JPS59230169A - Direct current measuring circuit of dc converting device - Google Patents

Direct current measuring circuit of dc converting device

Info

Publication number
JPS59230169A
JPS59230169A JP10522683A JP10522683A JPS59230169A JP S59230169 A JPS59230169 A JP S59230169A JP 10522683 A JP10522683 A JP 10522683A JP 10522683 A JP10522683 A JP 10522683A JP S59230169 A JPS59230169 A JP S59230169A
Authority
JP
Japan
Prior art keywords
current
winding
transformer
phase
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10522683A
Other languages
Japanese (ja)
Other versions
JPH0510629B2 (en
Inventor
Akira Takai
高井 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10522683A priority Critical patent/JPS59230169A/en
Publication of JPS59230169A publication Critical patent/JPS59230169A/en
Publication of JPH0510629B2 publication Critical patent/JPH0510629B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To measure a direct current with high accuracy and high stability without being influenced by an interphase reactor of the secondary winding side by forming the other by a delta connection in case other one of the primary winding of a stepdown transformer 1, or the secondary winding of a current transformer for detecting a current of each phase is a star shape. CONSTITUTION:A current in each phase of a primary side winding 11a of a star connection of stepdown transformer 11 whose secondary side is connected to a DC converting device with a reactor 2 is detected by current transformers 5-7. The secondary winding of the current transformers 5-7 forms a three phase bridge circuit of a delta connection through rectifiers 8a-8f, and an ammeter 9 is connected to its output side. In case of currents KIx, KIw, etc. being proportional to a DC current of this DC converting device flow to the ammeter 9, a current (kit), etc. being proportional to an energizing current by the reactor 2 different by 180 degrees in phase flow in the forward and reverse directions through the rectifiers 8a, 8c, etc., and do not flow to the ammeter 9. Accordingly, a direct current of the DC converting device is measured with high accuracy and high stability without being influenced by the interphase reactor. In this regard, even when the primary winding and the secondary winding bridge are formed by delta and star connections, respectively, the same result is obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明社三相父流電力を直流電力に変換する装置の直流
出力電流を、変圧器の交流巻線に流入する電流を検出す
ることによシ等価計測する回路に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to the detection of the DC output current of a device that converts three-phase father current power into DC power by detecting the current flowing into the AC winding of a transformer. Concerning circuits for equivalent measurement.

〔従来技術とその問題点〕[Prior art and its problems]

交流電力を変圧器、整流器を介して直流電力に変換する
直流変換器の直流出力電流を計測する方法としては、従
来つぎのような方法が知られている。すなわち、第1の
方法は、直流出力電流を電磁式あるいはホール素子等の
磁気上/すを用いた直流変流器を用いて直接検出する方
法、第2の方法は、変圧器の直流側巻線すなわち整流器
の入力側に変流器を設け、この変流器の二次巻線電流を
整流し変換器の直流出力電流に比例した電流を検出する
方法、第3の方法は、変圧器の交流巻線すなわち変圧器
の入力側に変流器を設け、この変流器の二次巻線電流を
整流して変換器の直流出力電流に比例した電流を検出す
る方法、等である。
The following methods are conventionally known as methods for measuring the DC output current of a DC converter that converts AC power into DC power via a transformer and a rectifier. That is, the first method is to directly detect the DC output current using an electromagnetic type or a DC current transformer using a magnetic device such as a Hall element. The third method is to provide a current transformer on the input side of the rectifier, rectify the secondary winding current of this current transformer, and detect a current proportional to the DC output current of the converter. For example, a current transformer is provided on the input side of an AC winding, that is, a transformer, and the secondary winding current of the current transformer is rectified to detect a current proportional to the DC output current of the converter.

ところが、直流出力電流が1万アンペアを超えるような
大電流である場合、第1.第2の方法は大電流を直接検
出するために用いる変流器が大形かつ高価なものとなシ
、直流電流計測装置が大がかシで高価になシ、かつ広い
設置場所や大きな支持構造物を必要とするなどの欠点が
ある。これに対し、第3の方法は、降圧変圧器の高圧側
巻線電流たとえば数十〜数百アンペアの交流電流を検出
する変流器で済むため、小形かつ安価なブッシング変流
器などを使用することができて有利である。
However, when the DC output current is a large current exceeding 10,000 amperes, the first. The second method requires a large and expensive current transformer to directly detect large currents, a large and expensive DC current measuring device, and requires a large installation space and large support. There are disadvantages such as the need for a structure. On the other hand, the third method requires only a current transformer that detects the high-voltage side winding current of a step-down transformer, for example, an alternating current of several tens to hundreds of amperes, so a small and inexpensive bushing current transformer is used. It is advantageous to be able to do so.

このため、電気分解によって非鉄金属の精錬や、塩素、
か性ソーダの製造などに使用される低電圧。
For this reason, electrolysis can be used to refine non-ferrous metals, chlorine,
Low voltage used for manufacturing caustic soda, etc.

大電流の直流変換器においては、もっばら第3の方法に
よって直流出力電流の計測が行われている。
In large current DC converters, the third method is often used to measure the DC output current.

第1図は従来の直流変換装置およびその電流計測回路の
接続図である。図において、1は降圧変圧器で、星形結
線された交流巻線(−次巻線)1aと、星形結線された
2組の直流巻線(二次巻線)1bおよび1゜とを備える
、2組の直流巻線’b + ”cの中性点間には中点端
子を有する相間リアクトル2が接続されるとともに各相
巻線の出力側には六相結線された単流方式の整流装置3
が設けられている。
FIG. 1 is a connection diagram of a conventional DC converter and its current measuring circuit. In the figure, 1 is a step-down transformer, which has a star-connected AC winding (minusary winding) 1a and two star-connected DC windings (secondary windings) 1b and 1°. An interphase reactor 2 having a midpoint terminal is connected between the neutral points of the two sets of DC windings 'b + 'c, and the output side of each phase winding is connected to a six-phase single-current system. Rectifier 3
is provided.

また整流装置3の直流出力側(正極)と相間リアクトル
2の中点端子との間には負荷4が接続され、負荷4に直
流出力電流Idが供給されるよう形成されている。一方
5,6.7は降圧変圧器1の交流巻線la側に設けられ
た3台の変流器で、その二次巻線側は星形結線されると
ともに、整流器8a  ・・fからなる整流回路8に接
続されている。9は整流回路8の直流出力回路に設けら
れ、直流変換装置の直流出力電流Idに比例した直流電
流KIdを検出するよう形成された電流計測部である。
Further, a load 4 is connected between the DC output side (positive electrode) of the rectifier 3 and the midpoint terminal of the interphase reactor 2, and the load 4 is configured to be supplied with the DC output current Id. On the other hand, 5, 6.7 are three current transformers installed on the AC winding la side of the step-down transformer 1, and the secondary winding side thereof is star-connected and consists of rectifiers 8a...f. It is connected to the rectifier circuit 8. Reference numeral 9 denotes a current measuring section provided in the DC output circuit of the rectifier circuit 8 and configured to detect a DC current KId proportional to the DC output current Id of the DC converter.

第1図の回路において、二重星形六相整流回路には互い
に電気角60度の相差をもつ三相交流電力を入力とする
2組の3相整流回路が相間リアクトル2を均圧装置とし
て並列運転されており、直流巻線lb群および1゜群の
整流器”Ll + 3V + 3W +および3x、3
y、3□それぞれに第2図に示すような波形の電流が流
れる。すなわち各整流器に変換器の直流出力電流■dの
2分の1の大きさで電気角120度矩 毎に裁断された幾形波状の電流が電気角240度の阻止
時間をおいて繰シ返し流れ、直流出力側に設けられた負
荷4には各整流器に流れる間欠的な直流電流の合成値と
してIdなる直流電流が連続して流れるようになってい
る。ところが、相間リアクトル2には直流巻線1bおよ
び1゜の電圧の瞬時値の差にもとづく励磁電流itが流
れておシ、各整流器を流れる間欠的な直流電流には第2
図に示すようにこの励磁電流(を源周波数の3倍の周波
数の正弦波または三角波等の交番電流)口が重畳する。
In the circuit shown in Figure 1, the double star-shaped six-phase rectifier circuit has two sets of three-phase rectifier circuits that input three-phase AC power with a phase difference of 60 electrical degrees from each other, and uses the interphase reactor 2 as a pressure equalizer. The DC windings lb group and 1° group rectifier ``Ll + 3V + 3W + and 3x, 3 are operated in parallel.
A current having a waveform as shown in FIG. 2 flows through each of y and 3□. In other words, a geometric wave-like current cut into a rectangle of 120 electrical degrees with a magnitude of one-half of the DC output current d of the converter is applied to each rectifier repeatedly with a blocking time of 240 electrical degrees. A DC current Id, which is a composite value of the intermittent DC currents flowing through each rectifier, continuously flows through the load 4 provided on the DC output side. However, an excitation current it based on the difference between the instantaneous values of the voltages of the DC winding 1b and 1° flows in the interphase reactor 2, and the intermittent DC current flowing through each rectifier has a second
As shown in the figure, this excitation current (an alternating current such as a sine wave or triangular wave with a frequency three times the source frequency) is superimposed.

第1図には第2図の11時刻に、装置の各部に流れる直
流電流と励磁電流の方向を、直流電流を実線矢印、励磁
電流itを破線矢印で示した。他の時刻に関しては電流
分布と極性が異なるのみで本質的には変わらない。図に
おいて実線矢印で示す間欠的直流電流のうち、直流巻線
1bのW相を通る電流Iwは整流器3w、負荷4.相間
リアクトル22巻線1bの中性点という回路を環流し、
巻線1゜の六相を通る電流■xは整流器3ry負荷4.
相間リアクトル22巻線1゜の中性点という回路をそれ
ぞれ流れて負荷4で二つの電流Ix 、 Iwが加算さ
れてIdなる直流出力電流が形成される。一方破線矢印
で示す相間リアクトルの励磁電流itは、相間リアクト
ル22巻線1bのW相、整流器3w、整流器a−を巻線
1゜の六相、を介して相間リアクトル2に環流し、負荷
4には流れない。すなわち負荷4には直流電流Idのみ
が流れ、相間リアクトルの励磁電流itは流れない。一
方変圧器1の交流巻線la 側に変流器5〜7を介して
設けられた整流器にも直流変換器側に流れる間欠的直流
電流Idならびに相間リアクトルの励磁電流itに対応
した電流が流れる。
In FIG. 1, at time 11 in FIG. 2, the directions of the direct current and excitation current flowing through each part of the apparatus are shown with solid line arrows representing the DC current and broken line arrows representing the excitation current it. At other times, only the current distribution and polarity are different, but essentially the same. Among the intermittent DC currents indicated by solid arrows in the figure, the current Iw passing through the W phase of the DC winding 1b flows through the rectifier 3w, the load 4. Circulating the circuit called the neutral point of the interphase reactor 22 winding 1b,
The current x passing through the six phases of the winding 1° is the rectifier 3ry load 4.
The two currents Ix and Iw flowing through the neutral point of the 1° winding of the interphase reactor 22 are added at the load 4 to form a DC output current Id. On the other hand, the excitation current it of the interphase reactor shown by the broken line arrow circulates to the interphase reactor 2 through the W phase of the interphase reactor 22 winding 1b, the rectifier 3w, and the six phases of the rectifier a- with the winding 1°, It doesn't flow. That is, only the DC current Id flows through the load 4, and the exciting current it of the interphase reactor does not flow. On the other hand, a current corresponding to the intermittent DC current Id flowing to the DC converter side and the excitation current it of the interphase reactor flows also in the rectifier provided on the AC winding la side of the transformer 1 via the current transformers 5 to 7. .

破線矢印で示す励磁電流に対応した高調波電流kit8
f、変流器7.変流器中性点、変流器5という径路で環
流し、励磁電流対応成分が電流検出部9にも流れる。す
なわち直流変換装置8の負荷4に流れる電流には含まれ
ていない相間リアクトル2の励磁電流itに対応した高
調波電流kitが、変圧器の一次側に設けられた電流計
測部9には検出されてしまう。
Harmonic current kit8 corresponding to the excitation current indicated by the broken line arrow
f, current transformer 7. It circulates through the path of the current transformer neutral point and the current transformer 5, and a component corresponding to the exciting current also flows to the current detection section 9. That is, the harmonic current kit corresponding to the excitation current it of the interphase reactor 2, which is not included in the current flowing through the load 4 of the DC converter 8, is detected by the current measurement unit 9 provided on the primary side of the transformer. I end up.

相間リアクトルの励磁電流が非常に小さく、変換装置の
直流出力電流Idの測定精度からみて無視できる場合は
問題ないが、特に高い精度で電流を計測したい場合、あ
るいは相間リアクトルの構造上、例えば磁気回路に空隙
があって励磁電流が大きかったりなんらかの原因で相間
リアクトルに磁気飽和を生じた場合、電流計測部に相間
リアクトルの励磁電流に対応ブる電流成分が重畳するこ
とは、目的とする直流出力電流測定の等価性が失なわれ
てしまうという致命的な欠陥になる。また電流ITI測
部の検出電流を制御整流素子の位相角制御に利用するよ
うな場合には、検出電流波形の変動によって位相角が常
時変化してしまう欠点がある。
There is no problem if the excitation current of the interphase reactor is very small and can be ignored in terms of the measurement accuracy of the DC output current Id of the converter, but if you want to measure the current with particularly high accuracy, or due to the structure of the interphase reactor, for example, the magnetic circuit If there is an air gap and the excitation current is large, or if magnetic saturation occurs in the interphase reactor for some reason, a current component corresponding to the excitation current of the interphase reactor will be superimposed on the current measurement section, which will cause the target DC output current to This is a fatal flaw in that measurement equivalence is lost. Further, when the detected current of the current ITI measuring section is used to control the phase angle of the control rectifier, there is a drawback that the phase angle constantly changes due to fluctuations in the detected current waveform.

〔発明の目的〕[Purpose of the invention]

本発明は重連の状況に鑑みてなされたもので、相聞リア
クトルの励磁電流の影響を排除した高い精度と安定性を
有する直流変換装置の電流計測回路を提供することを目
的とする。
The present invention was made in view of the situation of multiple connections, and it is an object of the present invention to provide a current measurement circuit for a DC converter that has high accuracy and stability and eliminates the influence of the excitation current of the mutual reactor.

〔発明の要点〕[Key points of the invention]

本発明によれば、上述の目的は、二次側に相間リアクト
ル伺二重星形六相整流回路を有する変圧器の接地きれな
い一次巻線側に各相電流をそれぞれ変流する変流器3台
を設け、各変流器の二次側に各変流器の二次巻線電流を
入力とする三相ブリッジ結線された整流回路を設け、整
流回路の直流出力側に電流計測部を設けるよう構成する
とともに、前記変圧器の一次巻線と前記変流器の二次巻
線とのうちいずれか一方の巻線が非接地の星形に結線式
れた時、他方の巻線は三角結線されるよう形成すること
により、前記相聞リアクトルの励磁電流に対応して前記
変流器によって変流される高調波電流成分を、前記整流
回路にのみ環流させ、前記電流計測部には流れないよう
構成することにより達成された。
According to the present invention, the above-mentioned object is to provide a current transformer that transforms each phase current to the primary winding side, which cannot be grounded, of a transformer having an interphase reactor on the secondary side and a double star-shaped six-phase rectifier circuit. Three units are installed, and a three-phase bridge-connected rectifier circuit is installed on the secondary side of each current transformer, which inputs the secondary winding current of each current transformer, and a current measurement unit is installed on the DC output side of the rectifier circuit. and when either the primary winding of the transformer or the secondary winding of the current transformer is connected in an ungrounded star shape, the other winding is By forming the wires to be triangularly connected, harmonic current components transformed by the current transformer in response to the excitation current of the phase reactor are circulated only to the rectifier circuit, and do not flow to the current measuring section. This was achieved by configuring it as follows.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を添付図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明の実施例を示す直流変換装置の電流計測
回路の接続図である。図において、降圧変圧器11は中
性点非接地の星形結線された一次巻線(交流巻線)11
aと、星形結線された2組の二次巻線(直流巻線)11
bおよび11oとを備え、直流巻線114.および11
oの負荷側には相間リアクトル付二重星形結線された整
流装置3が設けられている。
FIG. 3 is a connection diagram of a current measuring circuit of a DC converter according to an embodiment of the present invention. In the figure, a step-down transformer 11 has a star-connected primary winding (AC winding) 11 with an ungrounded neutral point.
a and two sets of star-connected secondary windings (DC windings) 11
b and 11o, and includes a DC winding 114.b and 11o. and 11
A rectifier 3 connected in a double star shape with an interphase reactor is provided on the load side of o.

変圧器の二次側の構成および整流装置の通流作用につい
ては第1図および第2図についての説明と同様なので省
略する。
The configuration of the secondary side of the transformer and the flow-through operation of the rectifier are the same as those described in FIGS. 1 and 2, and will therefore be omitted.

変圧器11σ星形結線された交流巻線11aに流入する
電流を変流する3台の変流器5,6.7の二次巻線は互
いに三角結線され、その出力側には三相ブリッジ結線さ
れた整流回路8と電流計測部9とが接続されている。図
には第2図のt1時刻に装置の各部に流れる電流を、整
流装置3の出力直流電流IdK関係した電流を実線矢印
で、相間リアクトル2の励磁電流口に関係した高調波電
流を破線矢印でそれぞれ電流の流れる方向を図示した。
Transformer 11 The secondary windings of three current transformers 5, 6.7 that transform the current flowing into the AC winding 11a connected in a star shape are triangularly connected to each other, and a three-phase bridge is installed on the output side. The connected rectifier circuit 8 and current measuring section 9 are connected. In the figure, the current flowing through each part of the device at time t1 in Fig. 2 is shown by the solid line arrow, the current related to the output DC current IdK of the rectifier 3 is shown by the solid line arrow, and the harmonic current related to the excitation current port of the interphase reactor 2 is shown by the broken line arrow. The directions in which the current flows are shown in the figure.

tl  一時刻以外においても電流の流れる部分と方向
が異なるだけで本質的には変わらないので、以下t1時
刻の電流分布について本発明の詳細な説明する。
Even at times other than tl, the current distribution differs only in the portion and direction in which the current flows, but is essentially the same. Therefore, the current distribution at time t1 will be described in detail below.

11時刻においては第2図のように整流器3w および
3xが通流状態にあシ、これに対応し7て直流巻線のW
相とX相にそれぞれ電流工、およびIxが流れておシ、
これに重畳して相聞リアクトル2の励磁電流itが流れ
ている。また変圧器11の交流巻線11aには直流巻線
に流れる電流と位相が180度異なる電流■W * ■
11がそれぞれW相とU相とに流れてネ・シ、これに重
畳して高調波電流itに対応する電流が破線矢印のよう
に流れている。3台の変流器5.6,7の二次巻線には
前記−次巻線に流れる電流によって誘導された電流すな
わち直流巻線の出力側の電流■wI” + ’d r 
Itに比例した電流が流れる。図ではこれらの電流をK
IW 、 K1.z: 、 KId 、 kitとし、
kitを破線矢印で、KIw、 K1.rを実線矢印で
それぞれ流れる径路と方向とを示しである。図から明ら
かなようにKIw、 K1.は電計測部9をともに同方
向に流れて加算され、負荷4に流れる整流装置の出力電
流Idに比例した電流KIdが検出される。
At time 11, rectifiers 3w and 3x are in a conducting state as shown in Fig. 2, and correspondingly, W of the DC winding is
Current and Ix flow through the phase and X phase, respectively.
An excitation current it of the mutual reactor 2 flows superimposed on this. In addition, the AC winding 11a of the transformer 11 has a current ■W * ■ whose phase is 180 degrees different from the current flowing through the DC winding.
11 flows into the W phase and the U phase, respectively, and superimposed on this, a current corresponding to the harmonic current it flows as indicated by the broken line arrow. In the secondary windings of the three current transformers 5, 6 and 7, there is a current induced by the current flowing in the negative secondary winding, that is, a current on the output side of the DC winding ■wI'' + 'd r
A current proportional to It flows. In the figure, these currents are K
IW, K1. z: , KId , kit ,
KIw, K1. The solid line arrows indicate the paths and directions in which the water flows. As is clear from the figure, KIw, K1. both flow in the same direction through the current measuring section 9 and are added, and a current KId proportional to the output current Id of the rectifier flowing through the load 4 is detected.

まだ整流器8aおよび8゜には直流電流KIw、 KI
xが通流中であるため、高調波電流kitは整流器8a
There are still direct currents KIw, KI in the rectifiers 8a and 8°.
Since x is flowing, the harmonic current kit flows through the rectifier 8a.
.

8゜を順方向または逆方向に流れて各変流器5,6.7
の二次巻線に環流し、電流計測部9には流れない。この
ようにして電流計測部には負荷4に流れる直流電流Id
に比例した電流KId のみが検出されるので、変圧器
11の一次二次間の巻数比および変流器5,6.7の変
流比とからなる所定の換算係数を用いて検出電流KId
を直流出力電流Idに換算することによシ、整流装置3
の直流出力電流 Idを正確に求めることができる。
8° in forward or reverse direction to each current transformer 5, 6.7
The current flows back to the secondary winding of , but does not flow to the current measuring section 9 . In this way, the current measuring section has a DC current Id flowing through the load 4.
Since only the current KId proportional to
By converting into DC output current Id, the rectifier 3
The DC output current Id can be determined accurately.

第4図は前述の実施例の変形例を示す直流変換装置の電
流計測回路の接続図である。第4図の接続図が第3図と
異なる点は、降圧変圧器12の一次巻線(交流巻線」が
三角結線されていること、またこれに対応して変流器5
,6.7の二次巻線が星形結線されていることである。
FIG. 4 is a connection diagram of a current measuring circuit of a DC converter showing a modification of the above-described embodiment. The connection diagram in Fig. 4 differs from Fig. 3 in that the primary winding (AC winding) of the step-down transformer 12 is triangularly connected, and correspondingly, the current transformer 5
, 6.7, the secondary windings are star-connected.

図には牙2図のt1時刻に各部に流れる電流を直流電流
を実線矢印で、相間リアクトル2の励磁電流に対応して
生ずる高調波電流を破線矢印で示した。第2図のt1時
刻においては整流器3Wと3.rとが通流状態にあシ。
In the figure, the DC current flowing through each part at time t1 in Fig. 2 is shown by a solid line arrow, and the harmonic current generated corresponding to the excitation current of the interphase reactor 2 is shown by a broken line arrow. At time t1 in FIG. 2, the rectifiers 3W and 3. r and are in a state of flow.

負荷4には前記整流器を流れる電流エフとIxとが加算
されて出力電流Idが流れておシ、変圧器12の交流巻
線12aには前記IwとIxに対応した電流IwとIu
とが実線矢印のようにU相とW相とから供給されかつ高
調波電流がこれに重畳してW相からU相間を環流してい
る。その結果変流器5,6.7の二次巻線には変圧器に
流出入する前記電流によって誘導された電流KIW、 
K■x 、 KIdおよび高調波電流kitが矢印のよ
うに流れる。このうち整流器3wおよび3xに流れる電
流■□、Ixに比例した直流電流KIwおよびKIa−
は実線矢印のような径路で電流計測部9を同方向に流れ
て加算され、負荷4に流れる電流Idに比例した電流K
Idが電流計測部9に検出される。また整流器8aおよ
び8゜には直流電流KIwlKI、z’が通流中である
ため、高調波電流kitは整流器8aおよび8cをそれ
ぞれ順方向あるい社逆方向に流れて変流器5,6.7の
二次巻線に環流し、電流計測部9には流れない。このよ
うにして第4図のように電流計測回路を構成しても第3
図について述べたと同様に整流装置3の出方電流IdK
比例した直流電流成分のみを検出し計測することができ
る。
The output current Id flows through the load 4 by adding the currents F and Ix flowing through the rectifier, and the AC winding 12a of the transformer 12 receives currents Iw and Iu corresponding to the Iw and Ix.
is supplied from the U phase and the W phase as shown by the solid line arrow, and the harmonic current is superimposed on this and circulates between the W phase and the U phase. As a result, the secondary windings of the current transformers 5, 6.7 have a current KIW induced by said current flowing into and out of the transformer.
Kx, KId, and harmonic current kit flow as shown by the arrows. Among these, the currents flowing through the rectifiers 3w and 3x, the DC currents KIw and KIa- proportional to Ix.
is a current K that flows in the same direction through the current measurement unit 9 along a path as indicated by a solid arrow and is added, and is proportional to the current Id flowing through the load 4.
Id is detected by the current measuring section 9. Also, since the DC current KIwlKI,z' is flowing through the rectifiers 8a and 8°, the harmonic current kit flows through the rectifiers 8a and 8c in the forward direction or in the opposite direction, respectively, and flows through the current transformers 5, 6, . The current flows back to the secondary winding 7 and does not flow to the current measuring section 9. Even if the current measurement circuit is configured in this way as shown in FIG.
As described in the figure, the output current IdK of the rectifier 3
Only the proportional DC current component can be detected and measured.

なお前述の説明は整流装置を半導体整流器で構成した場
合の例を述べたが、本発明は半導体制御整流器を用いた
装置の電流計測回路としても適用できる。
Note that although the above description has been made regarding an example in which the rectifier is configured with a semiconductor rectifier, the present invention can also be applied to a current measurement circuit of a device using a semiconductor-controlled rectifier.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前述のように、相間リアクトの交流巻
線側に設けられた変流器5〜7と、変流器の二次巻線側
に設けられた三相ブリッジ結線された整流回路8と、整
流回路の直流出方側に設けられた電流計測部9とを備え
るとともに、変圧器の交流巻線と変流器の二次巻線とが
、一方が三角結線された時他方が中性点非接地の星形に
結線されるよう構成した。その結果相聞リアクトルの励
磁電流itに対応して変流器5〜7の二次巻線に誘導さ
れる高調波電流kit整流回路8を流れる前記直と 光出力電流Idに比例した直流電流KIw 、K1.v
%通流kitが電流計測部9を流れることを防止でき、
電流計測部で前記直流出力電流Idに比例した電流KI
dのみを検出できる電流計測回路を提供できた。したが
って従来前記高調波電流kitの影響によって充分な測
定精度が得られなかった電流計測回路の問題点が解決さ
れて測定精度が向上し、変圧器の一次側に設けられたプ
、シング変流器を利用した安価かつ高精度の電流計測回
路を協えた直流変換装置を提供することに貢献できた。
According to the present invention, as described above, the current transformers 5 to 7 provided on the AC winding side of the interphase reactor, and the three-phase bridge-connected rectifier provided on the secondary winding side of the current transformer. It includes a circuit 8 and a current measuring section 9 provided on the DC side of the rectifier circuit, and when one of the AC winding of the transformer and the secondary winding of the current transformer is triangularly connected, the other The wires were configured so that they were connected in a star shape with the neutral point not grounded. As a result, a harmonic current KIw is induced in the secondary windings of the current transformers 5 to 7 in response to the excitation current IT of the phase reactor, and a DC current KIw flowing through the rectifier circuit 8 is proportional to the optical output current Id. K1. v
% conduction kit can be prevented from flowing through the current measuring section 9,
A current measuring section generates a current KI proportional to the DC output current Id.
We were able to provide a current measurement circuit that can detect only d. Therefore, the problem of conventional current measurement circuits in which sufficient measurement accuracy could not be obtained due to the influence of the harmonic current kit has been solved, and measurement accuracy has been improved. We were able to contribute to the provision of a DC converter that incorporates an inexpensive and highly accurate current measurement circuit using .

まだ、電流計測部9で検出された電流KIdを直流変換
装置の出方電流の制御に利用するような場合、従来は検
出電流波形に重畳する高調波電流kitの影響にょシ出
カ電流の制御が不安定になる欠点があったが、本発明に
よればこのような問題点も回避され、精度の高い出力電
流の制御ができる利点が得られた。
When the current KId detected by the current measurement unit 9 is used to control the output current of a DC converter, conventionally the output current is controlled based on the influence of the harmonic current kit superimposed on the detected current waveform. However, according to the present invention, this problem can be avoided and the output current can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流変換装置の電流計測回路の接続図、
牙2図は六相結線された各相整流器の出力電流波形の概
念図、第3図は本発明の実施例をη 示す電流計測回路の接続図、第4図は第3図亀変形例を
示す接続図である。 図において、1 、11 、12・・・降圧変圧器、1
1a。 12a−交流巻線、Ilb、 c 、 12b、 c−
直流巻線、2・・・相間リアクトル、3・・・整流装置
、4・・・負荷、5.6.7・・・変流器、8・・整流
回路、9・・電流計測部、Id・・電流出力電流、1t
・・相間リアクトルの励磁電流(高調波電流j 、 K
Id  ・検出電流、 kit・・・高調波電流、であ
る。 第1図 第2図
Figure 1 is a connection diagram of the current measurement circuit of a conventional DC converter.
Figure 2 is a conceptual diagram of the output current waveform of each phase rectifier connected in six phases, Figure 3 is a connection diagram of a current measurement circuit showing an embodiment of the present invention, and Figure 4 is a modification of Figure 3. FIG. In the figure, 1, 11, 12... step-down transformer, 1
1a. 12a-AC winding, Ilb, c, 12b, c-
DC winding, 2... Interphase reactor, 3... Rectifier, 4... Load, 5.6.7... Current transformer, 8... Rectifier circuit, 9... Current measurement unit, Id ...Current output current, 1t
... Excitation current of interphase reactor (harmonic current j, K
Id: detection current, kit: harmonic current. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)降圧変圧器の二次側に相間リアクトル付二重星形六
相整流回路を有する変換装置において、前記降圧変圧器
の一次側に流出入する電流をそれぞれ検出する変流器と
、前記複数の変流器の二次側に共通に°設けられた三相
ブリッジ結線された整流回路と、この整流回路の直流出
力側に設けられた電流計測部とを備え、前記降圧変圧器
の一次巻線と前記複数の変流器の二次巻線とがいずれか
一方の巻線が非接地の星形に結線された時他方の巻線が
三角結線されることを特徴とする直流変換装置の直流電
流計測回路。
1) In a converter having a double star-shaped six-phase rectifier circuit with an interphase reactor on the secondary side of a step-down transformer, a current transformer that respectively detects currents flowing in and out of the primary side of the step-down transformer; The primary winding of the step-down transformer includes a three-phase bridge-connected rectifier circuit commonly provided on the secondary side of the current transformer, and a current measuring section provided on the DC output side of the rectifier circuit. A direct current conversion device characterized in that when one of the windings is connected in an ungrounded star shape, the other winding is connected in a triangular manner. DC current measurement circuit.
JP10522683A 1983-06-13 1983-06-13 Direct current measuring circuit of dc converting device Granted JPS59230169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10522683A JPS59230169A (en) 1983-06-13 1983-06-13 Direct current measuring circuit of dc converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10522683A JPS59230169A (en) 1983-06-13 1983-06-13 Direct current measuring circuit of dc converting device

Publications (2)

Publication Number Publication Date
JPS59230169A true JPS59230169A (en) 1984-12-24
JPH0510629B2 JPH0510629B2 (en) 1993-02-10

Family

ID=14401746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10522683A Granted JPS59230169A (en) 1983-06-13 1983-06-13 Direct current measuring circuit of dc converting device

Country Status (1)

Country Link
JP (1) JPS59230169A (en)

Also Published As

Publication number Publication date
JPH0510629B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
WO2017119125A1 (en) Insulation resistance measurement device
US4626777A (en) D.C. current transformer circuits
JP3186369B2 (en) Control circuit of three-level inverter
US3745375A (en) Phase unbalance or open-phase detecting apparatus
Dabour et al. Open-circuit fault detection of five-phase voltage source inverters
JPS59230169A (en) Direct current measuring circuit of dc converting device
JP3248321B2 (en) Control circuit of three-level inverter
JPS59230168A (en) Current measuring circuit of dc converting device
US2729781A (en) Electromagnetic transformer
US4196387A (en) Apparatus for measuring output DC current of rectifier devices
SU1394153A1 (en) Device for measuring electric current
US3944919A (en) Direct current measuring system for rectifiers
EP0565656A1 (en) Ac/dc converter fault detector
US3973185A (en) Circuit for monitoring the inductance of an inductive load to indicate occurrence of a fault
US3281642A (en) A.-c. measurement of d.-c. output of rectifiers
JPH08251816A (en) Current-transformer circuit
JPH0682137B2 (en) Power detection circuit
Cham et al. The ANSI 49 rectifier with phase shift
JPS6138366Y2 (en)
SU760296A1 (en) Electric network
JPS583571A (en) Current detecting circuit
JPS6120213B2 (en)
JPH077855A (en) Interruption detector for distributed power source
Oguchi et al. Asymmetrical nine-phase voltage step-up/down diode rectifiers with 18-step input currents
RU39955U1 (en) GROUP CONSUMER POWER SUPPLY SYSTEM (OPTIONS)