the second objective lens is 10 mm to 200 mm.
  • the detector is a semiconductor detector, a phosphor emission type detector, or a microchannel plate detector, and is disposed within 3 cm from the trajectory of the charged particle beam.
  • the charged particle beam apparatus further includes a secondary electron detector having an electric field that attracts electrons, so that the electric field generated from the secondary electron detector attracts secondary electrons emitted from the sample by the charged particles.
  • the secondary electron detector is arranged.
  • the second objective lens has a charged particle beam accelerated with an acceleration power source of either ⁇ 30 kV to ⁇ 10 kV, from 0 mm when viewed from a position closest to the magnetic pole sample of the second objective lens. Focusing is possible at any height of 4.5 mm.
  • the charged particle beam apparatus further includes an insulating plate disposed on the second objective lens, and a conductive sample stage disposed on the insulating plate, wherein the second objective lens and the conductive sample stage are provided. Is insulated.
  • the conductive sample stage is shaped so as to move away from the insulating plate as it approaches the peripheral edge.
  • the space between the insulating plate and the conductive sample stage is filled with an insulating material.
  • the charged particle beam apparatus further includes a potential plate having an opening in the upper part of the conductive sample stage, and a ground potential, a positive potential, or a negative potential is applied to the potential plate.
  • the opening of the potential plate has a circular shape or a mesh shape with a diameter of 2 mm to 20 mm.
  • the potential plate has a shape that is separated from the conductive sample stage at a place other than near the sample.
  • the charged particle beam apparatus further includes moving means for moving the potential plate.
  • In the 2nd Embodiment of this invention it is a schematic sectional drawing explaining the simple case without a 1st objective lens. It is sectional drawing which shows an example of the apparatus structure of SEM which concerns on the 4th Embodiment of this invention.
  • the SEM includes an electron source (charged particle source) 11, an acceleration power source 14, a condenser lens 15, an objective lens diaphragm 16, a two-stage deflection coil 17, objective lenses 18 and 26, and a detector 20.
  • Electron beam apparatus The acceleration power source 14 accelerates a primary electron beam (charged particle beam) 12 emitted from the electron source 11.
  • the condenser lens 15 focuses the accelerated primary electron beam 12.
  • the objective lens stop 16 removes unnecessary portions of the primary electron beam 12.
  • the two-stage deflection coil 17 scans the primary electron beam 12 on the sample 23 two-dimensionally.
  • the objective lenses 18 and 26 focus the primary electron beam 12 on the sample 23.
  • the detector 20 detects the signal electrons 21 (secondary electrons 21a and reflected electrons 21b) emitted from the sample 23.
  • the SEM includes a first objective lens power source 41, a second objective lens power source 42, and a control device 45 as a control unit of the electromagnetic lens.
  • the first objective lens power supply 41 varies the intensity of the first objective lens 18.
  • the second objective lens power source 42 varies the intensity of the second objective lens 26.
  • the control device 45 controls the first objective lens power source 41 and the second objective lens power source 42.
  • the control device 45 can control the intensity of the first objective lens 18 and the intensity of the second objective lens 26 independently.
  • the control device 45 can control both lenses simultaneously. Further, although not shown in the figure, each power source can be adjusted by being connected to the control device 45.
  • a thermionic emission type (thermionic source type) or a field emission type (Schottky type or cold cathode type) can be used.
  • a crystal electron source such as thermionic emission type LaB6 or a tungsten filament is used for the electron source 11.
  • an acceleration voltage of ⁇ 0.5 kV to ⁇ 30 kV is applied between the electron source 11 and the anode plate (ground potential).
  • a negative potential is applied to the Wehnelt electrode 13 more than the potential of the electron source 11.
  • a crossover diameter that is the first minimum diameter of the primary electron beam 12 is formed immediately in front of the electron source 11. This minimum diameter is called the electron source size So.
  • Accelerated primary electron beam 12 is focused by condenser lens 15. Thereby, the size So of the electron source is reduced.
  • the reduction ratio and the current applied to the sample 23 (hereinafter referred to as probe current) are adjusted by the condenser lens 15.
  • the objective lens aperture 16 removes unnecessary orbital electrons. Depending on the hole diameter of the objective lens aperture 16, the opening angle ⁇ of the beam incident on the sample 23 and the probe current are adjusted.
  • the primary electron beam 12 that has passed through the objective lens stop 16 passes through the first objective lens 18 after passing through the scanning two-stage deflection coil 17.
  • the general-purpose SEM focuses the primary electron beam 12 on the sample 23 using the first objective lens 18.
  • the SEM of FIG. 1 can be used in this way.
  • the configuration from the electron source 11 to the first objective lens 18 constitutes an upper device that emits the primary electron beam 12 toward the sample 23.
  • the lower device is constituted by the potential plate 22 and members disposed below the potential plate 22.
  • the sample 23 is held in the lower device.
  • the upper device has a hole 18c through which the charged particle beam that passes through the upper device is finally emitted.
  • the hole 18 c exists in the first objective lens 18.
  • the detector 20 is attached below the hole 18c.
  • the detector 20 also has an opening through which the primary electron beam 12 passes.
  • the detector 20 is attached to the lower part of the first objective lens 18 so that the hole 18c and the opening overlap each other.
  • a plurality of detectors 20 may be attached to the lower part of the first objective lens 18.
  • the plurality of detectors 20 are attached such that the detection part of the detector 20 is as small as possible except for the hole 18c of the upper device, while preventing the path of the primary electron beam 12 from being blocked.
  • FIG. 2 shows an example in which the first objective lens 18 is used to focus the primary electron beam 12 on the sample 23.
  • a thick sample 23 is observed by this method.
  • the second objective lens 26 when the second objective lens 26 is mainly used, the primary electron beam 12 that has passed through the first objective lens 18 is reduced and focused by the second objective lens 26. Since the second objective lens 26 has a stronger magnetic field distribution toward the sample 23 (see FIG. 4B), a low aberration lens is realized.
  • the first objective lens 18 is used to control the opening angle ⁇ and adjust the reduction ratio, lens shape, and depth of focus so that an easy-to-view image is obtained. That is, the first objective lens 18 is used to optimize each of these control values.
  • assistance for focusing the primary electron beam 12 by the first objective lens 18 can be performed.
  • the sample 23 is preferably installed as close to the second objective lens 26 as possible. More specifically, the sample 23 is preferably placed close to the upper part of the second objective lens 26 so that the distance from the upper part (upper surface) of the second objective lens 26 is 5 mm or less.
  • the primary electron beam 12 scans the sample 23 with energy accelerated by the acceleration power source 14.
  • the secondary electrons 21a are wound around the magnetic flux by the magnetic field of the second objective lens 26 and rise while spiraling.
  • the magnetic flux density rapidly decreases, so that the secondary electrons 21a are swung away from the swirl and diverge. Captured by 19. That is, the secondary electron detector 19 is arranged such that the electric field generated from the secondary electron detector 19 attracts secondary electrons emitted from the sample by the charged particles. In this way, the number of secondary electrons 21a entering the secondary electron detector 19 can be increased.
  • FIG. 4 shows the equipotential lines at the time of retarding
  • (b) shows the magnetic flux density distribution B (z) on the optical axis of the second objective lens
  • (c) shows the charge at the time of retarding. It shows the velocity of the particles.
  • the magnetic flux density on the optical axis of the second objective lens 26 has a stronger distribution as it is closer to the sample, so the objective lens becomes a low aberration lens.
  • the primary electron beam 12 is decelerated as it approaches the sample 23 (see FIG. 4C). Since the primary electron beam 12 is more susceptible to the influence of the magnetic field as the speed is lower, it can be said that the second objective lens 26 becomes a stronger lens closer to the sample 23. Therefore, when a negative potential is applied to the sample 23, the second objective lens 26 becomes a lens with further low aberration.
  • the signal electrons 21 are accelerated by the electric field generated by the retarding voltage of the sample 23, are amplified, and enter the detector 20. Therefore, the detector 20 has high sensitivity. With such a configuration, a high-resolution electron beam apparatus can be realized.
  • the distance between the first objective lens 18 and the second objective lens 26 is set to 10 mm to 200 mm. More preferably, the thickness is 30 mm to 50 mm.
  • the reflected electrons 21b can be detected by the detector 20 placed immediately below the first objective lens 18.
  • the secondary electrons 21 a are easily drawn into the first objective lens 18 during the retarding.
  • the secondary electrons 21 a are easily detected by the detector 20.
  • there is a gap of about 30 mm between the first objective lens 18 and the second objective lens 26 the sample 23 can be easily put in and out.
  • the magnetic pole forming the second objective lens 26 includes a central magnetic pole 26a whose central axis coincides with the ideal optical axis of the primary electron beam 12, an upper magnetic pole 26b, a cylindrical side magnetic pole 26c, and a lower magnetic pole 26d. .
  • the center magnetic pole 26a has a shape with a smaller diameter at the top.
  • the upper part of the center magnetic pole 26a has, for example, a one-stage or two-stage truncated cone shape.
  • the lower part of the center magnetic pole 26a has a cylindrical shape. There is no through hole in the central axis below the central magnetic pole 26a.
  • the upper magnetic pole 26b has a disk shape in which the side close to the center of gravity of the central magnetic pole 26a is thinned toward the center.
  • An opening having an opening diameter d is open at the center of the upper magnetic pole 26b.
  • the tip diameter D of the central magnetic pole 26a is larger than 6 mm and smaller than 14 mm.
  • the relationship between the opening diameter d and the tip diameter D is dD ⁇ 4 mm.
  • the upper surfaces on the sample side of both the center magnetic pole 26a and the upper magnetic pole 26b have the same height.
  • the lower outer diameter of the center magnetic pole 26a is 60 mm. A thin outer diameter is not preferable because it causes a decrease in magnetic permeability.
  • the opening diameter d of the upper magnetic pole 26b is preferably 12 mm to 32 mm. More preferably, the opening diameter d is 14 mm to 24 mm. As the aperture diameter d increases, the magnetic flux density distribution on the optical axis becomes gentler and wider, and the AT (ampere turn: number of coil turns N [T] and current I [A] necessary for focusing the primary electron beam 12 is increased. Product) can be reduced. However, when the relationship between the opening diameter d and the tip diameter D is d> 4D, the aberration coefficient increases.
  • the opening diameter d of the upper magnetic pole 26b is 20 mm, and the outer diameter of the side magnetic pole 26c is 150 mm. A through hole may be provided at the center of the central magnetic pole 26a.
  • the tip diameter D is preferably larger than 6 mm and smaller than 14 mm. If D is too small, the magnetic pole is saturated and the primary electron beam 12 is not focused. On the other hand, when D is increased, performance is deteriorated. On the other hand, if the difference in size between d and D is smaller than 4 mm, the magnetic poles are too close to be saturated and the primary electron beam 12 is not focused. Further, when the distance between the first objective lens 18 and the second objective lens 26 is 10 mm or less, workability is deteriorated. When this distance is longer than 200 mm, the opening angle ⁇ becomes too large. In this case, in order to optimize the aberration, the first objective lens 18 needs to be adjusted to reduce ⁇ , and the operability is deteriorated.
  • the tip diameter D may be 6 mm or less.
  • the acceleration voltage is 5 kV
  • d is 5 mm
  • the thickness of the sample 23 is 5 mm
  • the performance of the lens can be further improved.
  • a part of the magnetic poles of the second objective lens 26 is sandwiched between the electrically insulating portions and part of the magnetic poles are lifted from the ground potential, and a retarding voltage is applied to the sample 23 and a part of the magnetic poles.
  • a retarding voltage is applied to the sample 23 and a part of the magnetic poles.
  • the magnetic lens becomes weak.
  • the retarding voltage is increased, discharge occurs. If the electrical insulating part is thickened, there is a problem that the magnetic lens becomes weaker.
  • a seal portion 26f (for example, copper, aluminum, or monel) made of a nonmagnetic material between the upper magnetic pole 26b and the central magnetic pole 26a.
  • the seal part 26f makes the space between the upper magnetic pole 26b and the central magnetic pole 26a vacuum-tight with an O-ring or brazing.
  • the vacuum side and the atmosphere side are hermetically separated by the upper magnetic pole 26b, the seal portion 26f, and the central magnetic pole 26a.
  • the upper magnetic pole 26b and the vacuum vessel are coupled so as to be airtight by an O-ring. In this way, the second objective lens 26 can be exposed to the atmosphere except for the vacuum side surface. Therefore, it becomes easy to cool the second objective lens 26.
  • the second objective lens 26 it is possible to put the second objective lens 26 in the vacuum vessel, but the degree of vacuum becomes worse. This is because if the coil part 26e is on the vacuum side, it becomes a gas emission source. Further, if the vacuum side and the atmosphere side are not hermetically separated in this way, the gas will pass through the place where the second objective lens 26 and the insulating plate 25 are in contact with each other when evacuation is performed. There's a problem.
  • the coil portion 26e can be set to a coil current of 6000AT, for example.
  • the coil When the coil generates heat and becomes high temperature, the coating of the winding may melt and cause a short circuit. Since the second objective lens 26 can be exposed to the atmosphere, the cooling efficiency is increased.
  • the base of the lower surface of the second objective lens 26 is made of aluminum, the base can be used as a heat sink. Then, the second objective lens 26 can be cooled by an air cooling fan or water cooling. By performing hermetic separation in this way, the second objective lens 26 with strong excitation can be obtained.
  • the insulating plate 25 is placed on the second objective lens 26.
  • the insulating plate 25 is, for example, a polyimide film or a polyester film having a thickness of about 0.1 mm to 0.5 mm.
  • a non-magnetic conductive sample stage 24 is placed thereon.
  • the sample table 24 is, for example, an aluminum plate having a bottom surface of 250 ⁇ m, and is processed into a curved shape that is separated from the insulating plate 25 as the peripheral edge approaches the peripheral edge.
  • the sample table 24 may be further filled with an insulating material 31 in a gap between the curved surface portion and the insulating plate 25. In this way, the withstand voltage between the second objective lens 26 and the sample stage 24 is increased, and it can be used stably.
  • the planar shape of the sample stage 24 is circular, but may be any planar shape such as an ellipse or a rectangle.
  • the sample 23 is placed on the sample table 24.
  • the sample stage 24 is connected to a retarding power source 27 in order to give a retarding voltage.
  • the power source 27 is a power source whose output that can be applied from 0 V to ⁇ 30 kV, for example, is variable.
  • the sample stage 24 is connected to a sample stage stage plate 29 made of an insulator so that the position can be moved from outside the vacuum. Thereby, the position of the sample 23 can be changed.
  • the sample stage stage plate 29 is connected to an XY stage (not shown) and can be moved from outside the vacuum.
  • a conductive plate having a circular opening (hereinafter referred to as potential plate 22) is disposed on the sample 23.
  • the potential plate 22 is installed perpendicular to the optical axis of the second objective lens 26.
  • the potential plate 22 is disposed so as to be insulated from the sample 23.
  • the potential plate 22 is connected to a potential plate power source 28.
  • the potential plate power supply 28 is a power supply whose output is variable, for example, from 0 V and ⁇ 10 kV to +10 kV.
  • the diameter of the circular opening of the potential plate 22 may be about 2 mm to 20 mm. More preferably, the diameter of the opening may be 4 mm to 12 mm.
  • the portion of the potential plate 22 through which the primary electron beam 12 or the signal electrons 21 pass may be formed into a conductive mesh shape.
  • the mesh portion of the mesh is preferably made thin so that electrons can easily pass therethrough so that the aperture ratio is increased.
  • the potential plate 22 is connected to an XYZ stage (not shown) so that the position can be moved from outside the vacuum for adjusting the central axis.
  • the periphery of the sample stage 24 has a thickness on the potential plate 22 side.
  • the potential plate 22 is flat, the potential plate 22 is close to the sample table 24 at the periphery of the sample table 24. Then, it becomes easy to discharge. Since the potential plate 22 has a shape away from the conductive sample stage 24 at a place other than the vicinity of the sample 23, the withstand voltage with respect to the sample stage 24 can be increased.
  • the potential plate 22 is arranged so as not to be discharged by separating the sample 23 from a distance of about 1 mm to 15 mm. However, it should be arranged so that it is not too far apart. The purpose is to overlap the deceleration electric field at a position where the magnetic field generated by the second objective lens 26 is strong. If the potential plate 22 is placed far from the sample 23, or if the potential plate 22 is not present, the primary electron beam 12 is decelerated before being focused by the second objective lens 26, thereby reducing the aberration. The effect of doing is reduced.
  • FIG. 4 is an explanatory diagram corresponding to simulation data 4 described later.
  • FIG. 4A is a diagram for explaining equipotential lines during retarding.
  • the equipotential lines are distributed far beyond the opening of the potential plate 22 toward the electron gun. In this case, the primary electrons may be decelerated before reaching the potential plate 22. As the opening diameter of the potential plate 22 is smaller, there is an effect of reducing the leakage of the electric field. However, it is necessary to prevent the signal electrons 21 from being absorbed by the potential plate 22. Therefore, it is possible to adjust the potential difference between the sample 23 and the potential plate 22 within a range in which no discharge occurs, to adjust the distance between the sample 23 and the potential plate 22, and to appropriately select the opening diameter of the potential plate 22. It becomes important.
  • FIG. 4B is a diagram for explaining the magnetic flux density distribution B (z) on the optical axis of the second objective lens 26.
  • the vertical axis is B (z)
  • the horizontal axis is coordinates
  • the surface of the second objective lens 26 is the origin ( ⁇ 0). It is shown that B (z) increases rapidly as the distance from the second objective lens 26 increases.
  • (C) of FIG. 4 is a figure explaining the speed of the charged particle at the time of retarding. It is shown that the velocity of the charged particle beam is decelerating immediately before the sample.
  • the velocity of the primary electrons does not change so much until near the potential plate 22.
  • the speed of the primary electrons decreases as the distance from the potential plate 22 approaches the sample 23, and the primary electrons are easily affected by the magnetic field. Since the magnetic field generated by the second objective lens 26 is stronger as it is closer to the sample 23, both effects are combined, and the closer to the sample 23, the stronger the lens and the smaller the aberration.
  • the retarding voltage can be brought close to the accelerating voltage while increasing the accelerating voltage as much as possible, the irradiation electron energy can be reduced and the depth at which the electrons enter the sample 23 can be reduced. This enables high-resolution observation of the surface shape of the sample. Furthermore, since the aberration can be reduced, an SEM with high resolution and low acceleration can be realized.
  • the breakdown voltage between the sample 23 and the potential plate 22 can be easily increased.
  • the distance between the first objective lens 18 and the second objective lens 26 can be a distance of 10 mm to 200 mm. Therefore, for example, in the case of the flat sample 23, if the distance between the sample 23 and the potential plate 22 is about 5 mm, a potential difference of about 10 kV can be applied to the sample 23 and the potential plate 22 relatively easily. In the case of the sample 23 having a sharp portion, it is necessary to appropriately select the distance and the opening diameter so as not to discharge.
  • Fig. 5 shows examples of different sample arrangements.
  • a cylindrical discharge prevention electrode 30 having a cylindrical shape whose upper surface is R-processed may be installed around the sample 23 on the sample stage 24 to make it difficult to discharge.
  • the cylindrical discharge preventing electrode 30 is also useful for smoothing equipotential lines on the sample and alleviating the deviation of the focusing point due to the rattling of the sample 23.
  • a semiconductor detector 20 As the detector 20 in the first embodiment, a semiconductor detector 20, a microchannel plate detector 20 (MCP), or a phosphorescent-type Robinson detector 20 is used. At least one of these is arranged directly below the first objective lens 18.
  • the secondary electron detector 19 is arranged so that the electric field is applied above the sample 23 so as to collect the secondary electrons 21a.
  • the semiconductor detector 20, the MCP detector 20, or the Robinson detector 20 is in contact with the sample side of the first objective lens 18 and is disposed within 3 cm from the optical axis. More preferably, a detector 20 is used in which the center of the detection unit is placed on the optical axis and an opening through which primary electrons pass is provided at the center. The reason why it is set within 3 cm from the optical axis is that when retarding, signal electrons travel close to the optical axis.
  • the primary electron beam 12 is obtained by subtracting the retarding voltage Vdecel from the acceleration voltage used for acceleration by the acceleration power supply 14 (Vacc), that is, energy obtained by applying an electronic charge to ⁇ (Vacc ⁇ Vdecel) [V]. 23 is scanned. At that time, signal electrons 21 are emitted from the sample 23. Depending on the values of the acceleration voltage and the retarding voltage, the way of being affected by electrons differs. The reflected electrons 21 b are subjected to a rotating force by the magnetic field of the second objective lens 26 and at the same time are accelerated due to the electric field between the sample 23 and the potential plate 22.
  • the spread of the radiation angle of the reflected electrons 21b is narrowed, and the reflected electrons 21b are easily incident on the detector 20.
  • the secondary electrons 21 a are also subjected to a rotating force by the magnetic field of the second objective lens 26, and at the same time are accelerated due to the electric field between the sample 23 and the potential plate 22, It is incident on the detector 20 below. Since both the secondary electrons 21a and the reflected electrons 21b are accelerated and the energy is amplified and enters the detector 20, the signal becomes large.
  • the first objective lens 18 In general-purpose SEM, it is usual to focus electrons with a lens such as the first objective lens 18.
  • the first objective lens 18 is usually designed to have a higher resolution as the sample 23 is closer to the first objective lens 18.
  • the semiconductor detector 20 or the like has a thickness, and the sample 23 needs to be separated from the first objective lens 18 by the thickness. If the sample 23 is too close to the first objective lens 18, the secondary electrons 21 a will not easily enter the secondary electron detector 19 outside the first objective lens 18. Therefore, in the general-purpose SEM, a thin semiconductor detector 20 that is disposed at a position immediately below the first objective lens 18 and has an opening through which primary electrons pass is used. The sample 23 is placed with a slight gap so as not to hit the detector 20. Therefore, the sample 23 and the first objective lens 18 are slightly separated from each other, and it is difficult to improve the performance.
  • the sample 23 when the second objective lens 26 is used as a main lens, the sample 23 can be placed close to the second objective lens 26. Then, the distance between the first objective lens 18 and the second objective lens 26 can be increased. For example, if the distance is 30 mm, the MCP detector 20 having a thickness of about 10 mm can be placed immediately below the first objective lens 18. Naturally, a Robinson type detector 20 or a semiconductor detector 20 can also be provided. There is also a method in which a reflecting plate is placed, the signal electrons 21 are applied to the reflecting plate, and electrons generated or reflected therefrom are detected by a second secondary electron detector. Various signal electron detectors 20 having the same function can be installed.
  • the beam diameter when the primary electron beam 12 hits the sample 23 is called the probe diameter.
  • the following formula is used as a formula for evaluating the probe diameter.
  • the number following “ ⁇ ” is a power index.
  • Probe diameter Dprobe sqrt [Dg ⁇ 2 + Ds ⁇ 2 + Dc ⁇ 2 + Dd ⁇ 2] [nm]
  • the size of the electron source is So
  • the reduction ratio of the first-stage condenser lens 15a is M1
  • the reduction ratio of the second-stage condenser lens 15b is M2
  • the first objective lens 18 and the second objective lens 26 are formed.
  • the first objective lens 18 in FIG. 1 is an out-lens type.
  • the case where the primary electron beam 12 is focused by the first objective lens 18 is shown. This corresponds to a general purpose SEM.
  • An objective lens aperture 16 having a hole diameter of 30 microns is placed to remove unnecessary orbital electrons. The opening angle ⁇ of the beam incident on the sample 23 and the probe current can be adjusted by the hole diameter of the objective lens aperture 16.
  • the distance between the second objective lens 26 and the first objective lens 18 is 40 mm.
  • the condenser lens 15 is weakened and adjusted so that the probe current amount does not change compared to the case of the general-purpose SEM. Other conditions are the same.
  • the use of the second objective lens 26 significantly improves the performance of the SEM.
  • Dg is smaller when focusing with the second objective lens 26 than when focusing with the first objective lens 18. This indicates that when the probe diameters are made equal, the condenser lens 15 can be weakened compared to when focusing with the first objective lens 18. Therefore, it can be seen that the probe current can be increased by using the second objective lens 26 as compared with the general-purpose SEM.
  • the condenser lens 15 is adjusted so that the probe current does not change (however, the trajectory and beam amount from the electron gun are the same as when ⁇ 30 kV). Other conditions are the same. The following is the simulation data.
  • Cs, Cc, ⁇ , M3, and Ds are the same as the simulation data 2. Since ⁇ V / Vi becomes large, the probe diameter becomes very large.
  • the opening diameter of the potential plate 22 is 5 mm, and the sample 23 is 6 mm.
  • the distance between the sample stage 24 and the potential plate 22 is 8 mm, and the distance between the sample measurement surface and the potential plate 22 is 5 mm.
  • the acceleration voltage Vacc is ⁇ 10 kV
  • the potential plate 22 is 0 V potential
  • the numerical value when Vi 1 kV is simulated.
  • the first objective lens 18 is not used, and only the second objective lens 26 is used for focusing.
  • the probe current is reduced.
  • the probe current does not decrease. Therefore, the secondary electrons 21a and the reflected electrons 21b generated from the sample 23 are not reduced.
  • the probe current can be reduced.
  • the hole diameter of the objective lens aperture 16 can be reduced to reduce ⁇ .
  • the reduction ratio M1 ⁇ M2 by the condenser lens 15 can be reduced. Therefore, adjustment is necessary because there is a balance with Dg, Ds, Dc, and Dd, but the probe diameter may be further reduced.
  • the probe diameter can be optimized by the objective lens aperture 16 and the first objective lens 18.
  • the lens may be focused only on the top surface or the bottom surface of the unevenness.
  • the first objective lens 18 can be used to optimize the image so that it can be seen easily.
  • FIG. 6B shows a simulation in which the acceleration voltage Vacc is set to ⁇ 10 kV and the sample 23 is retarded at ⁇ 9 kV.
  • the secondary electron 21 a when the acceleration voltage is ⁇ 10 kV and there is no retarding, the secondary electron 21 a can be detected by the secondary electron detector 19, but cannot be detected by the semiconductor detector 20. However, if the acceleration voltage is ⁇ 20 kV and the retarding voltage is ⁇ 10 kV, the secondary electrons 21 a enter the semiconductor detector 20 with an energy of about 10 keV and can be detected.
  • the secondary electrons 21a cannot be detected with high sensitivity by the semiconductor detector 20.
  • the secondary electrons 21 a can be detected by the secondary electron detector 19. That is, the secondary electrons 21a can be captured by the secondary electron detector 19 when the retarding voltage is low, and the amount that can be detected by the semiconductor detector 20 increases as the retarding voltage is gradually increased.
  • the secondary electron detector 19 is also useful during adjustment in which the retarding voltage is raised while focusing.
  • the second objective lens 26 has a charged particle beam accelerated with an acceleration power source of either ⁇ 30 kV to ⁇ 10 kV, as viewed from a position closest to the magnetic pole sample of the objective lens, and is 0 mm to 4.5 mm.
  • an acceleration power source of either ⁇ 30 kV to ⁇ 10 kV, as viewed from a position closest to the magnetic pole sample of the objective lens, and is 0 mm to 4.5 mm.
  • the case where the acceleration voltage is ⁇ 15 kV, the sample 23 is ⁇ 5 kV, and ⁇ 6 kV is applied to the potential plate 22 will be described.
  • the primary electrons are 10 keV when they hit the sample 23.
  • the energy of the secondary electrons 21a emitted from the sample 23 is 100 eV or less. Since the potential of the potential plate 22 is 1 kV lower than the potential of the sample 23, the secondary electrons 21 a cannot exceed the potential plate 22. Therefore, the secondary electrons 21a cannot be detected.
  • the reflected electrons 21 b having an energy of 1 keV or more emitted from the sample 23 can pass through the potential plate 22.
  • the potential plate 22 can be used as an energy filter, and the sensitivity can be increased by further accelerating the signal electrons 21.
  • the primary electron beam 12 of 30 keV cannot be focused only by the second objective lens 26.
  • the primary electron beam 12 can be focused with the help of the first objective lens 18 without lowering the acceleration voltage.
  • the optimal usage can be selected depending on the sample 23.
  • the distance between the first objective lens 18 and the second objective lens 26 is 40 mm has been described, but this distance may be fixed or movable.
  • the opening angle ⁇ can be increased. ⁇ can be adjusted by this method.
  • the signal electrons 21 pass near the optical axis and easily enter the opening for the primary electrons of the detector 20 to pass. Therefore, the smaller the opening of the detector 20, the better. Sensitivity is good when the opening of the detector 20 is about ⁇ 1 to ⁇ 2 mm.
  • the trajectory of the signal electrons 21 is adjusted to improve the sensitivity so that the signal electrons 21 hit the detector 20. There is a way.
  • an E-Crosby (ExB) to be applied by directing an electric field and a magnetic field between the first objective lens 18 and the second objective lens 26, and the signal electrons 21 may be bent slightly. Since the traveling direction of the primary electrons and the traveling direction of the signal electrons 21 are opposite, a weak electric field and magnetic field may be provided to bend the signal electrons 21 slightly. If it is slightly bent, it can be detected without entering the opening at the center of the detector 20. Alternatively, an electric field may be applied between the first objective lens 18 and the second objective lens 26 from the side with respect to the optical axis.
  • the trajectory of the signal electrons 21 can be controlled using an electric field generated by the collector electrode of the secondary electron detector 19 or the like.
  • the second objective lens 26 is used as the main lens.
  • the secondary electrons 21 a are detected by the secondary electron detector 19.
  • the reflected electrons 21b are detected by the semiconductor detector 20, the Robinson detector 20, or the like.
  • the sample 23 and the detector 20 are separated from each other by about 10 mm to 20 mm, they can be detected with high sensitivity.
  • the distance is approximately 40 mm, the number of reflected electrons 21b that do not enter the detector 20 increases, and the amount of reflected electrons 21b detected decreases.
  • the secondary electrons 21a are detected by the semiconductor detector 20, the Robinson detector 20, or the like.
  • the retarding voltage the spread of the reflected electrons 21b can be suppressed, and the semiconductor detector 20 or the Robinson detector 20 can be detected with high sensitivity.
  • retarding can be used even when the potential plate 22 is not provided.
  • FIG. 2 shows a case where the sample 23 is thick and the first objective lens 18 is used as the objective lens.
  • the stage which moves the potential plate 22 can be utilized and used as a sample stage.
  • This XY moving stage can also move in a direction approaching the first objective lens 18.
  • the apparatus is used like a general-purpose SEM.
  • the reflected electrons 21b are detected by the semiconductor detector 20 or the Robinson detector 20, and the secondary electrons 21a are detected by the secondary electron detector 19.
  • the sample 23 is at the ground potential, but it can be simply retarded (retarding can be performed without the potential plate 22).
  • the apparatus When only the second objective lens power source 42 is used, the apparatus is arranged so that the distance between the second objective lens 26 and the sample measurement surface is closer than the distance between the first objective lens 18 and the sample measurement surface. Thus, when only the first objective lens power supply 41 is used, the distance between the first objective lens 18 and the sample measurement surface is closer than the distance between the second objective lens 26 and the sample measurement surface.
  • the device is configured.
  • the potential of the sample 23 becomes negative. It is also possible to apply a positive voltage to the potential plate 22 while keeping the sample 23 at the GND level (this method is called a boosting method). It is also possible to apply a negative voltage to the sample 23 and apply a positive potential to the potential plate 22 to further improve the performance as a low acceleration SEM. As an example, a case where the first objective lens 18 is set to the ground potential, +10 kV is applied to the potential plate 22, and the sample 23 is set to the ground potential will be described. The acceleration voltage is -30 kV.
  • the primary electrons are 30 keV when passing through the first objective lens 18, are accelerated toward the potential plate 22 from the first objective lens 18, and decelerate toward the sample 23 around the potential plate 22.
  • the simulation data in this case is shown below.
  • the shapes of the sample 23 and the potential plate 22 are the same as in the simulation data 4.
  • the probe diameter is improved compared to the case without boosting (simulation data 2).
  • the signal electrons 21 are accelerated between the sample 23 and the potential plate 22, but are decelerated between the potential plate 22 and the detector 20.
  • the detector 20 is the semiconductor detector 20
  • the reflected electrons 21b can be detected.
  • the semiconductor detector 20 is at the ground potential, the secondary electrons 21a are decelerated and cannot be detected.
  • the secondary electrons 21 a can be detected by the secondary electron detector 19. If the retarding voltage is applied to the sample 23, the semiconductor detector 20 can also detect the secondary electrons 21a.
  • the two-stage deflection coil 17 scans the sample 23 two-dimensionally.
  • the electron source side of the two-stage deflection coil 17 is called an upper stage deflection coil 17a, and the sample side is called a lower stage deflection coil 17b.
  • the two-stage deflection coil 17 includes an upper deflection power source 43 that varies the strength of the upper deflection coil 17a, a lower deflection power source 44 that varies the strength of the lower deflection coil 17b, and an upper deflection power source 43. And a control device 45 that controls the lower deflection power source 44.
  • the upper deflection coil 17a and the lower deflection coil 17b are installed on the side from which the primary electron beam 12 comes in as viewed from the inside of the first objective lens 18 (upstream from the lens main surface of the first objective lens 18).
  • the lower deflection member When the lower deflection member is placed at the position of the lens main surface, it is installed upstream of the outer magnetic pole 18b (see FIG. 7; reference numeral 18a in FIG. 7 indicates the inner magnetic pole).
  • the use current ratio between the upper deflection power supply 43 and the lower deflection power supply 44 is variable by the control device 45.
  • the two-stage deflection coil 17 forms an orbit where electrons pass near the intersection of the optical axis and the main surface of the first objective lens 18.
  • the first objective lens 18 is used as the main lens (FIG. 2)
  • the setting is performed as described above.
  • the second objective lens 26 is used as the main lens
  • the deflection aberration increases as shown in FIG. 7A, and the lower magnification image is distorted.
  • the intensity ratio of the upper deflection coil 17a and the lower deflection coil 17b is such that electrons are emitted from the main surface of the second objective lens 26 and light.
  • the trajectory is adjusted to pass near the intersection with the axis.
  • the adjustment is performed by a control device 45 that adjusts a use current ratio between the upper deflection power supply 43 and the lower deflection power supply 44. By doing so, image distortion is reduced.
  • a control device 45 that adjusts a use current ratio between the upper deflection power supply 43 and the lower deflection power supply 44. By doing so, image distortion is reduced.
  • a method of switching coils with different numbers of turns with a relay or the like providing a plurality of coils with different numbers of turns and using a coil with a controller
  • a method of switching the voltage may be employed.
  • the deflection coil 17 may be disposed in a gap in the first objective lens 18.
  • the deflection coil 17 may be in the first objective lens 18 or may be positioned further upstream of the charged particle beam than that as shown in FIG.
  • a deflection electrode is employed instead of the deflection coil.
  • the semiconductor detector 20 is placed under the lower deflection coil 17b.
  • the distance between the lower deflection coil 17b and the second objective lens 26 can be shortened accordingly.
  • Such an apparatus configuration is suitable for downsizing. Compared to the first embodiment, the apparatus can be similarly used in the second embodiment, except that the first objective lens 18 is used.
  • the distance between the detector 20 and the second objective lens 26 is set to be 10 mm to 200 mm apart.
  • an upper apparatus that emits the primary electron beam 12 toward the sample 23 is configured by the configuration from the electron source 11 to the lower deflection coil 17b.
  • the lower device is constituted by the potential plate 22 and members disposed below the potential plate 22.
  • the sample 23 is held in the lower device.
  • the upper device has a hole through which the charged particle beam that passes through the upper device is finally emitted.
  • the hole exists in the lower deflection coil 17b.
  • the detector 20 is attached below the hole.
  • the detector 20 also has an opening through which the primary electron beam 12 passes, and the detector 20 is attached below the lower deflection coil 17b so that the hole and the opening overlap.
  • a field emission type is used for the electron source 11.
  • the field emission type has higher brightness than the thermionic emission type, the size of the light source is small, the ⁇ V of the primary electron beam 12 is also small, and is advantageous in terms of chromatic aberration.
  • the lower part from the second stage condenser lens 15b of the first embodiment is the same as that of the first embodiment, and the electron source section Is a field emission type, and the first-stage condenser lens 15a is eliminated.
  • the ⁇ V of the primary electron beam 12 is set to 0.5 eV, and the electron source size So is set to 0.1 ⁇ m.
  • the field emission electron source has higher brightness than the thermal electron emission type. Furthermore, since the condenser lens 15 is in one stage, the probe current is larger than that in the thermoelectron emission type. Nevertheless, it can be seen that the probe diameter is small. Dd shows the largest value.
  • the second objective lens 26 is used to focus the electrons.
  • the condenser lens 15 is adjusted so that the probe current does not change. In that case, it is as follows.
  • the acceleration voltage Vacc is ⁇ 10 kV
  • the potential plate 22 is 0 V potential
  • the first objective lens 18 is not used, and the second objective lens 26 is used for focusing.
  • Ds is the largest value among aberrations. This is because the closer to the sample 23, the slower the electron speed and the more easily affected by the magnetic field, and the closer the sample 23 is, the larger the magnetic flux density is. Therefore, ⁇ is too large. Since Ds is proportional to the cube of ⁇ , it is large. It may be improved by using the first objective lens 18.
  • the probe diameter is further improved by adjusting ⁇ .
  • the hole diameter of the objective lens aperture 16 is made the same as 21.8 microns.
  • the hole diameter can be further reduced. Therefore, diffraction aberration becomes the main aberration.
  • the second objective lens 26 by using the second objective lens 26 and performing retarding, a lens system in which ⁇ is increased is obtained, and the lens system is capable of reducing diffraction aberration. That is, the second objective lens with low aberration can be realized in the charged particle beam apparatus. Signal electrons can be detected with high sensitivity, and high resolution can be realized at low cost.
  • the detection unit can have a simple structure. Since the magnetic flux density on the optical axis of the second objective lens has a stronger distribution as it is closer to the sample, the objective lens becomes a low aberration lens. When a negative potential is applied to the sample, the closer to the sample, the stronger the lens, and the objective lens further becomes a low aberration lens. The signal electrons are accelerated by the electric field generated by the retarding voltage of the sample, and the energy is amplified and enters the detector. Therefore, the detector becomes highly sensitive. With the above configuration, a high-resolution charged particle beam apparatus can be realized.
  • the general configuration of the first embodiment is the same as that of the fourth embodiment as follows.
  • the configuration from the electron source 11 to the first objective lens 18 is arranged.
  • the primary electron beam 12 is emitted from the upper device toward the sample 23.
  • a second objective lens 26 is disposed in the lower device.
  • a sample 23 is held in the lower apparatus.
  • the secondary electron detector 19 and the detector 20 are provided in the same manner.
  • the secondary electron detector 19 is provided to detect the signal electrons 21 of the secondary electrons 21a.
  • FIG. 9 is a cross-sectional view showing an example of the device configuration of the SEM according to the fourth embodiment of the present invention.
  • the SEM shown in FIG. 9 the upper device, the second objective lens 26, the secondary electron detector 19, the potential plate 22 and the like are provided in the same manner as that shown in FIG. In this SEM, retarding is performed.
  • the SEM basically has the same configuration as that shown in FIG.
  • the SEM differs from that shown in FIG. 1 in that a detector 720 for detecting the reflected electrons 21b is disposed on the lower surface of the potential plate 22 (the surface on the sample 23 side). ing.
  • the detector 720 is provided with a hole through which the primary electron beam 12 and the secondary electron 21a pass.
  • a microchannel plate, a Robinson detector, a semiconductor detector, or the like is used as the detector 720.
  • the detector 720 is arranged at a position relatively close to the sample 23. Since the solid angle of the incident reflected electrons 21b is large and the detection sensitivity of the reflected electrons 21b is improved, the sample 23 can be observed with higher sensitivity.
  • the detector 20 may be disposed above the potential plate 22.
  • the size of the hole 720a of the detector 720 may be small enough to allow the primary electron beam 12 to pass through.
  • the hole 720a is a circular through hole, and the diameter is preferably about 1 to 2 millimeters, for example.
  • the trajectory of the charged particle beam from the charged particle source to the sample 23 is drawn in a straight line in the figure.
  • the track is bent.
  • the charged particle beam trajectory may be bent.
  • Such a case is also included in the technical scope described in the claims.
  • the ion beam microscope in the case of negative ion charged particles, it can be understood that it can be applied in the same manner as in the first embodiment because it can have the same concept as electrons.
  • the condenser lens 15 may be an electrostatic lens
  • the deflection coil 17 may be an electrostatic deflection
  • the first objective lens 18 may be an electrostatic lens.
  • the objective lens 26 uses a magnetic lens.
  • the present invention can be easily applied to an electron beam apparatus such as EPMA, which is a charged particle beam apparatus, an electron beam drawing apparatus, or an ion beam apparatus such as an ion beam microscope.
  • EPMA electron beam apparatus
  • a positive acceleration power source 14 is used as an acceleration power source for the ion source.
  • the apparatus can be configured in the same manner as in the first embodiment.
  • the retarding power supply 27 is switched to the positive power supply, and the apparatus can be configured in the same manner as in the above-described embodiment.
  • the potential plate power supply 28 may be adjusted so that the potential of the potential plate 22 is higher than the potential of the sample 23.
  • the charged particle beam acceleration power source 14 may be set to +7 kV
  • the upper device may be set to the ground potential
  • the potential plate 22 may be set to +6 kV
  • the sample 23 may be set to +5 kV. Then, the signal electrons 21 can be detected by the detector 720 placed at the position of the potential plate 22.

Abstract

[Problem] To achieve an improvement in the performance of a charged particle beam device. [Solution] This charged particle beam device is provided with: a charged particle source (11); an acceleration power supply (14) which is connected to the charged particle source (11), and which is provided in order to accelerate a charged particle beam (12) emitted from the charged particle source (11); and objective lenses which focus the charged particle beam (12) on a sample (23). The objective lenses include: a first objective lens (18) disposed at the side of the sample (23) on which the charged particle beam (12) is incident; and a second objective lens (26) disposed at the side of the sample (23) opposite to the side on which the charged particle beam (12) is incident. The device is provided with: a function for independently controlling the intensities of the first and second objective lenses (18, 26); a function for simultaneously controlling said intensities; a function for using only the first objective lens (18) to focus the charged particle beam (12) on the sample; a function for using only the second objective lens (26) to focus the charged particle beam (12) on the sample (23); and a function for simultaneously using the first objective lens (18) and the second objective lens (26) to focus the charged particle beam (12) on the sample , while enabling the aperture angle with which the charged particle beam (12) is incident on the sample (23) to be adjusted by the first objective lens (18).

Description

荷電粒子線装置及び走査電子顕微鏡Charged particle beam apparatus and scanning electron microscope
 本発明は、荷電粒子線装置及び走査電子顕微鏡に関する。より特定的には、本発明は、性能向上を図ることができる荷電粒子線装置及び走査電子顕微鏡に関する。 The present invention relates to a charged particle beam apparatus and a scanning electron microscope. More specifically, the present invention relates to a charged particle beam apparatus and a scanning electron microscope that can improve performance.
 荷電粒子線装置としては、走査電子顕微鏡(Scanning Electron Microscope:以下、「SEM」と略す。)、EPMA(Electron Probe Micro Analyser)、電子ビーム溶接機、電子線描画装置、およびイオンビーム顕微鏡などが存在する。 Examples of the charged particle beam apparatus include a scanning electron microscope (hereinafter referred to as “SEM”), an EPMA (Electron Probe Micro Analyzer), an electron beam welding machine, an electron beam drawing apparatus, and an ion beam microscope. To do.
 従来のSEMでは、高分解能化の観点からレンズの短焦点化に工夫が成されている。高分解能化のためには、レンズの光軸上磁束密度分布B(z)においてBを強くすることが必要である。また、高分解能化のためには、レンズの厚み、すなわちB分布のz幅を薄くすることが必要である。 In the conventional SEM, the lens is devised to shorten the focus from the viewpoint of high resolution. In order to increase the resolution, it is necessary to increase B in the magnetic flux density distribution B (z) on the optical axis of the lens. In order to increase the resolution, it is necessary to reduce the lens thickness, that is, the z width of the B distribution.
 下記特許文献1には、2つの対物レンズ(第1の対物レンズと第2の対物レンズ)を備えたSEMが記載されている(以後、試料に対して電子銃側のレンズを第1の対物レンズと呼ぶ。試料から見て電子銃の反対側にある対物レンズを第2の対物レンズと呼ぶ)。第2の対物レンズは、特に、加速電圧Vaccが0.5~5kVの低加速時における高分解能観察モードで用いられる。第1の対物レンズは、加速電圧Vaccが0.5~30kVにおける通常の観察モードで用いられる。 Patent Document 1 listed below describes an SEM provided with two objective lenses (a first objective lens and a second objective lens) (hereinafter, a lens on the electron gun side with respect to a sample is used as a first objective lens). The objective lens on the opposite side of the electron gun from the sample is called the second objective lens). In particular, the second objective lens is used in a high-resolution observation mode during low acceleration with an acceleration voltage Vacc of 0.5 to 5 kV. The first objective lens is used in a normal observation mode at an acceleration voltage Vacc of 0.5 to 30 kV.
 下記特許文献1において、第1の対物レンズと第2の対物レンズとは同時に動作させることはない。第1の対物レンズと第2の対物レンズとは、モード毎にモード切り替え手段によって切り替えられる。また、下記特許文献1の第2の実施例([0017]段落)では、第2の対物レンズの磁極の一部を電気的絶縁部を介して電流電位的に分離することが記載されている。そして、磁極の一部と試料には、電圧Vdecelが印加される。 In the following Patent Document 1, the first objective lens and the second objective lens are not operated simultaneously. The first objective lens and the second objective lens are switched by mode switching means for each mode. Also, in the second embodiment (paragraph [0017]) of Patent Document 1 below, it is described that a part of the magnetic pole of the second objective lens is separated in terms of current potential through an electrical insulating portion. . A voltage Vdecel is applied to a part of the magnetic pole and the sample.
 下記特許文献1の第1の実施例([0010]~[0016]段落)では、二次電子(または反射電子)検出器は、第1の対物レンズよりもさらに電子銃側に置かれている。試料部で発生した二次電子(又は反射電子)は、第1の対物レンズの中を通過して検出器に入る。 In the first embodiment (paragraphs [0010] to [0016]) of Patent Document 1 below, the secondary electron (or backscattered electron) detector is placed further on the electron gun side than the first objective lens. . Secondary electrons (or reflected electrons) generated in the sample portion pass through the first objective lens and enter the detector.
 下記特許文献2も、SEMの構成を開示している。特許文献2のSEMにおいて対物レンズは、試料に対して電子銃とは反対側に配置される。二次電子は二次電子検出器からの引込み電界により偏向されて、二次電子検出器に捕獲される。 The following Patent Document 2 also discloses the configuration of the SEM. In the SEM of Patent Document 2, the objective lens is disposed on the opposite side of the electron gun from the sample. The secondary electrons are deflected by the electric field drawn from the secondary electron detector and captured by the secondary electron detector.
特開2007-250223号公報JP 2007-250223 A 特開平6-181041号公報Japanese Patent Laid-Open No. 6-181041
 本発明は、荷電粒子線装置及び走査電子顕微鏡の性能向上を図ることを目的としている。 An object of the present invention is to improve the performance of a charged particle beam apparatus and a scanning electron microscope.
 上記目的を達成するためこの発明のある局面に従うと、荷電粒子源と、荷電粒子源から放出する荷電粒子線を加速するために設けられる、荷電粒子源に接続された加速電源と、荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置において、対物レンズは、試料に対して荷電粒子線が入射する側に設置される第1の対物レンズと、試料に対して荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、荷電粒子線装置は、第1の対物レンズの強度を可変する第1の対物レンズ電源と、第2の対物レンズの強度を可変する第2の対物レンズ電源と、第1の対物レンズ電源と第2の対物レンズ電源とを制御する制御装置とを備え、制御装置は、第1の対物レンズの強度と第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能と、荷電粒子線を第1の対物レンズのみで試料に集束する機能と、荷電粒子線を第2の対物レンズのみで試料に集束する機能と、第1の対物レンズと第2の対物レンズを同時に使い、荷電粒子線の試料に入射する開き角を第1の対物レンズで可変して試料に集束する機能とを有する。 In order to achieve the above object, according to one aspect of the present invention, a charged particle source, an acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source, and the charged particle beam In the charged particle beam apparatus having an objective lens for focusing the sample on the sample, the objective lens has a first objective lens installed on the side where the charged particle beam is incident on the sample, and the charged particle beam on the sample. The charged particle beam device includes a first objective lens power source that varies an intensity of the first objective lens, and an intensity of the second objective lens. And a control device for controlling the first objective lens power source and the second objective lens power source. The control device includes the strength of the first objective lens and the second objective lens power source. Independent control of lens strength A function for simultaneously controlling, a function for focusing the charged particle beam on the sample only by the first objective lens, a function for focusing the charged particle beam on the sample only by the second objective lens, and a first objective The lens and the second objective lens are used at the same time, and the opening angle of the charged particle beam incident on the sample is varied by the first objective lens to focus on the sample.
 この発明の他の局面に従うと、荷電粒子源と、荷電粒子源から放出する荷電粒子線を加速するために設けられる、荷電粒子源に接続された加速電源と、荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置において、対物レンズは、試料に対して荷電粒子線が入射する側に設置される第1の対物レンズと、試料に対して荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、荷電粒子線装置は、第1の対物レンズの強度を可変する第1の対物レンズ電源と、第2の対物レンズの強度を可変する第2の対物レンズ電源と、第1の対物レンズ電源と第2の対物レンズ電源とを制御する第1の制御装置とを備え、第1の制御装置は、第1の対物レンズの強度と第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能とを有し、荷電粒子線装置は、荷電粒子線を二次元的に走査する二段の偏向部材を有し、二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、上段の偏向部材の強度または電圧を可変する上段偏向電源と、下段の偏向部材の強度または電圧を可変する下段偏向電源と、上段偏向電源と下段偏向電源とを制御する第2の制御装置とを備え、上段の偏向部材と下段の偏向部材は、第1の対物レンズの内部から荷電粒子線が飛来してくる側に設置され、第2の制御装置は、上段偏向電源と下段偏向電源の使用電流比または使用電圧比を可変する。 According to another aspect of the present invention, a charged particle source, an acceleration power source provided to accelerate the charged particle beam emitted from the charged particle source, connected to the charged particle source, and the charged particle beam are focused on the sample. In a charged particle beam apparatus having an objective lens, the objective lens is opposite to a side on which a charged particle beam is incident on a sample and a first objective lens that is installed on the side on which the charged particle beam is incident on the sample. The charged particle beam device includes a first objective lens power source that varies the intensity of the first objective lens, and a second objective lens that varies the intensity of the second objective lens. Objective lens power source, and a first control device that controls the first objective lens power source and the second objective lens power source. The first control device includes the strength of the first objective lens and the second A function that controls the intensity of the objective lens independently The charged particle beam device has a two-stage deflecting member that scans the charged particle beam two-dimensionally, and the two-stage deflecting member includes an upper deflecting member and a lower deflecting member. A second deflection power source that varies the strength or voltage of the upper deflection member, a lower deflection power source that varies the strength or voltage of the lower deflection member, and a second that controls the upper deflection power source and the lower deflection power source. The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens, and the second control device includes an upper deflection power source and Vary the current ratio or voltage ratio of the lower deflection power supply.
 この発明のさらに他の局面に従うと、荷電粒子源と、荷電粒子源から放出する荷電粒子線を加速するために設けられる、荷電粒子源に接続された加速電源と、荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置において、対物レンズは、試料に対して荷電粒子線が入射する側に設置される第1の対物レンズと、試料に対して荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、荷電粒子線装置は、第1の対物レンズの強度を可変する第1の対物レンズ電源と、第2の対物レンズの強度を可変する第2の対物レンズ電源と、第1の対物レンズ電源と第2の対物レンズ電源とを制御する第1の制御装置とを備え、第1の制御装置は、第1の対物レンズの強度と第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能とを有し、荷電粒子線装置は、荷電粒子線を二次元的に走査する二段の偏向部材を有し、二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、上段の偏向部材の強度または電圧を可変する上段偏向電源と、下段の偏向部材の強度または電圧を可変する下段偏向電源と、上段偏向電源と下段偏向電源とを制御する第2の制御装置とを備え、上段の偏向部材と下段の偏向部材は、第1の対物レンズの内部から荷電粒子線が飛来してくる側に設置され、下段の偏向部材は、それぞれが巻数の異なる複数のコイルであり、第2の制御装置は、複数のコイルのうち用いるものを制御する。 According to still another aspect of the present invention, a charged particle source, an acceleration power source connected to the charged particle source provided to accelerate the charged particle beam emitted from the charged particle source, and the charged particle beam focused on the sample In the charged particle beam apparatus having the objective lens to be operated, the objective lens is provided on the side where the charged particle beam is incident on the sample. The charged particle beam device includes a first objective lens power source that varies the intensity of the first objective lens, and a second objective lens that varies the intensity of the second objective lens. 2 objective lens power supplies, and a first control device for controlling the first objective lens power supply and the second objective lens power supply, wherein the first control device determines the strength of the first objective lens and the second Independently controls the intensity of the objective lens The charged particle beam device has a two-stage deflection member that scans the charged particle beam two-dimensionally, and the two-stage deflection member includes an upper deflection member and a lower deflection member. The upper deflection power source for varying the strength or voltage of the upper deflection member, the lower deflection power source for varying the strength or voltage of the lower deflection member, and the upper deflection power source and the lower deflection power source. The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens, and the lower deflection members are respectively A plurality of coils having different numbers of turns, and the second control device controls one of the plurality of coils to be used.
 好ましくは、偏向部材は、偏向コイルまたは偏向電極である。 Preferably, the deflection member is a deflection coil or a deflection electrode.
 好ましくは、第1の対物レンズ電源のみを用いるとき、第1の対物レンズと測定試料面との距離が第2の対物レンズと測定試料面との距離よりも近くされ、第2の対物レンズ電源のみを用いるとき、第2の対物レンズと測定試料面との距離が第1の対物レンズと測定試料面との距離よりも近くされる。 Preferably, when only the first objective lens power supply is used, the distance between the first objective lens and the measurement sample surface is made shorter than the distance between the second objective lens and the measurement sample surface, and the second objective lens power supply is used. When only the first objective lens is used, the distance between the second objective lens and the measurement sample surface is made shorter than the distance between the first objective lens and the measurement sample surface.
 好ましくは、荷電粒子線装置は、試料に負電位を与える、荷電粒子線を減速するためのリターディング電源をさらに備える。 Preferably, the charged particle beam apparatus further includes a retarding power source for applying a negative potential to the sample and decelerating the charged particle beam.
 好ましくは、荷電粒子線装置は、荷電粒子線が通過する軌道をふさがないように配置された検出器をさらに備え、検出器は、荷電粒子線を試料に向けて射出する上部装置の下部に取り付けられる。 Preferably, the charged particle beam device further includes a detector arranged so as not to block a trajectory through which the charged particle beam passes, and the detector is attached to a lower portion of the upper device that emits the charged particle beam toward the sample. It is done.
 好ましくは、検出器と第2の対物レンズとの距離は、10mmから200mmとされる。 Preferably, the distance between the detector and the second objective lens is 10 mm to 200 mm.
 好ましくは、検出器は、半導体検出器、蛍光体の発光方式の検出器、またはマイクロチャンネルプレート検出器であり、荷電粒子線の軌道から3cm以内に配置される。 Preferably, the detector is a semiconductor detector, a phosphor emission type detector, or a microchannel plate detector, and is disposed within 3 cm from the trajectory of the charged particle beam.
 好ましくは、荷電粒子線装置は、電子を引きつける電界を有する二次電子検出器をさらに備え、二次電子検出器から発生する電界が、荷電粒子によって試料から放出される二次電子を引き付けるように、二次電子検出器は配置される。 Preferably, the charged particle beam apparatus further includes a secondary electron detector having an electric field that attracts electrons, so that the electric field generated from the secondary electron detector attracts secondary electrons emitted from the sample by the charged particles. The secondary electron detector is arranged.
 好ましくは、第2の対物レンズは、加速電源を-30kVから-10kVのいずれかにして加速された荷電粒子線を、第2の対物レンズの磁極の試料に最も近いところから見て、0mmから4.5mmのいずれかの高さの位置に集束可能である。 Preferably, the second objective lens has a charged particle beam accelerated with an acceleration power source of either −30 kV to −10 kV, from 0 mm when viewed from a position closest to the magnetic pole sample of the second objective lens. Focusing is possible at any height of 4.5 mm.
 好ましくは、荷電粒子線装置は、第2の対物レンズ上に配置される絶縁板と、絶縁板の上に配置される導電性試料台とをさらに備え、第2の対物レンズと導電性試料台とは絶縁される。 Preferably, the charged particle beam apparatus further includes an insulating plate disposed on the second objective lens, and a conductive sample stage disposed on the insulating plate, wherein the second objective lens and the conductive sample stage are provided. Is insulated.
 好ましくは、導電性試料台は、周縁部に近付くほど絶縁板から離れる形状をしている。 Preferably, the conductive sample stage is shaped so as to move away from the insulating plate as it approaches the peripheral edge.
 好ましくは、絶縁板と導電性試料台との間が、絶縁材で充填される。 Preferably, the space between the insulating plate and the conductive sample stage is filled with an insulating material.
 好ましくは、荷電粒子線装置は、導電性試料台の上部に、開口部のある電位板をさらに備え、電位板には、接地電位、正の電位、または負の電位が与えられる。 Preferably, the charged particle beam apparatus further includes a potential plate having an opening in the upper part of the conductive sample stage, and a ground potential, a positive potential, or a negative potential is applied to the potential plate.
 好ましくは、電位板の開口部は直径2mmから20mmの円形、またはメッシュ形状である。 Preferably, the opening of the potential plate has a circular shape or a mesh shape with a diameter of 2 mm to 20 mm.
 好ましくは、電位板は、試料の近く以外の場所では導電性試料台から離れる形状を有する。 Preferably, the potential plate has a shape that is separated from the conductive sample stage at a place other than near the sample.
 好ましくは、荷電粒子線装置は、電位板を移動させる移動手段をさらに備える。 Preferably, the charged particle beam apparatus further includes moving means for moving the potential plate.
 本発明によれば、荷電粒子線装置及び走査電子顕微鏡の性能向上を図ることができる。 According to the present invention, it is possible to improve the performance of the charged particle beam apparatus and the scanning electron microscope.
本発明の第1の実施の形態におけるSEMの構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of SEM in the 1st Embodiment of this invention. 本発明の第1の実施の形態で、第1の対物レンズを使い、反射電子および二次電子を検出する場合を示す概略断面図である。It is a schematic sectional drawing which shows the case where a 1st objective lens is used and a reflected electron and a secondary electron are detected in the 1st Embodiment of this invention. 本発明の第1の実施の形態で、主な集束に第2の対物レンズを使い、二次電子を検出する場合を示す概略断面図である。It is a schematic sectional drawing which shows the case where a 2nd objective lens is used for main focusing and a secondary electron is detected in the 1st Embodiment of this invention. 本発明の第1の実施の形態でのリターディング時のレンズ部を説明するための図であり、(a)リターディング時の等電位線、(b)第2の対物レンズの光軸上磁束密度分布B(z)、および(c)リターディング時の荷電粒子の速度を説明する図である。It is a figure for demonstrating the lens part at the time of retarding in the 1st Embodiment of this invention, (a) The equipotential line at the time of retarding, (b) Magnetic flux on the optical axis of a 2nd objective lens It is a figure explaining the velocity of the charged particle at the time of density distribution B (z) and (c) retarding. 本発明の第1の実施の形態での絶縁部と試料台の他の構成を説明する概略断面図である。It is a schematic sectional drawing explaining other structures of the insulation part and sample stand in the 1st Embodiment of this invention. 本発明の第1の実施の形態における、第1の対物レンズによる開き角αの調整を説明する図であり、(a)シミュレーションデータ3(Vacc=-1kV)、(b)シミュレーションデータ4(Vacc=-10kV、Vdecel=-9kV)、および(c)シミュレーションデータ5(Vacc=-10kV、Vdecel=-9kV、第1の対物レンズを使用)に対応する図である。4A and 4B are diagrams for explaining adjustment of the opening angle α by the first objective lens according to the first embodiment of the present invention, in which (a) simulation data 3 (Vacc = −1 kV), (b) simulation data 4 (Vacc = -10 kV, Vdecel = -9 kV), and (c) Simulation data 5 (Vacc = -10 kV, Vdecel = -9 kV, using the first objective lens). 本発明の第1の実施の形態において、偏向コイルの上下偏向コイルの強度比調整で偏向の交点を調整することを説明するための図である。It is a figure for demonstrating adjusting the intersection of deflection | deviation by intensity ratio adjustment of the upper and lower deflection coils of a deflection coil in the 1st Embodiment of this invention. 本発明の第2の実施の形態において、第1の対物レンズがない簡易的な場合を説明する概略断面図である。In the 2nd Embodiment of this invention, it is a schematic sectional drawing explaining the simple case without a 1st objective lens. 本発明の第4の実施の形態に係るSEMの装置構成の一例を示す断面図である。It is sectional drawing which shows an example of the apparatus structure of SEM which concerns on the 4th Embodiment of this invention.
 次に、図面を参照して本発明の実施形態を説明する。以下の図面は模式的なものであり、寸法や縦横の比率は現実のものとは異なることに留意すべきである。 Next, an embodiment of the present invention will be described with reference to the drawings. It should be noted that the following drawings are schematic and dimensions and aspect ratios are different from actual ones.
 また、以下に示す本発明の実施の形態は、本発明の技術的思想を具現化するための装置や方法を例示するものである。本発明の技術的思想は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments of the present invention described below exemplify apparatuses and methods for realizing the technical idea of the present invention. The technical idea of the present invention does not specify the material, shape, structure, arrangement, etc. of the component parts as follows. The technical idea of the present invention can be variously modified within the technical scope described in the claims.
 [第1の実施の形態] [First embodiment]
 図1を参照して、本発明の第1の実施の形態であるSEMの概略構成を説明する。 With reference to FIG. 1, a schematic configuration of the SEM according to the first embodiment of the present invention will be described.
 このSEMは、電子源(荷電粒子源)11と、加速電源14と、コンデンサレンズ15と、対物レンズ絞り16と、二段偏向コイル17と、対物レンズ18,26と、検出器20とを備えた電子線装置である。加速電源14は、電子源11から放出される一次電子線(荷電粒子線)12を加速する。コンデンサレンズ15は、加速された一次電子線12を集束する。対物レンズ絞り16は、一次電子線12の不要な部分を除く。二段偏向コイル17は、一次電子線12を試料23上で二次元的に走査する。対物レンズ18,26は、一次電子線12を試料23上に集束させる。検出器20は、試料23から放出された信号電子21(二次電子21a、反射電子21b)を検出する。 The SEM includes an electron source (charged particle source) 11, an acceleration power source 14, a condenser lens 15, an objective lens diaphragm 16, a two-stage deflection coil 17, objective lenses 18 and 26, and a detector 20. Electron beam apparatus. The acceleration power source 14 accelerates a primary electron beam (charged particle beam) 12 emitted from the electron source 11. The condenser lens 15 focuses the accelerated primary electron beam 12. The objective lens stop 16 removes unnecessary portions of the primary electron beam 12. The two-stage deflection coil 17 scans the primary electron beam 12 on the sample 23 two-dimensionally. The objective lenses 18 and 26 focus the primary electron beam 12 on the sample 23. The detector 20 detects the signal electrons 21 (secondary electrons 21a and reflected electrons 21b) emitted from the sample 23.
 SEMは、電磁レンズの制御部として、第1の対物レンズ電源41と、第2の対物レンズ電源42と、制御装置45とを備える。第1の対物レンズ電源41は、第1の対物レンズ18の強度を可変する。第2の対物レンズ電源42は、第2の対物レンズ26の強度を可変する。制御装置45は、第1の対物レンズ電源41と第2の対物レンズ電源42とを制御する。 The SEM includes a first objective lens power source 41, a second objective lens power source 42, and a control device 45 as a control unit of the electromagnetic lens. The first objective lens power supply 41 varies the intensity of the first objective lens 18. The second objective lens power source 42 varies the intensity of the second objective lens 26. The control device 45 controls the first objective lens power source 41 and the second objective lens power source 42.
 制御装置45は、第1の対物レンズ18の強度と第2の対物レンズ26の強度とを、独立に制御できる。制御装置45は、両レンズを同時に制御できる。また、図には示していないが、各電源は制御装置45に接続されることで調整できるようになっている。 The control device 45 can control the intensity of the first objective lens 18 and the intensity of the second objective lens 26 independently. The control device 45 can control both lenses simultaneously. Further, although not shown in the figure, each power source can be adjusted by being connected to the control device 45.
 電子源11としては、熱電子放出型(熱電子源型)、電界放出型(ショットキー型、または冷陰極型)を用いることができる。第1の実施の形態では、電子源11に、熱電子放出型のLaB6などの結晶電子源、またはタングステンフィラメントが用いられている。電子源11とアノード板(接地電位)との間には、例えば加速電圧-0.5kVから-30kVが印加される。ウェーネルト電極13には、電子源11の電位よりも負の電位が与えられる。これにより、電子源11から発生した一次電子線12の量がコントロールされる。そして、電子源11のすぐ前方に、一次電子線12の一度目の最小径であるクロスオーバー径が作られる。この最小径が、電子源の大きさSoと呼ばれる。 As the electron source 11, a thermionic emission type (thermionic source type) or a field emission type (Schottky type or cold cathode type) can be used. In the first embodiment, a crystal electron source such as thermionic emission type LaB6 or a tungsten filament is used for the electron source 11. For example, an acceleration voltage of −0.5 kV to −30 kV is applied between the electron source 11 and the anode plate (ground potential). A negative potential is applied to the Wehnelt electrode 13 more than the potential of the electron source 11. Thereby, the amount of the primary electron beam 12 generated from the electron source 11 is controlled. A crossover diameter that is the first minimum diameter of the primary electron beam 12 is formed immediately in front of the electron source 11. This minimum diameter is called the electron source size So.
 加速された一次電子線12は、コンデンサレンズ15により集束される。これにより、電子源の大きさSoが縮小する。コンデンサレンズ15により、縮小率および試料23に照射される電流(以下、プローブ電流と呼ぶ。)が調整される。そして、対物レンズ絞り16により、不用な軌道の電子が取り除かれる。対物レンズ絞り16の穴径に応じて、試料23に入射するビームの開き角αとプローブ電流とが調整される。 Accelerated primary electron beam 12 is focused by condenser lens 15. Thereby, the size So of the electron source is reduced. The reduction ratio and the current applied to the sample 23 (hereinafter referred to as probe current) are adjusted by the condenser lens 15. The objective lens aperture 16 removes unnecessary orbital electrons. Depending on the hole diameter of the objective lens aperture 16, the opening angle α of the beam incident on the sample 23 and the probe current are adjusted.
 対物レンズ絞り16を通過した一次電子線12は、走査用の二段偏向コイル17を通過した後、第1の対物レンズ18を通過する。汎用SEMは、第1の対物レンズ18を使って、一次電子線12の焦点を試料23上に合わせる。図1のSEMはこのような使い方もできる。 The primary electron beam 12 that has passed through the objective lens stop 16 passes through the first objective lens 18 after passing through the scanning two-stage deflection coil 17. The general-purpose SEM focuses the primary electron beam 12 on the sample 23 using the first objective lens 18. The SEM of FIG. 1 can be used in this way.
 図1において、電子源11から第1の対物レンズ18までの構成により、一次電子線12を試料23に向けて射出する上部装置が構成される。また、電位板22と、それよりも下に配置される部材とにより下部装置が構成される。下部装置に試料23は保持される。上部装置は、その内部を通った荷電粒子線が最終的に放出される孔部18cを有している。第1の実施の形態ではその孔部18cは、第1の対物レンズ18に存在する。検出器20は、その孔部18cの下に取り付けられている。検出器20も、一次電子線12が通過する開口部を有している。検出器20は、孔部18cと開口部とが重なるように、第1の対物レンズ18の下部に取り付けられる。第1の対物レンズ18の下部に複数の検出器20が取り付けられてもよい。複数の検出器20は、一次電子線12の軌道をふさがないようにしつつ、検出器20の検出部を上部装置の孔部18c以外にはできるだけ隙間がないようにして、取り付けられる。 In FIG. 1, the configuration from the electron source 11 to the first objective lens 18 constitutes an upper device that emits the primary electron beam 12 toward the sample 23. Further, the lower device is constituted by the potential plate 22 and members disposed below the potential plate 22. The sample 23 is held in the lower device. The upper device has a hole 18c through which the charged particle beam that passes through the upper device is finally emitted. In the first embodiment, the hole 18 c exists in the first objective lens 18. The detector 20 is attached below the hole 18c. The detector 20 also has an opening through which the primary electron beam 12 passes. The detector 20 is attached to the lower part of the first objective lens 18 so that the hole 18c and the opening overlap each other. A plurality of detectors 20 may be attached to the lower part of the first objective lens 18. The plurality of detectors 20 are attached such that the detection part of the detector 20 is as small as possible except for the hole 18c of the upper device, while preventing the path of the primary electron beam 12 from being blocked.
 図2に、第1の対物レンズ18を使って、一次電子線12の焦点を試料23上に合わせる場合の例を示す。特に、厚みのある試料23はこの方法で観察される。 FIG. 2 shows an example in which the first objective lens 18 is used to focus the primary electron beam 12 on the sample 23. In particular, a thick sample 23 is observed by this method.
 一方で、第2の対物レンズ26を主に使うときは、第1の対物レンズ18を通過した一次電子線12は、第2の対物レンズ26で縮小集束される。この第2の対物レンズ26は、試料23に近づくほど強い磁場分布をしているため(図4(b)参照)、低収差レンズを実現している。また、第1の対物レンズ18は、見やすい画像になるように、開き角αをコントロールすること、ならびに縮小率やレンズの形状、および焦点深度を調整することに用いられる。すなわち、第1の対物レンズ18は、これらの各制御値を最適化するのに用いられる。また、第2の対物レンズ26のみで一次電子線12を集束しきれない場合には、第1の対物レンズ18で一次電子線12を集束させるための補助を行うこともできる。 On the other hand, when the second objective lens 26 is mainly used, the primary electron beam 12 that has passed through the first objective lens 18 is reduced and focused by the second objective lens 26. Since the second objective lens 26 has a stronger magnetic field distribution toward the sample 23 (see FIG. 4B), a low aberration lens is realized. The first objective lens 18 is used to control the opening angle α and adjust the reduction ratio, lens shape, and depth of focus so that an easy-to-view image is obtained. That is, the first objective lens 18 is used to optimize each of these control values. In addition, when the primary electron beam 12 cannot be focused only by the second objective lens 26, assistance for focusing the primary electron beam 12 by the first objective lens 18 can be performed.
 図3を参照して、リターディングをしない場合についての動作を説明する。 Referring to FIG. 3, the operation when no retarding is performed will be described.
 リターディングをしない場合には、図1の電位板22は取り外してもよい。試料23はできるだけ第2の対物レンズ26に近づくように設置するのが良い。より詳しくは、試料23は、第2の対物レンズ26の上部(上面)からの距離が5mm以下になるように、第2の対物レンズ26の上部に近づけて設置するのが好ましい。 When the retarding is not performed, the potential plate 22 in FIG. 1 may be removed. The sample 23 is preferably installed as close to the second objective lens 26 as possible. More specifically, the sample 23 is preferably placed close to the upper part of the second objective lens 26 so that the distance from the upper part (upper surface) of the second objective lens 26 is 5 mm or less.
 一次電子線12は、加速電源14で加速されたエネルギーで試料23上を走査する。そのとき二次電子21aは、第2の対物レンズ26の磁場により磁束に巻きついて螺旋運動をしながら上昇する。二次電子21aは、試料23表面から離れると、急速に磁束密度が低下することにより旋回から振りほどかれて発散し、二次電子検出器19からの引込み電界により偏向されて二次電子検出器19に捕獲される。すなわち、二次電子検出器19は、二次電子検出器19から発生する電界が、荷電粒子によって試料から放出される二次電子を引き付けるように、配置される。このようにして、二次電子検出器19に入る二次電子21aを多くすることができる。 The primary electron beam 12 scans the sample 23 with energy accelerated by the acceleration power source 14. At that time, the secondary electrons 21a are wound around the magnetic flux by the magnetic field of the second objective lens 26 and rise while spiraling. When the secondary electrons 21a move away from the surface of the sample 23, the magnetic flux density rapidly decreases, so that the secondary electrons 21a are swung away from the swirl and diverge. Captured by 19. That is, the secondary electron detector 19 is arranged such that the electric field generated from the secondary electron detector 19 attracts secondary electrons emitted from the sample by the charged particles. In this way, the number of secondary electrons 21a entering the secondary electron detector 19 can be increased.
 次に、図4を用いてリターディングをする場合について概略を説明する。図4において、(a)はリターディング時の等電位線を示し、(b)は第2の対物レンズの光軸上磁束密度分布B(z)を示し、(c)はリターディング時の荷電粒子の速度を示している。 Next, an outline of the case of retarding will be described with reference to FIG. In FIG. 4, (a) shows the equipotential lines at the time of retarding, (b) shows the magnetic flux density distribution B (z) on the optical axis of the second objective lens, and (c) shows the charge at the time of retarding. It shows the velocity of the particles.
 図4の(b)に示されるように、第2の対物レンズ26の光軸上磁束密度は試料に近いほど強い分布をしているので、対物レンズは低収差レンズになる。そして、試料23に負の電位を与えると、一次電子線12は試料23に近づくほど減速する(図4(c)参照)。一次電子線12は速度が遅いほど磁場の影響を受けやすくなるため、試料23に近いほど第2の対物レンズ26が強いレンズになるといえる。そのため、試料23に負の電位を与えると、第2の対物レンズ26はさらに低収差のレンズとなる。 As shown in FIG. 4B, the magnetic flux density on the optical axis of the second objective lens 26 has a stronger distribution as it is closer to the sample, so the objective lens becomes a low aberration lens. When a negative potential is applied to the sample 23, the primary electron beam 12 is decelerated as it approaches the sample 23 (see FIG. 4C). Since the primary electron beam 12 is more susceptible to the influence of the magnetic field as the speed is lower, it can be said that the second objective lens 26 becomes a stronger lens closer to the sample 23. Therefore, when a negative potential is applied to the sample 23, the second objective lens 26 becomes a lens with further low aberration.
 また、信号電子21は、試料23のリターディング電圧による電界で加速され、エネルギー増幅して検出器20に入る。そのため、検出器20は高感度となる。このような構成にすることで、高分解能な電子線装置を実現できる。 Also, the signal electrons 21 are accelerated by the electric field generated by the retarding voltage of the sample 23, are amplified, and enter the detector 20. Therefore, the detector 20 has high sensitivity. With such a configuration, a high-resolution electron beam apparatus can be realized.
 また、第1の対物レンズ18と第2の対物レンズ26との距離は、10mmから200mmとされる。より好ましくは30mmから50mmとすることが望ましい。第1の対物レンズ18と第2の対物レンズ26との距離が10mmより近いと、第1の対物レンズ18の直下に置いた検出器20で反射電子21bが検出できる。しかし、リターディング時に二次電子21aが第1の対物レンズ18の中に引きこまれやすくなる。第1の対物レンズ18と第2の対物レンズ26との距離を10mm以上離すことで、二次電子21aは検出器20で検出されやすくなる。また、第1の対物レンズ18と第2の対物レンズ26との隙間が30mm程度ある場合には、試料23の出し入れがとても行いやすくなる。 Further, the distance between the first objective lens 18 and the second objective lens 26 is set to 10 mm to 200 mm. More preferably, the thickness is 30 mm to 50 mm. When the distance between the first objective lens 18 and the second objective lens 26 is shorter than 10 mm, the reflected electrons 21b can be detected by the detector 20 placed immediately below the first objective lens 18. However, the secondary electrons 21 a are easily drawn into the first objective lens 18 during the retarding. By separating the distance between the first objective lens 18 and the second objective lens 10 by 10 mm or more, the secondary electrons 21 a are easily detected by the detector 20. In addition, when there is a gap of about 30 mm between the first objective lens 18 and the second objective lens 26, the sample 23 can be easily put in and out.
 次に、各部品の構成について詳細に説明する。まず第2の対物レンズ26の形状について、図1を参照して説明する。 Next, the configuration of each part will be described in detail. First, the shape of the second objective lens 26 will be described with reference to FIG.
 第2の対物レンズ26を形成する磁極は、一次電子線12の理想光軸と中心軸が一致した中心磁極26aと、上部磁極26bと、筒形の側面磁極26cと、下部磁極26dとからなる。中心磁極26aは、上部ほど径が小さくなる形状である。中心磁極26aの上部は、例えば1段または2段の円錐台形状である。中心磁極26aの下部は、円柱形状である。中心磁極26aの下部の中心軸には、貫通孔がない。上部磁極26bは、中心に向かってテーパ状に中心磁極26aの重心に近い側が薄くなる、円盤形状である。上部磁極26bの中心には、開口径dの開口が空いている。中心磁極26aの先端径Dは、6mmより大きく14mmより小さい。開口径dと先端径Dとの関係は、d-D≧4mmとされる。 The magnetic pole forming the second objective lens 26 includes a central magnetic pole 26a whose central axis coincides with the ideal optical axis of the primary electron beam 12, an upper magnetic pole 26b, a cylindrical side magnetic pole 26c, and a lower magnetic pole 26d. . The center magnetic pole 26a has a shape with a smaller diameter at the top. The upper part of the center magnetic pole 26a has, for example, a one-stage or two-stage truncated cone shape. The lower part of the center magnetic pole 26a has a cylindrical shape. There is no through hole in the central axis below the central magnetic pole 26a. The upper magnetic pole 26b has a disk shape in which the side close to the center of gravity of the central magnetic pole 26a is thinned toward the center. An opening having an opening diameter d is open at the center of the upper magnetic pole 26b. The tip diameter D of the central magnetic pole 26a is larger than 6 mm and smaller than 14 mm. The relationship between the opening diameter d and the tip diameter D is dD ≧ 4 mm.
 次に、磁極の具体的な例を示す。中心磁極26aと上部磁極26bとの両者の試料側の上面は、同じ高さとされる。中心磁極26aの下部外径は60mmである。この外径が細いと、透磁率の低下を招くので好ましくない。 Next, specific examples of magnetic poles are shown. The upper surfaces on the sample side of both the center magnetic pole 26a and the upper magnetic pole 26b have the same height. The lower outer diameter of the center magnetic pole 26a is 60 mm. A thin outer diameter is not preferable because it causes a decrease in magnetic permeability.
 中心磁極26aがD=8mmの場合、上部磁極26bの開口径dは、12mmから32mmとすることが好ましい。より好ましくは、開口径dは、14mmから24mmである。開口径dが大きいほど、光軸上磁束密度分布は山がなだらかになって幅が広がり、一次電子線12の集束に必要なAT(アンペアターン:コイル巻数N[T]と電流I[A]との積)を小さくすることができるというメリットがある。しかし、開口径dと先端径Dとの関係がd>4Dとなると、収差係数が大きくなる。ここでは上部磁極26bの開口径dは20mm、側面磁極26cの外径は150mmである。また、中心磁極26aの軸中心に貫通穴があってもよい。 When the center magnetic pole 26a is D = 8 mm, the opening diameter d of the upper magnetic pole 26b is preferably 12 mm to 32 mm. More preferably, the opening diameter d is 14 mm to 24 mm. As the aperture diameter d increases, the magnetic flux density distribution on the optical axis becomes gentler and wider, and the AT (ampere turn: number of coil turns N [T] and current I [A] necessary for focusing the primary electron beam 12 is increased. Product) can be reduced. However, when the relationship between the opening diameter d and the tip diameter D is d> 4D, the aberration coefficient increases. Here, the opening diameter d of the upper magnetic pole 26b is 20 mm, and the outer diameter of the side magnetic pole 26c is 150 mm. A through hole may be provided at the center of the central magnetic pole 26a.
 ここで、例えば厚みが5mmの試料23に対し、30kVの高加速電圧でも一次電子線12を集束させる場合には、先端径Dは6mmより大きく14mmより小さくするのがよい。Dを小さくしすぎると、磁極が飽和し、一次電子線12が集束しない。一方で、Dを大きくすると性能が悪くなる。また、dとDとの大きさの差が4mmより小さいと、磁極が近すぎて飽和しやすくなり、一次電子線12が集束しない。また、第1の対物レンズ18と第2の対物レンズ26との距離が10mm以下になると、作業性が悪くなる。この距離が200mmより長すぎると、開き角αが大きくなりすぎる。この場合、収差を最適にするために、第1の対物レンズ18を使ってαを小さくする調整が必要になり、操作性が悪くなる。 Here, for example, when the primary electron beam 12 is focused on the sample 23 having a thickness of 5 mm even at a high acceleration voltage of 30 kV, the tip diameter D is preferably larger than 6 mm and smaller than 14 mm. If D is too small, the magnetic pole is saturated and the primary electron beam 12 is not focused. On the other hand, when D is increased, performance is deteriorated. On the other hand, if the difference in size between d and D is smaller than 4 mm, the magnetic poles are too close to be saturated and the primary electron beam 12 is not focused. Further, when the distance between the first objective lens 18 and the second objective lens 26 is 10 mm or less, workability is deteriorated. When this distance is longer than 200 mm, the opening angle α becomes too large. In this case, in order to optimize the aberration, the first objective lens 18 needs to be adjusted to reduce α, and the operability is deteriorated.
 また例えば、5kV以下の加速電圧のみで使用し、試料23の厚みが薄い場合は、先端径Dは6mm以下にしてもよい。ただし、例えば加速電圧が5kVである場合において、Dを2mm、dを5mmにし、試料23の厚みを5mmにし、第2の対物レンズ26のみを用いると、磁極が飽和してしまい、一次電子線12が集束しない。しかし、試料23を薄いものに制限すれば、レンズはさらに高性能化できる。 Also, for example, when the acceleration voltage is 5 kV or less and the sample 23 is thin, the tip diameter D may be 6 mm or less. However, for example, when the acceleration voltage is 5 kV, if D is 2 mm, d is 5 mm, the thickness of the sample 23 is 5 mm, and only the second objective lens 26 is used, the magnetic pole is saturated and the primary electron beam 12 does not converge. However, if the sample 23 is limited to a thin one, the performance of the lens can be further improved.
 試料23に電位を与える方法として、第2の対物レンズ26の磁極の一部に電気的絶縁部を挟んで一部の磁極を接地電位から浮かし、試料23と磁極の一部にリターディング電圧を与えることもできる。ただし、この場合、磁気回路中に磁性体でないものを挟むと、磁気レンズが弱いものになる。また、リターディング電圧を高くすると放電が発生する。電気的絶縁部を厚くすると、さらに磁気レンズが弱いものになるという問題がある。 As a method for applying a potential to the sample 23, a part of the magnetic poles of the second objective lens 26 is sandwiched between the electrically insulating portions and part of the magnetic poles are lifted from the ground potential, and a retarding voltage is applied to the sample 23 and a part of the magnetic poles. Can also be given. However, in this case, if a non-magnetic material is sandwiched in the magnetic circuit, the magnetic lens becomes weak. Further, when the retarding voltage is increased, discharge occurs. If the electrical insulating part is thickened, there is a problem that the magnetic lens becomes weaker.
 図1に示されるように、上部磁極26bと中心磁極26aとの間に、非磁性体で成るシール部26f(例えば銅やアルミニウムまたはモネル)を置くことが望ましい。シール部26fは、上部磁極26bと中心磁極26aとの間を、Oリングまたはロウ付けで真空気密にする。第2の対物レンズ26では、上部磁極26bと、シール部26fおよび中心磁極26aとにより、真空側と大気側とが気密分離される。上部磁極26bと真空容器とは、図には示していないが、Oリングで気密になるように結合されている。このようにすることで、第2の対物レンズ26は、真空側の面を除いて、大気にさらすことができるようになる。そのため、第2の対物レンズ26を冷却しやすくなる。 As shown in FIG. 1, it is desirable to place a seal portion 26f (for example, copper, aluminum, or monel) made of a nonmagnetic material between the upper magnetic pole 26b and the central magnetic pole 26a. The seal part 26f makes the space between the upper magnetic pole 26b and the central magnetic pole 26a vacuum-tight with an O-ring or brazing. In the second objective lens 26, the vacuum side and the atmosphere side are hermetically separated by the upper magnetic pole 26b, the seal portion 26f, and the central magnetic pole 26a. Although not shown in the drawing, the upper magnetic pole 26b and the vacuum vessel are coupled so as to be airtight by an O-ring. In this way, the second objective lens 26 can be exposed to the atmosphere except for the vacuum side surface. Therefore, it becomes easy to cool the second objective lens 26.
 真空容器の中に第2の対物レンズ26を入れることもできるが、真空度が悪くなる。コイル部26eが真空側にあると、ガス放出源になるからである。また、このように真空側と大気側とを気密分離しないと、真空引きをしたときにガスが第2の対物レンズ26と絶縁板25とが接しているところを通り、試料が動いてしまうという問題がある。 It is possible to put the second objective lens 26 in the vacuum vessel, but the degree of vacuum becomes worse. This is because if the coil part 26e is on the vacuum side, it becomes a gas emission source. Further, if the vacuum side and the atmosphere side are not hermetically separated in this way, the gas will pass through the place where the second objective lens 26 and the insulating plate 25 are in contact with each other when evacuation is performed. There's a problem.
 コイル部26eは、たとえば6000ATのコイル電流にすることができる。コイルが発熱して高温になると、それを原因として、巻線の被膜が融けてショートが発生することがある。第2の対物レンズ26が大気にさらすことができるようになることにより、冷却効率が上がる。例えば第2の対物レンズ26の下面の台をアルミニウム製にすることで、その台をヒートシンクとして利用することができる。そして、空冷ファンや水冷などで第2の対物レンズ26を冷却できるようになる。このように気密分離することで、強励磁の第2の対物レンズ26とすることが可能になる。 The coil portion 26e can be set to a coil current of 6000AT, for example. When the coil generates heat and becomes high temperature, the coating of the winding may melt and cause a short circuit. Since the second objective lens 26 can be exposed to the atmosphere, the cooling efficiency is increased. For example, when the base of the lower surface of the second objective lens 26 is made of aluminum, the base can be used as a heat sink. Then, the second objective lens 26 can be cooled by an air cooling fan or water cooling. By performing hermetic separation in this way, the second objective lens 26 with strong excitation can be obtained.
 図1を参照して、リターディング部を説明する。 Referring to FIG. 1, the retarding unit will be described.
 第2の対物レンズ26の上に、絶縁板25を置く。絶縁板25は、例えば0.1mmから0.5mm程度の厚みのポリイミドフイルムやポリエステルフイルム等である。そして、その上に、磁性のない導電性のある試料台24を置く。試料台24は、例えば底面が250μm厚のアルミニウム板で、周縁が周縁端に近づくほど絶縁板25から離れる曲面形状に加工されたものである。試料台24は、さらに曲面部と絶縁板25との間の隙間に絶縁材31が充填されたものであってもよい。このようにすると、第2の対物レンズ26と試料台24との間の耐電圧が上がり、安定して使うことができる。試料台24の平面形状は円形であるが、楕円、矩形など、どのような平面形状であってもよい。 The insulating plate 25 is placed on the second objective lens 26. The insulating plate 25 is, for example, a polyimide film or a polyester film having a thickness of about 0.1 mm to 0.5 mm. Then, a non-magnetic conductive sample stage 24 is placed thereon. The sample table 24 is, for example, an aluminum plate having a bottom surface of 250 μm, and is processed into a curved shape that is separated from the insulating plate 25 as the peripheral edge approaches the peripheral edge. The sample table 24 may be further filled with an insulating material 31 in a gap between the curved surface portion and the insulating plate 25. In this way, the withstand voltage between the second objective lens 26 and the sample stage 24 is increased, and it can be used stably. The planar shape of the sample stage 24 is circular, but may be any planar shape such as an ellipse or a rectangle.
 試料台24の上に試料23が載置される。試料台24は、リターディング電圧を与えるために、リターディング電源27に接続される。電源27は、例えば0Vから-30kVまで印加できる出力が可変の電源とする。試料台24は、真空外部から位置移動ができるように絶縁物でできた試料台ステージ板29に接続されている。これにより、試料23の位置は変更可能である。試料台ステージ板29は、XYステージ(図示せず)に接続されており、真空外部から動かすことができる。 The sample 23 is placed on the sample table 24. The sample stage 24 is connected to a retarding power source 27 in order to give a retarding voltage. The power source 27 is a power source whose output that can be applied from 0 V to −30 kV, for example, is variable. The sample stage 24 is connected to a sample stage stage plate 29 made of an insulator so that the position can be moved from outside the vacuum. Thereby, the position of the sample 23 can be changed. The sample stage stage plate 29 is connected to an XY stage (not shown) and can be moved from outside the vacuum.
 試料23の上には円形の開口部のある導電性板(以下、電位板22と呼ぶ)が配置される。電位板22は、第2の対物レンズ26の光軸に対し垂直に設置される。この電位板22は、試料23に対して絶縁して配置される。電位板22は、電位板電源28に接続される。電位板電源28は、例えば0Vおよび-10kVから+10kVの出力が可変の電源である。電位板22の円形の開口部の直径は、2mmから20mm程度までであればよい。より好ましくは、開口部の直径は、4mmから12mmまでであればよい。あるいは、一次電子線12または信号電子21が通過する電位板22の部分を導電性のメッシュ状にしてもよい。メッシュの網部が電子が通過しやすいように細くされ、開口率が大きくなるようにするとよい。この電位板22は、中心軸調整のために真空外部から位置を移動できるように、XYZステージ(図示せず)に接続される。 A conductive plate having a circular opening (hereinafter referred to as potential plate 22) is disposed on the sample 23. The potential plate 22 is installed perpendicular to the optical axis of the second objective lens 26. The potential plate 22 is disposed so as to be insulated from the sample 23. The potential plate 22 is connected to a potential plate power source 28. The potential plate power supply 28 is a power supply whose output is variable, for example, from 0 V and −10 kV to +10 kV. The diameter of the circular opening of the potential plate 22 may be about 2 mm to 20 mm. More preferably, the diameter of the opening may be 4 mm to 12 mm. Alternatively, the portion of the potential plate 22 through which the primary electron beam 12 or the signal electrons 21 pass may be formed into a conductive mesh shape. The mesh portion of the mesh is preferably made thin so that electrons can easily pass therethrough so that the aperture ratio is increased. The potential plate 22 is connected to an XYZ stage (not shown) so that the position can be moved from outside the vacuum for adjusting the central axis.
 試料台24の周縁は電位板22側に厚みがある。例えば電位板22が平らであると、電位板22は試料台24周縁で試料台24に近くなる。そうなると放電しやすくなる。電位板22が、試料23の近く以外の場所では導電性試料台24から離れる形状を有していることで、試料台24との耐電圧を上げることができる。 The periphery of the sample stage 24 has a thickness on the potential plate 22 side. For example, when the potential plate 22 is flat, the potential plate 22 is close to the sample table 24 at the periphery of the sample table 24. Then, it becomes easy to discharge. Since the potential plate 22 has a shape away from the conductive sample stage 24 at a place other than the vicinity of the sample 23, the withstand voltage with respect to the sample stage 24 can be increased.
 電位板22は、試料23から1mmから15mm程度の距離を離すことで、放電しないように配置されている。しかし、離しすぎないように配置されるのがよい。その目的は、第2の対物レンズ26の作る磁場が強い位置に減速電界を重ねるためである。もし、この電位板22が試料23から遠くに置かれた場合、あるいは電位板22が無い場合、一次電子線12が第2の対物レンズ26で集束される前に減速してしまい、収差を小さくする効果が減少する。 The potential plate 22 is arranged so as not to be discharged by separating the sample 23 from a distance of about 1 mm to 15 mm. However, it should be arranged so that it is not too far apart. The purpose is to overlap the deceleration electric field at a position where the magnetic field generated by the second objective lens 26 is strong. If the potential plate 22 is placed far from the sample 23, or if the potential plate 22 is not present, the primary electron beam 12 is decelerated before being focused by the second objective lens 26, thereby reducing the aberration. The effect of doing is reduced.
 それについて図4を参照して説明する(図4は、後で述べるシミュレーションデータ4のときに対応した説明図である)。図4の(a)は、リターディング時の等電位線を説明する図である。 This will be described with reference to FIG. 4 (FIG. 4 is an explanatory diagram corresponding to simulation data 4 described later). FIG. 4A is a diagram for explaining equipotential lines during retarding.
 仮に電位板22の開口部が大きすぎ、試料23と電位板22との距離が近すぎる場合、等電位線が電位板22の開口部より電子銃側に大きくはみ出して分布する。この場合、一次電子が、電位板22に到着するまでに減速してしまうことがある。電位板22の開口径が小さいほど、電界のもれを減少させる効果がある。ただし、信号電子21が電位板22に吸収されないようにする必要がある。そのため、放電を起こさない範囲で試料23と電位板22との電位差を調整するとともに、試料23と電位板22との距離を調整することと、電位板22の開口径を適切に選ぶこととが大切となる。 If the opening of the potential plate 22 is too large and the distance between the sample 23 and the potential plate 22 is too close, the equipotential lines are distributed far beyond the opening of the potential plate 22 toward the electron gun. In this case, the primary electrons may be decelerated before reaching the potential plate 22. As the opening diameter of the potential plate 22 is smaller, there is an effect of reducing the leakage of the electric field. However, it is necessary to prevent the signal electrons 21 from being absorbed by the potential plate 22. Therefore, it is possible to adjust the potential difference between the sample 23 and the potential plate 22 within a range in which no discharge occurs, to adjust the distance between the sample 23 and the potential plate 22, and to appropriately select the opening diameter of the potential plate 22. It becomes important.
 図4の(b)は、第2の対物レンズ26の光軸上磁束密度分布B(z)を説明する図である。縦軸はB(z)、横軸は座標であり、第2の対物レンズ26の表面が原点(-0)である。第2の対物レンズ26に近いほど急激にB(z)が大きくなっている様子が示されている。 4B is a diagram for explaining the magnetic flux density distribution B (z) on the optical axis of the second objective lens 26. FIG. The vertical axis is B (z), the horizontal axis is coordinates, and the surface of the second objective lens 26 is the origin (−0). It is shown that B (z) increases rapidly as the distance from the second objective lens 26 increases.
 図4の(c)は、リターディング時の荷電粒子の速度を説明する図である。荷電粒子線の速度は、試料直前で減速していることが示されている。 (C) of FIG. 4 is a figure explaining the speed of the charged particle at the time of retarding. It is shown that the velocity of the charged particle beam is decelerating immediately before the sample.
 電位板22を試料23の近くに置くことにより、一次電子の速度は、電位板22近くまではあまり変わらない。そして、一次電子は、電位板22あたりから試料23に近づくほど速度が遅くなり、磁場の影響を受けやすくなる。第2の対物レンズ26の作る磁場も試料23に近いほど強くなっているので、両方の効果が合わさって、試料23に近いほどさらに強いレンズになり、収差の小さいレンズになる。 By placing the potential plate 22 near the sample 23, the velocity of the primary electrons does not change so much until near the potential plate 22. The speed of the primary electrons decreases as the distance from the potential plate 22 approaches the sample 23, and the primary electrons are easily affected by the magnetic field. Since the magnetic field generated by the second objective lens 26 is stronger as it is closer to the sample 23, both effects are combined, and the closer to the sample 23, the stronger the lens and the smaller the aberration.
 加速電圧をできるだけ大きくしながら、リターディング電圧を加速電圧に近づけることができれば、照射電子エネルギーを小さくして、電子が試料23の中に入り込む深さを浅くすることができる。これによって、試料の表面形状の高分解能観察が可能になる。さらに収差も小さくできることで、高分解能でかつ低加速のSEMが実現できる。 If the retarding voltage can be brought close to the accelerating voltage while increasing the accelerating voltage as much as possible, the irradiation electron energy can be reduced and the depth at which the electrons enter the sample 23 can be reduced. This enables high-resolution observation of the surface shape of the sample. Furthermore, since the aberration can be reduced, an SEM with high resolution and low acceleration can be realized.
 第1の実施の形態では、試料23と電位板22との耐圧を簡単に高くすることができる。第1の対物レンズ18と第2の対物レンズ26との間は10mmから200mmの距離とすることができる。そのため、例えば平坦な試料23であれば、試料23と電位板22との間隔を5mm程度あければ、試料23と電位板22とに比較的簡単に10kV程度の電位差を印加することができる。尖った部分がある試料23の場合は放電しないように、距離や開口径を適切に選ぶ必要がある。 In the first embodiment, the breakdown voltage between the sample 23 and the potential plate 22 can be easily increased. The distance between the first objective lens 18 and the second objective lens 26 can be a distance of 10 mm to 200 mm. Therefore, for example, in the case of the flat sample 23, if the distance between the sample 23 and the potential plate 22 is about 5 mm, a potential difference of about 10 kV can be applied to the sample 23 and the potential plate 22 relatively easily. In the case of the sample 23 having a sharp portion, it is necessary to appropriately select the distance and the opening diameter so as not to discharge.
 図5に、試料の異なる配置例を示す。図5に示されるように、さらに、円筒形で上面がR加工された円筒放電防止電極30を、試料台24の上の試料23の周囲に設置して、放電しにくくするとよい。円筒放電防止電極30は、試料上の等電位線を滑らかにして、試料23のがたつきによる集束点のずれを緩和するのにも役立つ。 Fig. 5 shows examples of different sample arrangements. As shown in FIG. 5, a cylindrical discharge prevention electrode 30 having a cylindrical shape whose upper surface is R-processed may be installed around the sample 23 on the sample stage 24 to make it difficult to discharge. The cylindrical discharge preventing electrode 30 is also useful for smoothing equipotential lines on the sample and alleviating the deviation of the focusing point due to the rattling of the sample 23.
 第1の実施の形態における検出器20として、半導体検出器20、マイクロチャンネルプレート検出器20(MCP)、または蛍光体発光方式のロビンソン検出器20が用いられる。これらの少なくともいずれかが第1の対物レンズ18の直下に配置される。二次電子検出器19は、二次電子21aを集めるように、電界が試料23の上方にかかるように配置される。 As the detector 20 in the first embodiment, a semiconductor detector 20, a microchannel plate detector 20 (MCP), or a phosphorescent-type Robinson detector 20 is used. At least one of these is arranged directly below the first objective lens 18. The secondary electron detector 19 is arranged so that the electric field is applied above the sample 23 so as to collect the secondary electrons 21a.
 半導体検出器20、MCP検出器20またはロビンソン検出器20は、第1の対物レンズ18の試料側に接し、光軸から3cm以内に配置される。より好ましくは、検出部の中心が光軸におかれ、その中心に一次電子が通過する開口部が設けられている検出器20が使用される。光軸から3cm以内に設置するのは、リターディングをした場合、信号電子は光軸近くに進むからである。 The semiconductor detector 20, the MCP detector 20, or the Robinson detector 20 is in contact with the sample side of the first objective lens 18 and is disposed within 3 cm from the optical axis. More preferably, a detector 20 is used in which the center of the detection unit is placed on the optical axis and an opening through which primary electrons pass is provided at the center. The reason why it is set within 3 cm from the optical axis is that when retarding, signal electrons travel close to the optical axis.
 一次電子線12は、加速電源14(Vacc)で加速に用いられた加速電圧からリターディング電圧Vdecelを引いた値、すなわち-(Vacc-Vdecel)[V]に電子電荷をかけたエネルギーで、試料23上を走査する。そのとき、試料23から信号電子21が放出される。加速電圧とリターディング電圧との値によって、電子の影響の受け方は異なる。反射電子21bは、第2の対物レンズ26の磁場によって、回転する力を受けると同時に、試料23と電位板22との間の電界のために加速する。そのため、反射電子21bの放射角の広がりが狭まり、検出器20に入射しやすくなる。また、二次電子21aも第2の対物レンズ26の磁場によって、回転する力を受けると同時に、試料23と電位板22との間の電界のために加速して、第1の対物レンズ18の下にある検出器20に入射する。二次電子21aも反射電子21bも加速し、エネルギーが増幅されて検出器20に入射するため、信号が大きくなる。 The primary electron beam 12 is obtained by subtracting the retarding voltage Vdecel from the acceleration voltage used for acceleration by the acceleration power supply 14 (Vacc), that is, energy obtained by applying an electronic charge to − (Vacc−Vdecel) [V]. 23 is scanned. At that time, signal electrons 21 are emitted from the sample 23. Depending on the values of the acceleration voltage and the retarding voltage, the way of being affected by electrons differs. The reflected electrons 21 b are subjected to a rotating force by the magnetic field of the second objective lens 26 and at the same time are accelerated due to the electric field between the sample 23 and the potential plate 22. For this reason, the spread of the radiation angle of the reflected electrons 21b is narrowed, and the reflected electrons 21b are easily incident on the detector 20. The secondary electrons 21 a are also subjected to a rotating force by the magnetic field of the second objective lens 26, and at the same time are accelerated due to the electric field between the sample 23 and the potential plate 22, It is incident on the detector 20 below. Since both the secondary electrons 21a and the reflected electrons 21b are accelerated and the energy is amplified and enters the detector 20, the signal becomes large.
 汎用SEMでは、第1の対物レンズ18のようなレンズで電子を集束するのが通常である。この第1の対物レンズ18は、通常、試料23を第1の対物レンズ18に近づけるほど高分解能になるように設計されている。しかし、半導体検出器20などには厚みがあり、その厚み分は第1の対物レンズ18から試料23を離す必要がある。また、試料23を第1の対物レンズ18に近づけすぎると、二次電子21aが、第1の対物レンズ18の外にある二次電子検出器19に入りにくくなる。そのため汎用SEMでは、第1の対物レンズ18直下の位置に配置され、一次電子が通過する開口部がある厚みの薄い半導体検出器20が用いられる。試料23は、検出器20にぶつからないように少し隙間をあけて置かれる。したがって、試料23と第1の対物レンズ18とは少し離れてしまい、高性能化が難しくなる。 In general-purpose SEM, it is usual to focus electrons with a lens such as the first objective lens 18. The first objective lens 18 is usually designed to have a higher resolution as the sample 23 is closer to the first objective lens 18. However, the semiconductor detector 20 or the like has a thickness, and the sample 23 needs to be separated from the first objective lens 18 by the thickness. If the sample 23 is too close to the first objective lens 18, the secondary electrons 21 a will not easily enter the secondary electron detector 19 outside the first objective lens 18. Therefore, in the general-purpose SEM, a thin semiconductor detector 20 that is disposed at a position immediately below the first objective lens 18 and has an opening through which primary electrons pass is used. The sample 23 is placed with a slight gap so as not to hit the detector 20. Therefore, the sample 23 and the first objective lens 18 are slightly separated from each other, and it is difficult to improve the performance.
 第1の実施の形態では、第2の対物レンズ26を主レンズとして使う場合、試料23を第2の対物レンズ26に近づけて設置することができる。そして、第1の対物レンズ18と第2の対物レンズ26との間の距離を離すことができる。例えば30mm離せば、10mm程度の厚みのあるMCP検出器20を第1の対物レンズ18の直下に置くことが可能になる。また、ロビンソン型の検出器20や半導体検出器20を置くことも当然にできる。反射板を置いて、信号電子21を反射板にあてて、そこから発生または反射した電子を第2の二次電子検出器で検出する方法もある。同等の作用を持つ様々な信号電子の検出器20を設置することができる。 In the first embodiment, when the second objective lens 26 is used as a main lens, the sample 23 can be placed close to the second objective lens 26. Then, the distance between the first objective lens 18 and the second objective lens 26 can be increased. For example, if the distance is 30 mm, the MCP detector 20 having a thickness of about 10 mm can be placed immediately below the first objective lens 18. Naturally, a Robinson type detector 20 or a semiconductor detector 20 can also be provided. There is also a method in which a reflecting plate is placed, the signal electrons 21 are applied to the reflecting plate, and electrons generated or reflected therefrom are detected by a second secondary electron detector. Various signal electron detectors 20 having the same function can be installed.
 次に、レンズ光学系の性能に関連する開き角αについて説明する。 Next, the opening angle α related to the performance of the lens optical system will be described.
 一次電子線12が試料23に当たるときのビーム径を、プローブ径と呼ぶ。プローブ径を評価する式として次の式を使う。なお、以下の数式において、「^」に続く数字は羃指数である。 The beam diameter when the primary electron beam 12 hits the sample 23 is called the probe diameter. The following formula is used as a formula for evaluating the probe diameter. In the following formula, the number following “^” is a power index.
 [数1]プローブ径Dprobe=sqrt[Dg^2+Ds^2+Dc^2+Dd^2] [nm] [Equation 1] Probe diameter Dprobe = sqrt [Dg ^ 2 + Ds ^ 2 + Dc ^ 2 + Dd ^ 2] [nm]
 [数2]光源の縮小直径Dg=M1・M2・M3・So=M・So [nm] [Equation 2] Reduced diameter of light source Dg = M1, M2, M3, So = M, So [nm]
 [数3]球面収差Ds=0.5Cs・α^3 [nm] [Equation 3] Spherical aberration Ds = 0.5 Cs · α 3 [nm]
 [数4]色収差Dc=0.5Cc・α・ΔV/Vi [nm] [Equation 4] Chromatic aberration Dc = 0.5 Cc · α · ΔV / Vi [nm]
 [数5]回折収差:Dd=0.75×1.22×Lambda/α [nm]  [Equation 5] Diffraction aberration: Dd = 0.75 × 1.22 × Lambda / α [nm]
 ここで、電子源の大きさがSo、一段目コンデンサレンズ15aの縮小率がM1、二段目コンデンサレンズ15bの縮小率がM2、第1の対物レンズ18と第2の対物レンズ26とが作るレンズの縮小率がM3、全縮小率M=M1×M2×M3、球面収差係数がCs、色収差係数がCc、試料面での一次電子線12の開き角がα、照射電圧(一次電子が試料23に衝突するときのエネルギーに対応する電圧)がVi、一次電子線12のエネルギー広がりに対応する電圧がΔV、電子の波長がLambdaである。 Here, the size of the electron source is So, the reduction ratio of the first-stage condenser lens 15a is M1, the reduction ratio of the second-stage condenser lens 15b is M2, and the first objective lens 18 and the second objective lens 26 are formed. The reduction ratio of the lens is M3, the total reduction ratio M = M1 × M2 × M3, the spherical aberration coefficient is Cs, the chromatic aberration coefficient is Cc, the opening angle of the primary electron beam 12 on the sample surface is α, and the irradiation voltage (primary electrons are the sample) Is a voltage corresponding to the energy spread of the primary electron beam 12, ΔV, and the electron wavelength is Lambda.
 熱電子放出型電子源を用いたSEMの性能の一例について、シミュレーションデータを使って説明する。図1の第1の対物レンズ18はアウトレンズ型とする。 An example of SEM performance using a thermionic emission electron source will be described using simulation data. The first objective lens 18 in FIG. 1 is an out-lens type.
 第1の対物レンズ18で一次電子線12を集束する場合を示す。これは、汎用SEMに対応する。 The case where the primary electron beam 12 is focused by the first objective lens 18 is shown. This corresponds to a general purpose SEM.
 一次電子線12のΔVを1V、電子源の大きさSoを10μmとする。M1×M2=0.00282とする。穴径30ミクロンである対物レンズ絞り16を置いて、不用な軌道電子を取り除く。この対物レンズ絞り16の穴径によって、試料23に入射するビームの開き角αとプローブ電流が調整できる。WDを6mm、加速電圧Vacc=-30kV(Vi=30kV)とする。シミュレーション計算すると、 Suppose that ΔV of the primary electron beam 12 is 1 V and the size So of the electron source is 10 μm. It is assumed that M1 × M2 = 0.00282. An objective lens aperture 16 having a hole diameter of 30 microns is placed to remove unnecessary orbital electrons. The opening angle α of the beam incident on the sample 23 and the probe current can be adjusted by the hole diameter of the objective lens aperture 16. WD is 6 mm and acceleration voltage Vacc = −30 kV (Vi = 30 kV). When calculating simulation,
 (シミュレーションデータ1) (Simulation data 1)
 Dprobe=4.4nm、Dg=1.59、Ds=3.81、Dc=0.916、Dd=1.25、 Dprobe = 4.4 nm, Dg = 1.59, Ds = 3.81, Dc = 0.916, Dd = 1.25,
 Cs=54.5mm、Cc=10.6mm、α=5.19mrad、M3=0.0575となる。 Cs = 54.5 mm, Cc = 10.6 mm, α = 5.19 mrad, M3 = 0.0575.
 次に、第2の対物レンズ26で一次電子線12を集束する場合を示す。 Next, a case where the primary electron beam 12 is focused by the second objective lens 26 will be described.
 図1の構成で、第2の対物レンズ26と第1の対物レンズ18との距離を40mmとする。第2の対物レンズ26は、D=8mm、d=20mmとし、αを調整するため対物レンズ絞り16の穴径を21.8ミクロンとする。このとき、汎用SEMのときと比べてプローブ電流量が変化しないように、コンデンサレンズ15を弱めて調整する。その他の条件は同じとする。Z=-4mmの位置での性能をシミュレーションすると、 In the configuration of FIG. 1, the distance between the second objective lens 26 and the first objective lens 18 is 40 mm. The second objective lens 26 has D = 8 mm and d = 20 mm, and the hole diameter of the objective lens aperture 16 is 21.8 microns in order to adjust α. At this time, the condenser lens 15 is weakened and adjusted so that the probe current amount does not change compared to the case of the general-purpose SEM. Other conditions are the same. When simulating the performance at the position of Z = -4mm,
 (シミュレーションデータ2) (Simulation data 2)
 Dprobe=1.44nm、Dg=0.928、Ds=0.657、Dc=0.503、Dd=0.729、 Dprobe = 1.44 nm, Dg = 0.828, Ds = 0.657, Dc = 0.503, Dd = 0.729,
 Cs=1.87mm、Cc=3.391mm、α=8.89mrad、M3=0.0249となる。 Cs = 1.87 mm, Cc = 3.391 mm, α = 8.89 mrad, M3 = 0.0249.
 以上のように、第2の対物レンズ26を用いることで、SEMの性能が大幅によくなっていることがわかる。 As described above, it can be seen that the use of the second objective lens 26 significantly improves the performance of the SEM.
 また、第1の対物レンズ18で集束するときと比べて、第2の対物レンズ26で集束するときは、Dgが小さくなっている。このことはプローブ径を同等にする場合、第1の対物レンズ18で集束するときと比べて、コンデンサレンズ15を弱めることができることを示している。したがって、第2の対物レンズ26を使うことで、汎用SEMと比べてプローブ電流を大電流化できることがわかる。 Also, Dg is smaller when focusing with the second objective lens 26 than when focusing with the first objective lens 18. This indicates that when the probe diameters are made equal, the condenser lens 15 can be weakened compared to when focusing with the first objective lens 18. Therefore, it can be seen that the probe current can be increased by using the second objective lens 26 as compared with the general-purpose SEM.
 次に第1の対物レンズ18は使わずに、第2の対物レンズ26を使い、加速電圧Vaccを-1kV(Vi=1kV)とする場合を説明する(リターディング電圧は0Vとする)。プローブ電流が変化しないように、コンデンサレンズ15を調整する(ただし、電子銃からの軌道とビーム量は-30kVのときと同じとする)。その他の条件は同じとする。以下がシミュレーションデータである。 Next, a case where the second objective lens 26 is used without using the first objective lens 18 and the acceleration voltage Vacc is set to −1 kV (Vi = 1 kV) (retarding voltage is set to 0 V) will be described. The condenser lens 15 is adjusted so that the probe current does not change (however, the trajectory and beam amount from the electron gun are the same as when −30 kV). Other conditions are the same. The following is the simulation data.
 (シミュレーションデータ3) (Simulation data 3)
 結果を図6(a)に示す。 The result is shown in FIG.
 Dprobe=15.6nm、Dg=0.928、Ds=0.657、Dc=15.1、Dd=3.99、 Dprobe = 15.6 nm, Dg = 0.828, Ds = 0.657, Dc = 15.1, Dd = 3.99,
 Cs=1.87mm、Cc=3.39mm、α=8.89mrad、M3=0.0249である。 Cs = 1.87 mm, Cc = 3.39 mm, α = 8.89 mrad, M3 = 0.0249.
 この場合、Cs、Cc、α、M3、Dsはシミュレーションデータ2と変わらない。ΔV/Viが大きくなるため、プローブ径がとても大きくなる。 In this case, Cs, Cc, α, M3, and Ds are the same as the simulation data 2. Since ΔV / Vi becomes large, the probe diameter becomes very large.
 次に、電位板22を試料23の上部に配置する例を説明する。電位板22の開口径はΦ5mm、試料23はΦ6mmとする。試料測定面をZ=-4mm(第2の対物レンズ26からの距離)とする。試料台24と電位板22との距離を8mm、試料測定面と電位板22との間隔を5mmとする。 Next, an example in which the potential plate 22 is arranged on the top of the sample 23 will be described. The opening diameter of the potential plate 22 is 5 mm, and the sample 23 is 6 mm. The sample measurement surface is Z = −4 mm (distance from the second objective lens 26). The distance between the sample stage 24 and the potential plate 22 is 8 mm, and the distance between the sample measurement surface and the potential plate 22 is 5 mm.
 加速電圧Vaccは-10kV、電位板22を0V電位とし、試料23をVdecel=-9kVでリターディングし、Vi=1kVとした場合の数値をシミュレーションする。ここでは第1の対物レンズ18は使わず、第2の対物レンズ26のみで集束させる。 The acceleration voltage Vacc is −10 kV, the potential plate 22 is 0 V potential, the sample 23 is retarded at Vdecel = −9 kV, and the numerical value when Vi = 1 kV is simulated. Here, the first objective lens 18 is not used, and only the second objective lens 26 is used for focusing.
 (シミュレーションデータ4) (Simulation data 4)
 結果を図6(b)に示す。 The result is shown in FIG.
 Dprobe=5.72nm、Dg=0.924、Ds=2.93、Dc=4.66、Dd=1.26、 Dprobe = 5.72 nm, Dg = 0.924, Ds = 2.93, Dc = 4.66, Dd = 1.26,
 Cs=0.260mm、Cc=0.330mm、α=28.2mrad、M3=0.0247である。 Cs = 0.260 mm, Cc = 0.330 mm, α = 28.2 mrad, M3 = 0.0247.
 リターディング電圧Vdecelを-9kVにすると、照射電子のエネルギーは1keVとなる。加速電圧が-1kVのときと比べて、プローブ径が大幅に改善している。 When the retarding voltage Vdecel is −9 kV, the energy of the irradiated electrons is 1 keV. Compared to when the acceleration voltage is -1 kV, the probe diameter is greatly improved.
 次にこの条件に第1の対物レンズ18を追加して使用し、強度を適切に調整する(シミュレーションデータ1で必要なAT(アンペアターン)の約0.37倍としてみる)例を示す。 Next, an example is shown in which the first objective lens 18 is added to this condition and used, and the intensity is adjusted appropriately (taken as 0.37 times the AT (ampere turn) required in the simulation data 1).
 (シミュレーションデータ5) (Simulation data 5)
 結果を図6(c)に示す。 The result is shown in FIG.
 Dprobe=4.03nm、Dg=1.60、Ds=0.682、Dc=2.92、Dd=2.17、 Dprobe = 4.03 nm, Dg = 1.60, Ds = 0.682, Dc = 2.92, Dd = 2.17
 Cs=0.312mm、Cc=0.357mm、α=16.3mrad、M3=0.0430である。 Cs = 0.112 mm, Cc = 0.357 mm, α = 16.3 mrad, M3 = 0.0430.
 ここでDprobeが減少していることがわかる。シミュレーションデータ4ではDc(=4.66)が飛びぬけて大きくなっていた。そこで、第1の対物レンズ18を少し加えることで、αを小さくすることができる。Dcは上記[数4]からCcとαに依存する。Ccは少し大きくなっているが、αは相当小さくなっている。そのためDcは小さくなっている。[数1]から、Dprobeは第1の対物レンズ18を使うことで小さくできることがわかる。 Here you can see that Dprobe is decreasing. In the simulation data 4, Dc (= 4.66) jumped and increased. Therefore, α can be reduced by adding a little first objective lens 18. Dc depends on Cc and α from the above [Equation 4]. Cc is a little larger, but α is considerably smaller. Therefore, Dc is small. [Equation 1] shows that Dprobe can be reduced by using the first objective lens 18.
 図6(a)のα=8.89mradに対して、図6(b)ではα=28.2mradであり、リターディングによって大きな値になっている。すなわち、強いレンズになっていることがわかる。また、そのためにDdも小さくなっていることがわかる。図6(c)では第1の対物レンズ18でαを調整してαが小さくなっていることがわかる。 FIG. 6B shows α = 28.2 mrad compared to α = 8.89 mrad in FIG. 6A, which is a large value due to the retarding. That is, it turns out that it is a strong lens. Also, it can be seen that Dd is also reduced. In FIG. 6C, it can be seen that α is decreased by adjusting α with the first objective lens 18.
 ここで大切なことは、対物レンズ絞り16の穴径を小さくしてαを調整することも可能であるが、その場合はプローブ電流が減少してしまうということである。しかし、第1の対物レンズ18を使用してαを調整してもプローブ電流は減少しない。そのため、試料23から発生する二次電子21aと反射電子21bは減少しない。 Here, it is important to adjust the α by reducing the hole diameter of the objective lens aperture 16, but in this case, the probe current is reduced. However, even if α is adjusted using the first objective lens 18, the probe current does not decrease. Therefore, the secondary electrons 21a and the reflected electrons 21b generated from the sample 23 are not reduced.
 また、リターディング電圧の印加によって検出器20の感度がよくなると、プローブ電流を減らすことができる。さらに対物レンズ絞り16の穴径を小さくしてαを小さくすることもできる。また、コンデンサレンズ15による縮小率M1×M2を小さくすることも可能になる。そのため、Dg、Ds、Dc、およびDdとの兼ね合いがあるので調整が必要だが、プローブ径をさらに小さくできる場合がある。対物レンズ絞り16と第1の対物レンズ18とでプローブ径を最適化できる。 Also, when the sensitivity of the detector 20 is improved by applying the retarding voltage, the probe current can be reduced. Furthermore, the hole diameter of the objective lens aperture 16 can be reduced to reduce α. In addition, the reduction ratio M1 × M2 by the condenser lens 15 can be reduced. Therefore, adjustment is necessary because there is a balance with Dg, Ds, Dc, and Dd, but the probe diameter may be further reduced. The probe diameter can be optimized by the objective lens aperture 16 and the first objective lens 18.
 また、試料23によっては焦点深度が浅いレンズだと、凸凹の上の面と底の面どちらかにしかピントが合わないことがある。このような場合、プローブ径が同じでもαが小さいほど焦点深度が深くなり、きれいに見えることもある。第1の対物レンズ18を使って、像を見やすいように最適化することもできる。 Also, depending on the sample 23, if the lens has a shallow depth of focus, the lens may be focused only on the top surface or the bottom surface of the unevenness. In such a case, even if the probe diameter is the same, the smaller the α is, the deeper the focal depth becomes, and the better the appearance may be. The first objective lens 18 can be used to optimize the image so that it can be seen easily.
 次に、第1の実施の形態における装置の様々な使い方の具体例を示す。 Next, specific examples of various usages of the apparatus in the first embodiment will be shown.
 図6(b)では、加速電圧Vaccを-10kVとし、試料23を-9kVでリターディングするシミュレーションを示したが、例えば、加速電圧Vaccを-4kV、試料23を-3.9kVにして、Vi=100Vとすることもできる。加速電圧とリターディング電圧の比が1に近いほど、収差係数を小さくすることができる。また、上記では第2の対物レンズ26の磁極について、D=8mm、d=20mmとした場合を示したが、D=2、d=6等にすれば、試料高さや加速電圧の制限はあるが、より性能をよくすることができる。 FIG. 6B shows a simulation in which the acceleration voltage Vacc is set to −10 kV and the sample 23 is retarded at −9 kV. For example, the acceleration voltage Vacc is set to −4 kV and the sample 23 is set to −3.9 kV. = 100V. The closer the ratio of the acceleration voltage and the retarding voltage is to 1, the smaller the aberration coefficient. In the above description, the case where D = 8 mm and d = 20 mm is shown for the magnetic pole of the second objective lens 26. However, if D = 2, d = 6, etc., there are limitations on the sample height and acceleration voltage. However, the performance can be improved.
 また、加速電圧を-10kVとしてリターディング無しの場合、二次電子検出器19で二次電子21aを検出できるが、半導体検出器20では検出できない。しかし、加速電圧を-20kVとし、リターディング電圧を-10kVとすれば約10keVのエネルギーで二次電子21aが半導体検出器20に入り、検出可能である。 In addition, when the acceleration voltage is −10 kV and there is no retarding, the secondary electron 21 a can be detected by the secondary electron detector 19, but cannot be detected by the semiconductor detector 20. However, if the acceleration voltage is −20 kV and the retarding voltage is −10 kV, the secondary electrons 21 a enter the semiconductor detector 20 with an energy of about 10 keV and can be detected.
 また、加速電圧を-10.5kVとし、リターディング電圧を-0.5kVとしたとき、二次電子21aは半導体検出器20では感度よく検出できない。しかしこのとき、二次電子検出器19で二次電子21aを検出することができる。すなわち、二次電子21aはリターディング電圧が低いときは二次電子検出器19で捕らえることができ、リターディング電圧を徐々に上げていくと半導体検出器20側で検出できる量が増えていく。このように、二次電子検出器19は、焦点を合わせながらリターディング電圧を上げていく調整時にも役立つ。 Further, when the acceleration voltage is set to -10.5 kV and the retarding voltage is set to -0.5 kV, the secondary electrons 21a cannot be detected with high sensitivity by the semiconductor detector 20. However, at this time, the secondary electrons 21 a can be detected by the secondary electron detector 19. That is, the secondary electrons 21a can be captured by the secondary electron detector 19 when the retarding voltage is low, and the amount that can be detected by the semiconductor detector 20 increases as the retarding voltage is gradually increased. As described above, the secondary electron detector 19 is also useful during adjustment in which the retarding voltage is raised while focusing.
 第1の実施の形態の第2の対物レンズ26は、Z=-4.5mmで30keVの一次電子を集束できるように設計してある。試料位置が第2の対物レンズ26に近づけば、例えばZ=-0.5mmの位置では、100keVの一次電子も集束させることができる。リターディングをしない場合は、絶縁板25(絶縁フイルム)を第2の対物レンズ26の上に置かなくてもよい。そのため、この場合には、第2の対物レンズ26は、加速電圧が-100kVの一次電子線12を十分に集束できる。好ましくは第2の対物レンズ26は、加速電源を-30kVから-10kVのいずれかにして加速された荷電粒子線を、対物レンズの磁極の試料に最も近いところから見て、0mmから4.5mmのいずれかの高さの位置に集束可能であるように設計される。 The second objective lens 26 according to the first embodiment is designed so as to be able to focus 30 keV primary electrons at Z = −4.5 mm. If the sample position is close to the second objective lens 26, for example, at the position of Z = −0.5 mm, primary electrons of 100 keV can also be focused. When the retarding is not performed, the insulating plate 25 (insulating film) may not be placed on the second objective lens 26. Therefore, in this case, the second objective lens 26 can sufficiently focus the primary electron beam 12 having an acceleration voltage of −100 kV. Preferably, the second objective lens 26 has a charged particle beam accelerated with an acceleration power source of either −30 kV to −10 kV, as viewed from a position closest to the magnetic pole sample of the objective lens, and is 0 mm to 4.5 mm. Are designed to be focusable at any height position.
 加速電圧は-15kVとし、試料23は-5kVとし、電位板22に-6kVをかけた場合について説明する。一次電子は、試料23に当たるときには、10keVになる。試料23から放出される二次電子21aのエネルギーは、100eV以下である。電位板22の電位は試料23の電位よりも1kV低いため、二次電子21aは電位板22を超えることができない。そのため、二次電子21aは検出できない。試料23から放出された1keV以上のエネルギーを持っている反射電子21bは、電位板22を通過することができる。さらに電位板22と第1の対物レンズ18下の検出器20との間に6kVの電位差があり、反射電子21bは加速され検出器20に入る。このように電位板22の電圧を調整できるようにすることによって、電位板22をエネルギーフィルタとして使うこともでき、さらに信号電子21を加速させることで感度を上げることも可能になる。 The case where the acceleration voltage is −15 kV, the sample 23 is −5 kV, and −6 kV is applied to the potential plate 22 will be described. The primary electrons are 10 keV when they hit the sample 23. The energy of the secondary electrons 21a emitted from the sample 23 is 100 eV or less. Since the potential of the potential plate 22 is 1 kV lower than the potential of the sample 23, the secondary electrons 21 a cannot exceed the potential plate 22. Therefore, the secondary electrons 21a cannot be detected. The reflected electrons 21 b having an energy of 1 keV or more emitted from the sample 23 can pass through the potential plate 22. Furthermore, there is a potential difference of 6 kV between the potential plate 22 and the detector 20 below the first objective lens 18, and the reflected electrons 21 b are accelerated and enter the detector 20. By making the voltage of the potential plate 22 adjustable in this way, the potential plate 22 can be used as an energy filter, and the sensitivity can be increased by further accelerating the signal electrons 21.
 次に、試料の高さが例えば7mmある場合について説明する。 Next, the case where the sample height is 7 mm, for example, will be described.
 このとき、リターディングをする場合でも、上部磁極26bから絶縁板25と試料台24の厚みを含めて、例えばZ=-7.75mm程度の位置において測定が行われる。この場合、第2の対物レンズ26のみでは30keVの一次電子線12を集束させることはできない。しかし、加速電圧を下げなくても第1の対物レンズ18の助けを借りれば、一次電子線12を集束可能である。 At this time, even when the retarding is performed, the measurement is performed at a position of about Z = −7.75 mm including the thickness of the insulating plate 25 and the sample stage 24 from the upper magnetic pole 26b. In this case, the primary electron beam 12 of 30 keV cannot be focused only by the second objective lens 26. However, the primary electron beam 12 can be focused with the help of the first objective lens 18 without lowering the acceleration voltage.
 また、試料23の高さによっては、第1の対物レンズ18のみで集束させた方が性能良く観察できる場合もある(図2参照)。このように、試料23によって最適な使い方を選ぶことができる。 Further, depending on the height of the sample 23, there are cases where it is possible to observe with better performance by focusing only with the first objective lens 18 (see FIG. 2). Thus, the optimal usage can be selected depending on the sample 23.
 上記では、第1の対物レンズ18と第2の対物レンズ26との間隔を40mmとする場合について述べたが、この距離は固定式でも可動式にしてもよい。第1の対物レンズ18と第2の対物レンズ26との距離を離すほど、縮小率M3は小さい値になる。そして開き角αは大きくできる。この方法でαを調整することができる。 In the above description, the case where the distance between the first objective lens 18 and the second objective lens 26 is 40 mm has been described, but this distance may be fixed or movable. The smaller the distance between the first objective lens 18 and the second objective lens 26, the smaller the reduction ratio M3. The opening angle α can be increased. Α can be adjusted by this method.
 また、リターディング電圧が高いと信号電子21は光軸の近くを通って、検出器20の一次電子が通るための開口部に入りやすくなる。そのため検出器20の開口部は小さい程よい。検出器20の開口部はΦ1からΦ2mm程度にしておくと、感度がよい。電位板22の開口径や高さを調整し、電位板22の位置を光軸から少しずらすことで、信号電子21が検出器20に当たるように信号電子21の軌道を調整して感度をよくする方法がある。また、第1の対物レンズ18と第2の対物レンズ26との間に電場と磁場を直行させて印加するイークロスビー(ExB)を入れ、信号電子21を少し曲げるのもよい。一次電子の進行方向と信号電子21の進行方向とは逆なので、少し信号電子21を曲げるのに、弱い電場と磁場とを設けてもよい。少し曲がれば検出器20中心の開口部に入らず、検出できるようになる。また、単に第1の対物レンズ18と第2の対物レンズ26との間に電界を光軸に対して横からかけてもよい。このようにしても、一次電子は影響を受けにくいし、横ずれだけであれば画像への影響は少ない。例えば二次電子検出器19のコレクタ電極などによる電界を使って、信号電子21の軌道をコントロールすることも可能である。 Also, when the retarding voltage is high, the signal electrons 21 pass near the optical axis and easily enter the opening for the primary electrons of the detector 20 to pass. Therefore, the smaller the opening of the detector 20, the better. Sensitivity is good when the opening of the detector 20 is about Φ1 to Φ2 mm. By adjusting the aperture diameter and height of the potential plate 22 and slightly shifting the position of the potential plate 22 from the optical axis, the trajectory of the signal electrons 21 is adjusted to improve the sensitivity so that the signal electrons 21 hit the detector 20. There is a way. Further, it is also possible to insert an E-Crosby (ExB) to be applied by directing an electric field and a magnetic field between the first objective lens 18 and the second objective lens 26, and the signal electrons 21 may be bent slightly. Since the traveling direction of the primary electrons and the traveling direction of the signal electrons 21 are opposite, a weak electric field and magnetic field may be provided to bend the signal electrons 21 slightly. If it is slightly bent, it can be detected without entering the opening at the center of the detector 20. Alternatively, an electric field may be applied between the first objective lens 18 and the second objective lens 26 from the side with respect to the optical axis. Even if it does in this way, a primary electron is hard to be influenced, and if it is only a lateral shift, there will be little influence on an image. For example, the trajectory of the signal electrons 21 can be controlled using an electric field generated by the collector electrode of the secondary electron detector 19 or the like.
 図3では、第2の対物レンズ26を主レンズとして使っている。試料台24が接地電位の場合、二次電子21aは二次電子検出器19で検出される。反射電子21bは半導体検出器20またはロビンソン検出器20などで検出される。試料23と検出器20とが10mmから20mm程度離れているときは、感度よく検出できる。しかし、40mm程度離れると、検出器20に入らない反射電子21bが増え、反射電子21bの検出量が少なくなる。このときに試料23にリターディング電圧を与えると、二次電子21aは半導体検出器20またはロビンソン検出器20などで検出されるようになる。また、リターディング電圧を与えることで、反射電子21bの広がりは抑えられ、半導体検出器20またはロビンソン検出器20などにおいて高感度で検出できるようになる。このように電位板22がない場合もリターディングは使用可能である。 In FIG. 3, the second objective lens 26 is used as the main lens. When the sample stage 24 is at the ground potential, the secondary electrons 21 a are detected by the secondary electron detector 19. The reflected electrons 21b are detected by the semiconductor detector 20, the Robinson detector 20, or the like. When the sample 23 and the detector 20 are separated from each other by about 10 mm to 20 mm, they can be detected with high sensitivity. However, if the distance is approximately 40 mm, the number of reflected electrons 21b that do not enter the detector 20 increases, and the amount of reflected electrons 21b detected decreases. At this time, when a retarding voltage is applied to the sample 23, the secondary electrons 21a are detected by the semiconductor detector 20, the Robinson detector 20, or the like. Further, by applying the retarding voltage, the spread of the reflected electrons 21b can be suppressed, and the semiconductor detector 20 or the Robinson detector 20 can be detected with high sensitivity. Thus, retarding can be used even when the potential plate 22 is not provided.
 図2では、試料23が分厚い場合で、対物レンズとして第1の対物レンズ18を使った場合を示した。図2では、電位板22を動かすステージを活用して、試料ステージとして使用することができる。このXY移動ステージは、第1の対物レンズ18に近づける方向にも移動できる。これにより、汎用SEMのように装置が使用される。反射電子21bは半導体検出器20またはロビンソン検出器20などで検出され、二次電子21aは二次電子検出器19で検出される。通常、試料23は接地電位であるが、簡易的にリターディングもできる(電位板22なしでリターディングを行うことができる)。 FIG. 2 shows a case where the sample 23 is thick and the first objective lens 18 is used as the objective lens. In FIG. 2, the stage which moves the potential plate 22 can be utilized and used as a sample stage. This XY moving stage can also move in a direction approaching the first objective lens 18. Thereby, the apparatus is used like a general-purpose SEM. The reflected electrons 21b are detected by the semiconductor detector 20 or the Robinson detector 20, and the secondary electrons 21a are detected by the secondary electron detector 19. Usually, the sample 23 is at the ground potential, but it can be simply retarded (retarding can be performed without the potential plate 22).
 第2の対物レンズ電源42のみを使うときには、第1の対物レンズ18と試料測定面との距離よりも、第2の対物レンズ26と試料測定面との距離の方が近くなるように装置が構成され、第1の対物レンズ電源41のみを使うときには、第2の対物レンズ26と試料測定面との距離よりも、第1の対物レンズ18と試料測定面との距離の方が近くなるように装置が構成される。 When only the second objective lens power source 42 is used, the apparatus is arranged so that the distance between the second objective lens 26 and the sample measurement surface is closer than the distance between the first objective lens 18 and the sample measurement surface. Thus, when only the first objective lens power supply 41 is used, the distance between the first objective lens 18 and the sample measurement surface is closer than the distance between the second objective lens 26 and the sample measurement surface. The device is configured.
 図1でリターディングをした場合、試料23の電位が負になる。試料23をGNDレベルにしたまま電位板22に正の電圧を印加することも可能である(この手法を、ブースティング法と呼ぶ)。試料23に負の電圧を印加して、電位板22に正の電位をかけて、低加速SEMとしてさらに性能をよくすることも可能である。例として、第1の対物レンズ18は接地電位とし、電位板22に+10kVを印加し、試料23は接地電位にする場合を説明する。加速電圧は-30kVとする。一次電子は第1の対物レンズ18を通過するときは30keVであり、第1の対物レンズ18から電位板22にむけて加速され、電位板22あたりから試料23にむけて減速する。以下にこの場合のシミュレーションデータを示す。試料23と電位板22の形は、シミュレーションデータ4の場合と同じ条件とする。 When the retarding is performed in FIG. 1, the potential of the sample 23 becomes negative. It is also possible to apply a positive voltage to the potential plate 22 while keeping the sample 23 at the GND level (this method is called a boosting method). It is also possible to apply a negative voltage to the sample 23 and apply a positive potential to the potential plate 22 to further improve the performance as a low acceleration SEM. As an example, a case where the first objective lens 18 is set to the ground potential, +10 kV is applied to the potential plate 22, and the sample 23 is set to the ground potential will be described. The acceleration voltage is -30 kV. The primary electrons are 30 keV when passing through the first objective lens 18, are accelerated toward the potential plate 22 from the first objective lens 18, and decelerate toward the sample 23 around the potential plate 22. The simulation data in this case is shown below. The shapes of the sample 23 and the potential plate 22 are the same as in the simulation data 4.
 (シミュレーションデータ6) (Simulation data 6)
 Dprobe=1.31nm、Dg=0.904、Ds=0.493、Dc=0.389、Dd=0.710、 Dprobe = 1.31 nm, Dg = 0.904, Ds = 0.493, Dc = 0.389, Dd = 0.710,
 Cs=1.29mm、Cc=2.56mm、α=9.13mrad、M3=0.0244である。 Cs = 1.29 mm, Cc = 2.56 mm, α = 9.13 mrad, M3 = 0.0244.
 以上の結果によると、ブースティングなしの場合(シミュレーションデータ2)と比べて、プローブ径が改善している。 According to the above results, the probe diameter is improved compared to the case without boosting (simulation data 2).
 信号電子21は、試料23と電位板22との間では加速されるが、電位板22と検出器20との間では減速される。検出器20が半導体検出器20である場合に反射電子21bを検出できるが、半導体検出器20は接地電位であるため、二次電子21aは減速し、検出できない。二次電子21aは二次電子検出器19で検出できる。リターディング電圧を試料23に印加すれば、半導体検出器20で二次電子21aも検出可能になる。 The signal electrons 21 are accelerated between the sample 23 and the potential plate 22, but are decelerated between the potential plate 22 and the detector 20. When the detector 20 is the semiconductor detector 20, the reflected electrons 21b can be detected. However, since the semiconductor detector 20 is at the ground potential, the secondary electrons 21a are decelerated and cannot be detected. The secondary electrons 21 a can be detected by the secondary electron detector 19. If the retarding voltage is applied to the sample 23, the semiconductor detector 20 can also detect the secondary electrons 21a.
 次に図7を参照して、二段偏向コイル17の調整によって偏向軌道の交点を移動させることについて説明する。二段偏向コイル17で試料23上を二次元的に走査する。二段偏向コイル17の電子源側を上段偏向コイル17a、試料側を下段偏向コイル17bと呼ぶ。 Next, with reference to FIG. 7, the movement of the intersection of the deflection trajectories by adjusting the two-stage deflection coil 17 will be described. The two-stage deflection coil 17 scans the sample 23 two-dimensionally. The electron source side of the two-stage deflection coil 17 is called an upper stage deflection coil 17a, and the sample side is called a lower stage deflection coil 17b.
 図1に示されるように、この二段偏向コイル17は、上段偏向コイル17aの強度を可変する上段偏向電源43と、下段偏向コイル17bの強度を可変する下段偏向電源44と、上段偏向電源43と下段偏向電源44とを制御する制御装置45とにより制御される。 As shown in FIG. 1, the two-stage deflection coil 17 includes an upper deflection power source 43 that varies the strength of the upper deflection coil 17a, a lower deflection power source 44 that varies the strength of the lower deflection coil 17b, and an upper deflection power source 43. And a control device 45 that controls the lower deflection power source 44.
 上段偏向コイル17aと下段偏向コイル17bは、第1の対物レンズ18の内部から見て一次電子線12が飛来してくる側に設置される(第1の対物レンズ18のレンズ主面より上流に設置、またはレンズ主面の位置に下段の偏向部材を置く場合には外側磁極18b(図7参照。なお、図7の符号18aは内側磁極を示す。)より上流に設置される)。上段偏向電源43と下段偏向電源44との使用電流比は、制御装置45によって可変となっている。 The upper deflection coil 17a and the lower deflection coil 17b are installed on the side from which the primary electron beam 12 comes in as viewed from the inside of the first objective lens 18 (upstream from the lens main surface of the first objective lens 18). When the lower deflection member is placed at the position of the lens main surface, it is installed upstream of the outer magnetic pole 18b (see FIG. 7; reference numeral 18a in FIG. 7 indicates the inner magnetic pole). The use current ratio between the upper deflection power supply 43 and the lower deflection power supply 44 is variable by the control device 45.
 図7(a)では、二段の偏向コイル17によって、電子は光軸と第1の対物レンズ18の主面の交点近くを通過する軌道になっている。第1の対物レンズ18を主レンズとして使う場合(図2)には、このように設定される。第2の対物レンズ26を主レンズとして使うときに、図7(a)のようにすると偏向収差が大きくなり、低倍率の画像ほど歪んでしまう。第2の対物レンズ26を主レンズとして使うときは、図7(b)のように、上段偏向コイル17aと下段偏向コイル17bの強度比が、電子が第2の対物レンズ26の主面と光軸との交点近くを通過する軌道になるように調整される。調整は、上段偏向電源43と下段偏向電源44の使用電流比を調整する制御装置45によって行われる。このようにすることで、画像の歪は減少する。なお、使用電流比を調整することで偏向軌道の交点(クロス点)をずらすのではなく、巻き数の異なるコイルをリレーなどで切り替える方式(巻数の異なるコイルを複数設け、用いるコイルを制御装置で選ぶ方式)や、静電レンズの場合は電圧を切り替える方式(使用電圧比を可変する方式)を採用してもよい。 7A, the two-stage deflection coil 17 forms an orbit where electrons pass near the intersection of the optical axis and the main surface of the first objective lens 18. When the first objective lens 18 is used as the main lens (FIG. 2), the setting is performed as described above. When the second objective lens 26 is used as the main lens, the deflection aberration increases as shown in FIG. 7A, and the lower magnification image is distorted. When the second objective lens 26 is used as the main lens, as shown in FIG. 7B, the intensity ratio of the upper deflection coil 17a and the lower deflection coil 17b is such that electrons are emitted from the main surface of the second objective lens 26 and light. The trajectory is adjusted to pass near the intersection with the axis. The adjustment is performed by a control device 45 that adjusts a use current ratio between the upper deflection power supply 43 and the lower deflection power supply 44. By doing so, image distortion is reduced. Instead of shifting the intersection (crossing point) of the deflection trajectory by adjusting the current ratio used, a method of switching coils with different numbers of turns with a relay or the like (providing a plurality of coils with different numbers of turns and using a coil with a controller) In the case of an electrostatic lens, a method of switching the voltage (a method of changing the working voltage ratio) may be employed.
 図7に示されるように、偏向コイル17は第1の対物レンズ18内の隙間に配置してもよい。偏向コイル17は、第1の対物レンズ18内にあってもよいし、図1のようにそれよりもさらに荷電粒子線の上流側に位置してもよい。静電偏向を採用する場合には、偏向コイルに代えて偏向電極が採用される。 As shown in FIG. 7, the deflection coil 17 may be disposed in a gap in the first objective lens 18. The deflection coil 17 may be in the first objective lens 18 or may be positioned further upstream of the charged particle beam than that as shown in FIG. When electrostatic deflection is employed, a deflection electrode is employed instead of the deflection coil.
 [第2の実施の形態] [Second Embodiment]
 図8を参照して、第1の対物レンズ18のない簡易的な装置構成を説明する。 Referring to FIG. 8, a simple apparatus configuration without the first objective lens 18 will be described.
 ここでは半導体検出器20を下段偏向コイル17bの下に置いている。第1の対物レンズ18がない場合、その分下段偏向コイル17bと第2の対物レンズ26との距離を短くすることができる。このような装置構成は、小型化に適している。第1の実施の形態と比較して、第2の実施の形態でも第1の対物レンズ18を使用することを除いて、同様に装置を使用することができる。検出器20と第2の対物レンズ26との距離は、10mmから200mm離して設置されている。 Here, the semiconductor detector 20 is placed under the lower deflection coil 17b. When the first objective lens 18 is not provided, the distance between the lower deflection coil 17b and the second objective lens 26 can be shortened accordingly. Such an apparatus configuration is suitable for downsizing. Compared to the first embodiment, the apparatus can be similarly used in the second embodiment, except that the first objective lens 18 is used. The distance between the detector 20 and the second objective lens 26 is set to be 10 mm to 200 mm apart.
 図8の装置においては、電子源11から下段偏向コイル17bまでの構成により、一次電子線12を試料23に向けて射出する上部装置が構成される。また、電位板22と、それよりも下に配置される部材とにより下部装置が構成される。下部装置に試料23は保持される。上部装置は、その内部を通った荷電粒子線が最終的に放出される孔部を有している。その孔部は、下段偏向コイル17bに存在する。検出器20は、その孔部の下に取り付けられている。検出器20も一次電子線12が通過する開口部を有しており、孔部と開口部とが重なるように、検出器20は下段偏向コイル17bよりも下部に取り付けられる。 In the apparatus of FIG. 8, an upper apparatus that emits the primary electron beam 12 toward the sample 23 is configured by the configuration from the electron source 11 to the lower deflection coil 17b. Further, the lower device is constituted by the potential plate 22 and members disposed below the potential plate 22. The sample 23 is held in the lower device. The upper device has a hole through which the charged particle beam that passes through the upper device is finally emitted. The hole exists in the lower deflection coil 17b. The detector 20 is attached below the hole. The detector 20 also has an opening through which the primary electron beam 12 passes, and the detector 20 is attached below the lower deflection coil 17b so that the hole and the opening overlap.
 [第3の実施の形態] [Third embodiment]
 第3の実施の形態では、電子源11に電界放出型のものを用いる。電界放出型は、熱電子放出型と比べて輝度が高く、光源の大きさは小さく、一次電子線12のΔVも小さく、色収差の面でも有利である。第3の実施の形態では第1の実施の形態との比較のために、第1の実施の形態の二段目コンデンサレンズ15bから下を第1の実施の形態と同じものとし、電子源部を電界放出型にし、一段目コンデンサレンズ15aをなくしている。一次電子線12のΔVを0.5eVとし、電子源の大きさSo=0.1μmとする。Z=-4mmとし、加速電圧Vaccを-30kV、第1の対物レンズ18はOFFとした性能を計算すると、以下のようになる。 In the third embodiment, a field emission type is used for the electron source 11. The field emission type has higher brightness than the thermionic emission type, the size of the light source is small, the ΔV of the primary electron beam 12 is also small, and is advantageous in terms of chromatic aberration. In the third embodiment, for comparison with the first embodiment, the lower part from the second stage condenser lens 15b of the first embodiment is the same as that of the first embodiment, and the electron source section Is a field emission type, and the first-stage condenser lens 15a is eliminated. The ΔV of the primary electron beam 12 is set to 0.5 eV, and the electron source size So is set to 0.1 μm. The performance when Z = −4 mm, the acceleration voltage Vacc is −30 kV, and the first objective lens 18 is OFF is as follows.
 (シミュレーションデータ7) (Simulation data 7)
 Dprobe=0.974nm、Dg=0.071、Ds=0.591、Dc=0.248、Dd=0.730、 Dprobe = 0.974 nm, Dg = 0.071, Ds = 0.591, Dc = 0.248, Dd = 0.730,
 Cs=1.69mm、Cc=3.36mm、α=8.88mrad、M3=0.0249 Cs = 1.69 mm, Cc = 3.36 mm, α = 8.88 mrad, M3 = 0.0249
 電界放出型電子源は熱電子放出型と比べて輝度が高い。さらにコンデンサレンズ15が一段になっているので、プローブ電流は熱電子放出型のときと比べて多くなっている。それにもかかわらず、プローブ径が小さくなっていることがわかる。Ddが一番大きな値を示している。 The field emission electron source has higher brightness than the thermal electron emission type. Furthermore, since the condenser lens 15 is in one stage, the probe current is larger than that in the thermoelectron emission type. Nevertheless, it can be seen that the probe diameter is small. Dd shows the largest value.
 次の例では、加速電圧Vaccを-1kV(Vi=1kV)とする。第1の対物レンズ18は使わすに、第2の対物レンズ26を使い、電子を集束する。プローブ電流は変化しないようにコンデンサレンズ15を調整する。その場合は、以下のようになる。 In the following example, the acceleration voltage Vacc is set to −1 kV (Vi = 1 kV). When the first objective lens 18 is used, the second objective lens 26 is used to focus the electrons. The condenser lens 15 is adjusted so that the probe current does not change. In that case, it is as follows.
 (シミュレーションデータ8) (Simulation data 8)
 Dprobe=8.48nm、Dg=0.071、Ds=0.591、Dc=7.45、 Dd=4.00、 Dprobe = 8.48 nm, Dg = 0.071, Ds = 0.591, Dc = 7.45, Dd = 4.00,
 Cs=1.68mm、Cc=3.36mm、 α=8.88mrad、M3=0.0249 Cs = 1.68 mm, Cc = 3.36 mm, α = 8.88 mrad, M3 = 0.0249
 以上のように、熱電子放出型(シミュレーションデータ3)では、Dprobe=15.6nmなので、電界放出型電子源の方がよいことがわかる。 As described above, in the thermionic emission type (simulation data 3), since Dprobe = 15.6 nm, it can be seen that the field emission type electron source is better.
 次に、電位板22と試料23を図1のように配置する例について説明する。試料測定面をZ=-4mmとする。 Next, an example in which the potential plate 22 and the sample 23 are arranged as shown in FIG. 1 will be described. The sample measurement surface is set to Z = −4 mm.
 加速電圧Vaccは-10kVとし、電位板22を0V電位にし、試料23を-9kVにした場合(Vi=1kV)について計算結果を以下に示す。ここでは第1の対物レンズ18は使わず、第2の対物レンズ26のみで集束させている。 The calculation results are shown below when the acceleration voltage Vacc is −10 kV, the potential plate 22 is 0 V potential, and the sample 23 is −9 kV (Vi = 1 kV). Here, the first objective lens 18 is not used, and the second objective lens 26 is used for focusing.
 (シミュレーションデータ9) (Simulation data 9)
 Dprobe=3.92nm、Dg=0.071、Ds=2.90、Dc=2.32、Dd=1.26、 Dprobe = 3.92 nm, Dg = 0.071, Ds = 2.90, Dc = 2.32, Dd = 1.26,
 Cs=0.260mm、Cc=0.330mm、α=28.1mrad、M3=0.0248 Cs = 0.260 mm, Cc = 0.330 mm, α = 28.1 mrad, M3 = 0.0248
 収差の中でDsが一番大きな値になっている。これは、試料23に近くほど電子の速さが遅くなり磁場の影響を受けやすくなることと、磁束密度が試料23に近いほど大きな値であることから試料23に近いほど強いレンズになっているため、αが大きくなりすぎたこととによる。Dsは、αの3乗に比例することから、大きくなっている。第1の対物レンズ18を使うことで改善するのがよい。 Ds is the largest value among aberrations. This is because the closer to the sample 23, the slower the electron speed and the more easily affected by the magnetic field, and the closer the sample 23 is, the larger the magnetic flux density is. Therefore, α is too large. Since Ds is proportional to the cube of α, it is large. It may be improved by using the first objective lens 18.
 次に、第1の対物レンズ18を使用し、強度を最適調整した場合(シミュレーションデータ1のAT(アンペアターン)の約0.31倍にした場合)のデータを示す。 Next, data is shown when the first objective lens 18 is used and the intensity is optimally adjusted (when it is about 0.31 times the AT (ampere turn) of simulation data 1).
 (シミュレーションデータ10) (Simulation data 10)
 Dprobe=2.68nm、Dg=0.103、Ds=1.03、Dc=1.68、Dd=1.82、 Dprobe = 2.68 nm, Dg = 0.103, Ds = 1.03, Dc = 1.68, Dd = 1.82,
 Cs=0.279mm、Cc=0.344mm、α=19.5mrad、M3=0.0358 Cs = 0.279 mm, Cc = 0.344 mm, α = 19.5 mrad, M3 = 0.0358
 収差係数だけを見ると悪化しているが、プローブ径はαを調節したことにより、さらに改善している。 だ け Although only the aberration coefficient is seen, the probe diameter is further improved by adjusting α.
 ここでは第1の実施の形態と比較するため、対物レンズ絞り16の穴径を21.8ミクロンと同じにした。電界放出型の場合は、輝度が明るいため、そしてコンデンサレンズ15が一段になっているため、さらに穴径を小さくできる。そのため、回折収差が主な収差になる。 Here, in order to compare with the first embodiment, the hole diameter of the objective lens aperture 16 is made the same as 21.8 microns. In the case of the field emission type, since the brightness is high and the condenser lens 15 is formed in one step, the hole diameter can be further reduced. Therefore, diffraction aberration becomes the main aberration.
 以上のように本実施の形態によると、第2の対物レンズ26を使い、リターディングすることで、αが大きくなるレンズ系になり、回折収差を減らせるレンズ系となっている。すなわち、荷電粒子線装置において低収差の第2の対物レンズを実現することができる。信号電子を高感度で検出し、安価に高分解能化を実現することができる。 As described above, according to the present embodiment, by using the second objective lens 26 and performing retarding, a lens system in which α is increased is obtained, and the lens system is capable of reducing diffraction aberration. That is, the second objective lens with low aberration can be realized in the charged particle beam apparatus. Signal electrons can be detected with high sensitivity, and high resolution can be realized at low cost.
 本実施の形態によれば、信号電子が第1の対物レンズの中を通過しないため、検出部を簡単な構造にすることができる。第2の対物レンズの光軸上磁束密度は、試料に近いほど強い分布をしているので、対物レンズは低収差レンズになる。試料に負の電位を与えると、試料に近いほど強いレンズになり、対物レンズはさらに低収差レンズになる。試料のリターディング電圧による電界で、信号電子は加速され、エネルギー増幅して検出器に入るため、検出器は高感度となる。以上の構成によって、高分解能な荷電粒子線装置を実現することができる。 According to the present embodiment, since the signal electrons do not pass through the first objective lens, the detection unit can have a simple structure. Since the magnetic flux density on the optical axis of the second objective lens has a stronger distribution as it is closer to the sample, the objective lens becomes a low aberration lens. When a negative potential is applied to the sample, the closer to the sample, the stronger the lens, and the objective lens further becomes a low aberration lens. The signal electrons are accelerated by the electric field generated by the retarding voltage of the sample, and the energy is amplified and enters the detector. Therefore, the detector becomes highly sensitive. With the above configuration, a high-resolution charged particle beam apparatus can be realized.
 [第4の実施の形態] [Fourth embodiment]
 次に、第4の実施の形態におけるSEM(荷電粒子装置の一例)の装置構成について説明する。以下の説明において、上述の実施の形態と同様の構成(各構成の変形例も含む)については、上述と同じ符号を付し、それらの構成についての詳細な説明については省略する。 Next, an apparatus configuration of an SEM (an example of a charged particle apparatus) in the fourth embodiment will be described. In the following description, configurations similar to those in the above-described embodiment (including modified examples of each configuration) are denoted by the same reference numerals as those described above, and detailed descriptions thereof are omitted.
 上記の第1の実施の形態の大まかな構成は、次のように、第4の実施の形態においても同様である。上部装置には、電子源11から第1の対物レンズ18までの構成が配置されている。上部装置から試料23に向けて一次電子線12が射出される。下部装置には、第2の対物レンズ26が配置されている。下部装置に試料23が保持される。二次電子検出器19及び検出器20も、同様に設けられる。二次電子検出器19は、二次電子21aの信号電子21を検出するために設けられる。 The general configuration of the first embodiment is the same as that of the fourth embodiment as follows. In the upper device, the configuration from the electron source 11 to the first objective lens 18 is arranged. The primary electron beam 12 is emitted from the upper device toward the sample 23. A second objective lens 26 is disposed in the lower device. A sample 23 is held in the lower apparatus. The secondary electron detector 19 and the detector 20 are provided in the same manner. The secondary electron detector 19 is provided to detect the signal electrons 21 of the secondary electrons 21a.
 図9は、本発明の第4の実施の形態に係るSEMの装置構成の一例を示す断面図である。 FIG. 9 is a cross-sectional view showing an example of the device configuration of the SEM according to the fourth embodiment of the present invention.
 図9に示されるSEMでは、図1に示されるものと同様に、上部装置や、第2の対物レンズ26や、二次電子検出器19や、電位板22等が設けられている。このSEMでは、リターディングが行われる。このように、第4の実施の形態において、SEMは、基本的には図1に示されるものと同様の構成を有している。第4の実施の形態において、SEMは、電位板22の下面(試料23側の面)に、反射電子21bを検出する検出器720が配置されている点で図1に示されるものとは異なっている。 In the SEM shown in FIG. 9, the upper device, the second objective lens 26, the secondary electron detector 19, the potential plate 22 and the like are provided in the same manner as that shown in FIG. In this SEM, retarding is performed. Thus, in the fourth embodiment, the SEM basically has the same configuration as that shown in FIG. In the fourth embodiment, the SEM differs from that shown in FIG. 1 in that a detector 720 for detecting the reflected electrons 21b is disposed on the lower surface of the potential plate 22 (the surface on the sample 23 side). ing.
 検出器720には、一次電子線12や二次電子21aが通過する孔部が設けられている。検出器720としては、例えば、マイクロチャンネルプレートや、ロビンソン検出器や、半導体検出器等が用いられる。 The detector 720 is provided with a hole through which the primary electron beam 12 and the secondary electron 21a pass. As the detector 720, for example, a microchannel plate, a Robinson detector, a semiconductor detector, or the like is used.
 このように、図9に示される装置では、比較的試料23に近い位置に、検出器720が配置される。入射する反射電子21bの立体角が大きく、反射電子21bの検出感度が向上するので、より高い感度で試料23の観察を行うことができる。 As described above, in the apparatus shown in FIG. 9, the detector 720 is arranged at a position relatively close to the sample 23. Since the solid angle of the incident reflected electrons 21b is large and the detection sensitivity of the reflected electrons 21b is improved, the sample 23 can be observed with higher sensitivity.
 第4の実施の形態において、電位板22の上方に、検出器20が配置されていてもよい。検出器720の孔部720aの寸法は、一次電子線12が通過する程度に小さくてもよい。例えば、孔部720aは、円形の貫通孔であって、その直径がたとえば1ミリメートルから2ミリメートル程度が好ましい。このように孔部720aを小さくすることにより、反射電子21bのほとんどは電位板22より上方に通過することができなくなる。したがって、二次電子検出器19または検出器20に入射する信号電子21のほとんどが二次電子21aとなるため、反射電子像との混合でない、鮮明な二次電子像を得ることができる。 In the fourth embodiment, the detector 20 may be disposed above the potential plate 22. The size of the hole 720a of the detector 720 may be small enough to allow the primary electron beam 12 to pass through. For example, the hole 720a is a circular through hole, and the diameter is preferably about 1 to 2 millimeters, for example. By reducing the hole 720a in this way, most of the reflected electrons 21b cannot pass above the potential plate 22. Therefore, since most of the signal electrons 21 incident on the secondary electron detector 19 or the detector 20 become the secondary electrons 21a, a clear secondary electron image that is not mixed with the reflected electron image can be obtained.
 [その他] [Others]
 本発明は上記実施形態によって記載したが、この開示の記述および図面はこの発明を限定するものであると理解すべきではない。例えば荷電粒子源から試料23までの荷電粒子線の軌道を図では直線に描いてある。しかし、エネルギーフィルタなどを入れると軌道が曲げられる。荷電粒子線の軌道が曲がっている場合もある。このような場合も特許請求の範囲に記載された技術的範囲内に含まれる。また、イオンビーム顕微鏡では負イオンの荷電粒子の場合、電子と同様の考え方ができ第1の実施の形態と同様に適用できることがわかる。イオンの場合、電子と比べて質量が重いので、コンデンサレンズ15を静電レンズに、偏向コイル17を静電偏向に、第1の対物レンズ18を静電レンズにしてもよい。また、対物レンズ26は磁気レンズを用いる。 Although the present invention has been described by the above embodiment, it should not be understood that the description and drawings of this disclosure limit the present invention. For example, the trajectory of the charged particle beam from the charged particle source to the sample 23 is drawn in a straight line in the figure. However, when an energy filter is inserted, the track is bent. The charged particle beam trajectory may be bent. Such a case is also included in the technical scope described in the claims. In addition, in the ion beam microscope, in the case of negative ion charged particles, it can be understood that it can be applied in the same manner as in the first embodiment because it can have the same concept as electrons. In the case of ions, the mass is heavier than electrons, so the condenser lens 15 may be an electrostatic lens, the deflection coil 17 may be an electrostatic deflection, and the first objective lens 18 may be an electrostatic lens. The objective lens 26 uses a magnetic lens.
 上記説明によって本発明は、荷電粒子線装置であるEPMA、電子線描画装置などの電子ビーム装置、またはイオンビーム顕微鏡などのイオンビーム装置に容易に適用できることが理解できる。He+イオン源のようにプラスイオンの荷電粒子を用いる場合には、イオン源の加速電源として正の加速電源14を用いる。リターディングを行わない場合は、第1の実施の形態と同様に装置を構成することができる。リターディングを行う場合は、リターディング電源27をプラス電源に切り替えるほか、上述の実施の形態と同様に装置を構成することができる。このとき、電位板22が接地電位であれば、試料23から放出した信号電子21は、負電荷であるため、試料23に引き戻されてしまう。この場合、電位板22の電位が試料23の電位よりも高くなるように電位板電源28を調整すればよい。たとえば、荷電粒子線の加速電源14を+7kVとし、上部装置を接地電位とし、電位板22を+6kVとし、試料23を+5kVとすればよい。そうすると、電位板22の位置に置いた検出器720で信号電子21を検出することができる。 From the above description, it can be understood that the present invention can be easily applied to an electron beam apparatus such as EPMA, which is a charged particle beam apparatus, an electron beam drawing apparatus, or an ion beam apparatus such as an ion beam microscope. When positive ion charged particles are used like a He + ion source, a positive acceleration power source 14 is used as an acceleration power source for the ion source. When the retarding is not performed, the apparatus can be configured in the same manner as in the first embodiment. When performing the retarding, the retarding power supply 27 is switched to the positive power supply, and the apparatus can be configured in the same manner as in the above-described embodiment. At this time, if the potential plate 22 is at the ground potential, the signal electrons 21 emitted from the sample 23 are negatively charged, and thus are pulled back to the sample 23. In this case, the potential plate power supply 28 may be adjusted so that the potential of the potential plate 22 is higher than the potential of the sample 23. For example, the charged particle beam acceleration power source 14 may be set to +7 kV, the upper device may be set to the ground potential, the potential plate 22 may be set to +6 kV, and the sample 23 may be set to +5 kV. Then, the signal electrons 21 can be detected by the detector 720 placed at the position of the potential plate 22.
 上述の実施の形態および変形例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiments and modifications should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 11…荷電粒子源(電子源)
 12…荷電粒子線(一次電子線)
 13…ウェーネルト電極
 14…加速電源
 15…コンデンサレンズ
 15a…一段目コンデンサレンズ
 15b…二段目コンデンサレンズ
 16…対物レンズ絞り
 17…二段偏向コイル
 17a…上段偏向コイル
 17b…下段偏向コイル
 18…第1の対物レンズ
 18a…内側磁極
 18b…外側磁極
 18c…孔部
 19…二次電子検出器
 20…検出器(半導体検出器、ロビンソン検出器またはMCP検出器)
 21…信号電子(21a…二次電子、21b…反射電子)
 22…電位板
 23…試料
 24…試料台
 25…絶縁板
 26…第2の対物レンズ
 26a…中心磁極
 26b…上部磁極
 26c…側面磁極
 26d…下部磁極
 26e…コイル
 26f…シール部
 27…リターディング電源
 28…電位板電源
 29…試料台ステージ板
 30…円筒放電防止電極
 31…絶縁材
 41…第1の対物レンズ電源
 42…第2の対物レンズ電源
 43…上段偏向電源
 44…下段偏向電源
 45…制御装置
 720…検出器(半導体検出器、ロビンソン検出器またはMCP検出器)
11 ... charged particle source (electron source)
12 ... charged particle beam (primary electron beam)
DESCRIPTION OF SYMBOLS 13 ... Wehnelt electrode 14 ... Acceleration power supply 15 ... Condenser lens 15a ... First stage condenser lens 15b ... Second stage condenser lens 16 ... Objective lens aperture 17 ... Second stage deflection coil 17a ... Upper stage deflection coil 17b ... Lower stage deflection coil 18 ... First stage Objective lens 18a ... inner magnetic pole 18b ... outer magnetic pole 18c ... hole 19 ... secondary electron detector 20 ... detector (semiconductor detector, Robinson detector or MCP detector)
21 ... Signal electrons (21a ... secondary electrons, 21b ... reflected electrons)
22 ... Potential plate 23 ... Sample 24 ... Sample stand 25 ... Insulating plate 26 ... Second objective lens 26a ... Central magnetic pole 26b ... Upper magnetic pole 26c ... Side magnetic pole 26d ... Lower magnetic pole 26e ... Coil 26f ... Sealing portion 27 ... Retarding power supply 28 ... Potential plate power supply 29 ... Sample stage stage plate 30 ... Cylindrical discharge prevention electrode 31 ... Insulating material 41 ... First objective lens power supply 42 ... Second objective lens power supply 43 ... Upper deflection power supply 44 ... Lower deflection power supply 45 ... Control Apparatus 720 ... Detector (semiconductor detector, Robinson detector or MCP detector)

Claims (19)

  1.  荷電粒子源と、
     前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、
     前記荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置であって、
     前記対物レンズは、
      前記試料に対して前記荷電粒子線が入射する側に設置される第1の対物レンズと、
      前記試料に対して前記荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、
     前記荷電粒子線装置は、
      前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、
      前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、
      前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する制御装置とを備え、
     前記制御装置は、前記第1の対物レンズの強度と前記第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能と、前記荷電粒子線を前記第1の対物レンズのみで試料に集束する機能と、前記荷電粒子線を前記第2の対物レンズのみで前記試料に集束する機能と、前記第1の対物レンズと前記第2の対物レンズを同時に使い、前記荷電粒子線の前記試料に入射する開き角を前記第1の対物レンズで可変して前記試料に集束する機能とを有する、荷電粒子線装置。
    A charged particle source;
    An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
    A charged particle beam apparatus having an objective lens for focusing the charged particle beam on a sample,
    The objective lens is
    A first objective lens installed on the side on which the charged particle beam is incident on the sample;
    A second objective lens installed on the opposite side to the side on which the charged particle beam is incident on the sample,
    The charged particle beam device comprises:
    A first objective lens power source for varying the intensity of the first objective lens;
    A second objective lens power source for varying the intensity of the second objective lens;
    A controller for controlling the first objective lens power source and the second objective lens power source;
    The control device includes a function of independently controlling the intensity of the first objective lens and the intensity of the second objective lens, a function of simultaneously controlling the intensity, and the charged particle beam using only the first objective lens. A function of focusing on the sample, a function of focusing the charged particle beam on the sample with only the second objective lens, and simultaneously using the first objective lens and the second objective lens, A charged particle beam device having a function of varying an opening angle incident on the sample with the first objective lens and focusing the sample on the sample.
  2.  荷電粒子源と、
     前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、
     前記荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置であって、
     前記対物レンズは、
      前記試料に対して前記荷電粒子線が入射する側に設置される第1の対物レンズと、
      前記試料に対して前記荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、
     前記荷電粒子線装置は、
      前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、
      前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、
      前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する第1の制御装置とを備え、
     前記第1の制御装置は、前記第1の対物レンズの強度と前記第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能とを有し、
     前記荷電粒子線装置は、前記荷電粒子線を二次元的に走査する二段の偏向部材を有し、
     前記二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、
     前記上段の偏向部材の強度または電圧を可変する上段偏向電源と、
     前記下段の偏向部材の強度または電圧を可変する下段偏向電源と、
     前記上段偏向電源と前記下段偏向電源とを制御する第2の制御装置とを備え、
     前記上段の偏向部材と前記下段の偏向部材は、前記第1の対物レンズの内部から前記荷電粒子線が飛来してくる側に設置され、
     前記第2の制御装置は、前記上段偏向電源と前記下段偏向電源の使用電流比または使用電圧比を可変する、荷電粒子線装置。
    A charged particle source;
    An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
    A charged particle beam apparatus having an objective lens for focusing the charged particle beam on a sample,
    The objective lens is
    A first objective lens installed on the side on which the charged particle beam is incident on the sample;
    A second objective lens installed on the opposite side to the side on which the charged particle beam is incident on the sample,
    The charged particle beam device comprises:
    A first objective lens power source for varying the intensity of the first objective lens;
    A second objective lens power source for varying the intensity of the second objective lens;
    A first control device for controlling the first objective lens power source and the second objective lens power source;
    The first control device has a function of independently controlling the strength of the first objective lens and the strength of the second objective lens, and a function of controlling the strength simultaneously.
    The charged particle beam device has a two-stage deflecting member that two-dimensionally scans the charged particle beam,
    The two-stage deflection member has an upper deflection member and a lower deflection member,
    An upper deflection power source for varying the strength or voltage of the upper deflection member;
    A lower deflection power source for varying the strength or voltage of the lower deflection member;
    A second control device for controlling the upper deflection power source and the lower deflection power source;
    The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens,
    The second control device is a charged particle beam device that varies a use current ratio or a use voltage ratio of the upper deflection power supply and the lower deflection power supply.
  3.  荷電粒子源と、
     前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、
     前記荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置であって、
     前記対物レンズは、
      前記試料に対して前記荷電粒子線が入射する側に設置される第1の対物レンズと、
      前記試料に対して前記荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、
     前記荷電粒子線装置は、
      前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、
      前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、
      前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する第1の制御装置とを備え、
     前記第1の制御装置は、前記第1の対物レンズの強度と前記第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能とを有し、
     前記荷電粒子線装置は、前記荷電粒子線を二次元的に走査する二段の偏向部材を有し、
     前記二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、
     前記上段の偏向部材の強度または電圧を可変する上段偏向電源と、
     前記下段の偏向部材の強度または電圧を可変する下段偏向電源と、
     前記上段偏向電源と前記下段偏向電源とを制御する第2の制御装置とを備え、
     前記上段の偏向部材と前記下段の偏向部材は、前記第1の対物レンズの内部から前記荷電粒子線が飛来してくる側に設置され、
     前記下段の偏向部材は、それぞれが巻数の異なる複数のコイルであり、
     前記第2の制御装置は、前記複数のコイルのうち用いるものを制御する、荷電粒子線装置。
    A charged particle source;
    An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
    A charged particle beam apparatus having an objective lens for focusing the charged particle beam on a sample,
    The objective lens is
    A first objective lens installed on the side on which the charged particle beam is incident on the sample;
    A second objective lens installed on the opposite side to the side on which the charged particle beam is incident on the sample,
    The charged particle beam device comprises:
    A first objective lens power source for varying the intensity of the first objective lens;
    A second objective lens power source for varying the intensity of the second objective lens;
    A first control device for controlling the first objective lens power source and the second objective lens power source;
    The first control device has a function of independently controlling the strength of the first objective lens and the strength of the second objective lens, and a function of controlling the strength simultaneously.
    The charged particle beam device has a two-stage deflecting member that two-dimensionally scans the charged particle beam,
    The two-stage deflection member has an upper deflection member and a lower deflection member,
    An upper deflection power source for varying the strength or voltage of the upper deflection member;
    A lower deflection power source for varying the strength or voltage of the lower deflection member;
    A second control device for controlling the upper deflection power source and the lower deflection power source;
    The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens,
    The lower deflection member is a plurality of coils each having a different number of turns,
    The second control device is a charged particle beam device that controls one of the plurality of coils to be used.
  4.  前記偏向部材は、偏向コイルまたは偏向電極である、請求項2又は3に記載の荷電粒子線装置。 The charged particle beam device according to claim 2 or 3, wherein the deflection member is a deflection coil or a deflection electrode.
  5.  前記第1の対物レンズ電源のみを用いるとき、前記第1の対物レンズと測定試料面との距離が前記第2の対物レンズと測定試料面との距離よりも近くされ、
     前記第2の対物レンズ電源のみを用いるとき、前記第2の対物レンズと測定試料面との距離が前記第1の対物レンズと測定試料面との距離よりも近くされる、請求項1から4のいずれかに記載の荷電粒子線装置。
    When using only the first objective lens power source, the distance between the first objective lens and the measurement sample surface is made closer than the distance between the second objective lens and the measurement sample surface;
    The distance between the second objective lens and the measurement sample surface is set closer to the distance between the first objective lens and the measurement sample surface when only the second objective lens power source is used. The charged particle beam device according to any one of the above.
  6.  前記試料に負電位を与える、前記荷電粒子線を減速するためのリターディング電源をさらに備えた、請求項1から5のいずれかに記載の荷電粒子線装置。 The charged particle beam apparatus according to any one of claims 1 to 5, further comprising a retarding power source for decelerating the charged particle beam that applies a negative potential to the sample.
  7.  前記荷電粒子線が通過する軌道をふさがないように配置された検出器をさらに備え、
     前記検出器は、前記荷電粒子線を前記試料に向けて射出する上部装置の下部に取り付けられる、請求項1から6のいずれかに記載の荷電粒子線装置。
    A detector arranged so as not to block the trajectory through which the charged particle beam passes;
    The charged particle beam apparatus according to claim 1, wherein the detector is attached to a lower part of an upper apparatus that emits the charged particle beam toward the sample.
  8.  前記検出器と前記第2の対物レンズとの距離は、10mmから200mmとされる、請求項7に記載の荷電粒子線装置。 The charged particle beam device according to claim 7, wherein a distance between the detector and the second objective lens is 10 mm to 200 mm.
  9.  前記検出器は、半導体検出器、蛍光体の発光方式の検出器、またはマイクロチャンネルプレート検出器であり、前記荷電粒子線の軌道から3cm以内に配置される、請求項7または8に記載の荷電粒子線装置。 The charge according to claim 7 or 8, wherein the detector is a semiconductor detector, a phosphor emission type detector, or a microchannel plate detector, and is disposed within 3 cm from the trajectory of the charged particle beam. Particle beam device.
  10.  電子を引きつける電界を有する二次電子検出器をさらに備え、
     前記二次電子検出器から発生する電界が、前記荷電粒子によって前記試料から放出される二次電子を引き付けるように、前記二次電子検出器は配置される、請求項1から9のいずれかに記載の荷電粒子線装置。
    A secondary electron detector having an electric field that attracts electrons;
    10. The secondary electron detector is arranged according to any one of claims 1 to 9, wherein the secondary electron detector is arranged such that an electric field generated from the secondary electron detector attracts secondary electrons emitted from the sample by the charged particles. The charged particle beam apparatus described.
  11.  前記第2の対物レンズは、前記加速電源を-30kVから-10kVのいずれかにして加速された前記荷電粒子線を、前記第2の対物レンズの磁極の前記試料に最も近いところから見て、0mmから4.5mmのいずれかの高さの位置に集束可能である、請求項1から10のいずれかに記載の荷電粒子線装置。 The second objective lens is configured such that the charged particle beam accelerated by setting the acceleration power source to any one of −30 kV to −10 kV is viewed from a position closest to the sample of the magnetic pole of the second objective lens, The charged particle beam apparatus according to any one of claims 1 to 10, wherein the charged particle beam apparatus can be focused to a position at any height of 0 mm to 4.5 mm.
  12.  前記第2の対物レンズ上に配置される絶縁板と、
     前記絶縁板の上に配置される導電性試料台とをさらに備え、
     前記第2の対物レンズと前記導電性試料台とは絶縁される、請求項1から11のいずれかに記載の荷電粒子線装置。
    An insulating plate disposed on the second objective lens;
    A conductive sample stage disposed on the insulating plate;
    The charged particle beam apparatus according to claim 1, wherein the second objective lens and the conductive sample stage are insulated.
  13.  前記導電性試料台は、周縁部に近付くほど前記絶縁板から離れる形状をしている、請求項12に記載の荷電粒子線装置。 13. The charged particle beam apparatus according to claim 12, wherein the conductive sample stage is shaped so as to move away from the insulating plate as it approaches the peripheral edge.
  14.  前記絶縁板と前記導電性試料台との間が、絶縁材で充填される、請求項12または13に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 12 or 13, wherein a space between the insulating plate and the conductive sample stage is filled with an insulating material.
  15.  前記導電性試料台の上部に、開口部のある電位板をさらに備え、
     前記電位板には、接地電位、正の電位、または負の電位が与えられる、請求項12から14のいずれかに記載の荷電粒子線装置。
    Further comprising a potential plate with an opening on the conductive sample stage,
    The charged particle beam apparatus according to claim 12, wherein a ground potential, a positive potential, or a negative potential is applied to the potential plate.
  16.  前記電位板の開口部は直径2mmから20mmの円形、またはメッシュ形状である、請求項15に記載の荷電粒子線装置。 The charged particle beam device according to claim 15, wherein the opening of the potential plate has a circular shape or a mesh shape having a diameter of 2 mm to 20 mm.
  17.  前記電位板は、試料の近く以外の場所では前記導電性試料台から離れる形状を有する、請求項15または16に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 15 or 16, wherein the potential plate has a shape separated from the conductive sample stage at a place other than near the sample.
  18.  前記電位板を移動させる移動手段をさらに備えた、請求項15から17のいずれかに記載の荷電粒子線装置。 The charged particle beam apparatus according to any one of claims 15 to 17, further comprising moving means for moving the potential plate.
  19.  請求項1から18のいずれかに記載の荷電粒子線装置を備える、走査電子顕微鏡。 A scanning electron microscope comprising the charged particle beam device according to any one of claims 1 to 18.
PCT/JP2015/084074 2015-01-30 2015-12-03 Charged particle beam device and scanning electron microscope WO2016121226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105122731A TWI680488B (en) 2015-01-30 2016-07-19 Charged particle beam apparatus and scanning electron microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017319 2015-01-30
JP2015017319A JP6204388B2 (en) 2015-01-30 2015-01-30 Charged particle beam apparatus and scanning electron microscope

Publications (1)

Publication Number Publication Date
WO2016121226A1 true WO2016121226A1 (en) 2016-08-04

Family

ID=56542861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084074 WO2016121226A1 (en) 2015-01-30 2015-12-03 Charged particle beam device and scanning electron microscope

Country Status (3)

Country Link
JP (1) JP6204388B2 (en)
TW (1) TWI680488B (en)
WO (1) WO2016121226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740443B (en) * 2020-03-19 2021-09-21 鴻海精密工業股份有限公司 Method for measuring secondary electron emission coefficient

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121224A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320942A (en) * 1989-06-16 1991-01-29 Jeol Ltd Scanning electron microscope
JP2000003691A (en) * 1998-06-12 2000-01-07 Nikon Corp Charged particle beam deflection device, charged particle beam deflection method and charged particle beam device
JP2000348658A (en) * 1999-04-15 2000-12-15 Applied Materials Inc Column for charged particle beam device
WO2013065399A1 (en) * 2011-10-31 2013-05-10 株式会社 日立ハイテクノロジーズ Scanning electron microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644930B1 (en) * 1989-03-21 1996-04-26 Cameca VARIABLE FOCAL COMPOSITE ELECTROMAGNETIC LENS
US7446320B1 (en) * 2005-08-17 2008-11-04 Kla-Tencor Technologies Corproation Electronically-variable immersion electrostatic lens
EP2267753A3 (en) * 2005-11-28 2011-01-26 Carl Zeiss SMT AG Particle-optical component
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
DE102010001347A1 (en) * 2010-01-28 2011-08-18 Carl Zeiss NTS GmbH, 73447 Device for the transmission of energy and / or for the transport of an ion and particle beam device with such a device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320942A (en) * 1989-06-16 1991-01-29 Jeol Ltd Scanning electron microscope
JP2000003691A (en) * 1998-06-12 2000-01-07 Nikon Corp Charged particle beam deflection device, charged particle beam deflection method and charged particle beam device
JP2000348658A (en) * 1999-04-15 2000-12-15 Applied Materials Inc Column for charged particle beam device
WO2013065399A1 (en) * 2011-10-31 2013-05-10 株式会社 日立ハイテクノロジーズ Scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740443B (en) * 2020-03-19 2021-09-21 鴻海精密工業股份有限公司 Method for measuring secondary electron emission coefficient

Also Published As

Publication number Publication date
JP6204388B2 (en) 2017-09-27
JP2016143514A (en) 2016-08-08
TW201721704A (en) 2017-06-16
TWI680488B (en) 2019-12-21

Similar Documents

Publication Publication Date Title
JP6626936B2 (en) Charged particle beam device and scanning electron microscope
JP6177817B2 (en) Charged particle beam apparatus and scanning electron microscope
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
US8319192B2 (en) Charged particle apparatus
WO2018025849A1 (en) Charged particle beam device and scanning electron microscope
WO2015174221A1 (en) Charged particle beam device and detection method using said device
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
US6580074B1 (en) Charged particle beam emitting device
WO2016121226A1 (en) Charged particle beam device and scanning electron microscope
JP6462729B2 (en) Charged particle beam apparatus and scanning electron microscope
WO2019207707A1 (en) Charged particle beam device
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880118

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880118

Country of ref document: EP

Kind code of ref document: A1