JPS6120213B2 - - Google Patents

Info

Publication number
JPS6120213B2
JPS6120213B2 JP52024036A JP2403677A JPS6120213B2 JP S6120213 B2 JPS6120213 B2 JP S6120213B2 JP 52024036 A JP52024036 A JP 52024036A JP 2403677 A JP2403677 A JP 2403677A JP S6120213 B2 JPS6120213 B2 JP S6120213B2
Authority
JP
Japan
Prior art keywords
current
rectifier
voltage
resistor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52024036A
Other languages
Japanese (ja)
Other versions
JPS53109126A (en
Inventor
Minekichi Iwamoto
Morio Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2403677A priority Critical patent/JPS53109126A/en
Publication of JPS53109126A publication Critical patent/JPS53109126A/en
Publication of JPS6120213B2 publication Critical patent/JPS6120213B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】 この発明は、3相交流電流を直流電流に変換す
る整流装置を基準側および従属側として複数台備
え、各整流装置の交流電源側の各3線に交流変流
器をそれぞれ接続し、かつ該変流器の2次側を3
角結線して3相全波整流回路に接続し、基準側の
整流装置に接続された3相全波整流回路に検出さ
れた直流電流を基準電流として従属側の整流装置
の出力電流を制御し、各整流装置の出力電流をそ
の直流電流容量比に相応した負荷分担比で制御す
るうにした整流装置の並列運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a plurality of rectifiers for converting three-phase alternating current into direct current as a reference side and a dependent side, and an AC current transformer is connected to each three wires on the AC power supply side of each rectifier. are connected to each other, and the secondary side of the current transformer is connected to 3
The output current of the slave rectifier is controlled using the DC current detected in the three-phase full wave rectifier circuit connected to the reference side rectifier as a reference current. , relates to a method for parallel operation of rectifiers in which the output current of each rectifier is controlled by a load sharing ratio corresponding to its DC current capacity ratio.

そして、この発明は、前記各整流装置の内部イ
ンピーダンス等の相違により、各整流装置にそれ
ぞれの電流容量以上の負荷電流が流れ、各整流装
置が破壊されるのを防止することを目的とする。
It is an object of the present invention to prevent each rectifier from being destroyed due to a load current exceeding its current capacity flowing through each rectifier due to differences in internal impedance, etc. of each rectifier.

一般に、3相交流電流を直流電流に変換する整
流装置は、その構成要素であるサイリスタ等を制
御して出力電流を一定に調整しているが、負荷の
性質によつては、整流装置に容量不足が生じる場
合があり、この場合、整流装置を増設して並列運
転する手段が用いられる。
Generally, a rectifier that converts three-phase alternating current into direct current adjusts the output current to a constant level by controlling its constituent elements such as thyristors, but depending on the nature of the load, the rectifier may have a capacity. In some cases, there is a shortage, and in this case, a method of adding a rectifier and operating it in parallel is used.

この場合、単に整流装置を増設して並列運転す
れば、負担負荷電流は、その整流装置の電流容量
と無関係に、半導体化された各整流装置の内部イ
ンピーダンス等の相異等によつて決定され、各整
流装置にそれぞれの電流容量以上の負荷電流が流
れて各整流装置を破壊する。
In this case, if you simply add more rectifiers and operate them in parallel, the burden load current will be determined by the differences in internal impedance of each semiconductor rectifier, regardless of the current capacity of the rectifier. , a load current exceeding the current capacity of each rectifier flows through each rectifier, destroying each rectifier.

そこで、複数台の整流装置を並列運転する場
合、従来、第1図ないし第3図に示すような方法
が用いられている。すなわち、第1図は、3相交
流電源1,1′に接続されて直流電流容量の異な
る基準側および従属側の2台の整流装置2,3の
各直流側端子P,Nおよびp,nを共通負荷4に
並列運転に接続し、各々の直流電源容量比に応じ
た負荷を分担させて並列運転する場合を示してい
る。
Therefore, when operating a plurality of rectifiers in parallel, methods such as those shown in FIGS. 1 to 3 have conventionally been used. That is, FIG. 1 shows the DC side terminals P, N and p, n of two rectifiers 2, 3 on the reference side and slave side, which are connected to the three-phase AC power supply 1, 1' and have different DC current capacities. A case is shown in which the power supply units are connected to a common load 4 for parallel operation, and the loads are shared according to the respective DC power supply capacity ratios for parallel operation.

そして、各々の直流電流容量比に相応した負荷
分担比で制御するには、基準側の整流装置2にお
いて出力する直流電流を設定し、この基準側の整
流装置2に分担された直流電流を、第2図に示す
ように、第1直流変流器5により励磁用電源6を
介して検出し、第1直流変流器5の2次電流を第
1整流器7で直流に変換し、その電流I2により第
1電流−電圧変換用抵抗器8に直流電圧Esが発
生する。この時、この直流電圧Esと第1直流変
流器5の1次電流Idの間につぎの関係式が成り立
つ。
Then, in order to control with a load sharing ratio corresponding to each DC current capacity ratio, the DC current output from the reference side rectifier 2 is set, and the DC current shared by the reference side rectifier 2 is As shown in FIG. 2, the secondary current of the first DC current transformer 5 is detected via the excitation power source 6, and the secondary current of the first DC current transformer 5 is converted into DC by the first rectifier 7. I2 generates a DC voltage Es in the first current-voltage conversion resistor 8. At this time, the following relational expression holds between this DC voltage Es and the primary current Id of the first DC current transformer 5.

I2=n/n・Id,Es=K1・I2, ∴Es=K2・Id ここで、 n1……第1直流変流器5の1次コイル巻数 n2……第1直流変流器5の2次コイル巻数 K1,K2……定数、 したがつて、前式によると、第1電流−電圧変
換用抵抗器8には第1直流変流器5の1次電流
Id、すなわち基準側の整流装置2から出力される
直流電流に直線比例する直流電圧Esが発生し、
この直流電圧Esが従属側の整流装置3の直流電
流を制御する制御基準信号として比較器9に印加
される。
I 2 =n 1 /n 2・Id, Es=K 1・I 2 , ∴Es=K 2・Id where, n 1 ...Number of turns of the primary coil of the first DC transformer 5 n 2 ...th The number of turns K 1 , K 2 of the secondary coil of the first DC current transformer 5 is a constant. Therefore, according to the previous formula, the first current-voltage conversion resistor 8 has the number of turns K 1 , K 2 of the first DC current transformer 5 . Next current
A DC voltage Es is generated that is linearly proportional to Id, that is, the DC current output from the reference side rectifier 2,
This DC voltage Es is applied to the comparator 9 as a control reference signal for controlling the DC current of the slave rectifier 3.

つぎに、従属側の整流装置3の制御系を示した
第3図において、基準側の整流装置2の負荷分担
電流に相応した直流電圧Esが、従属側の整流装
置3をフイードバツク制御する基準信号として比
較器9に印加され、一方、従属側の整流装置3の
直流電流が第2直流変流器10で検出され、さら
に第2整流器11を介して第2電流−電圧変換用
抵抗器12に発生した直流電圧Efが比較器9に
印加される。
Next, in FIG. 3 showing the control system of the rectifier 3 on the slave side, the DC voltage Es corresponding to the load sharing current of the rectifier 2 on the reference side serves as a reference signal for feedback controlling the rectifier 3 on the slave side. On the other hand, the DC current of the slave rectifier 3 is detected by the second DC transformer 10 and is further applied to the second current-voltage conversion resistor 12 via the second rectifier 11. The generated DC voltage Ef is applied to the comparator 9.

そして、比較器9において、この直流電圧Ef
が基準となる直流電圧Esと比較され、その差電
圧が制御回路13の増幅器13aで増幅され、位
相制御器13bを介して従属側の整流装置3のサ
イリスタ等の制御素子13a,13a′を位相制御
し、変圧器3bおよび整流回路3cを介して従属
側の整流装置3の出力電流が定電流制御されてい
る。
Then, in the comparator 9, this DC voltage Ef
is compared with the reference DC voltage Es, and the difference voltage is amplified by the amplifier 13a of the control circuit 13, and the control elements 13a and 13a' such as thyristors of the slave rectifier 3 are controlled in phase via the phase controller 13b. The output current of the slave rectifier 3 is controlled to be a constant current via the transformer 3b and the rectifier circuit 3c.

この時、例えば基準側の整流装置2の定格電流
容量が10KAで従属側の整流装置3のそれが5KA
であるとすれば、各々の定格電流で通電時に直流
電圧EsおよびEfを同一レベルに設定すれば、直
流電圧EsおよびEfは、各々の直流電流容量に比
例することにより、各整流装置2,3の直流電流
容量に相応した負荷分担で並列運転が行なわれ
る。
At this time, for example, the rated current capacity of the rectifier 2 on the reference side is 10 KA, and that of the rectifier 3 on the slave side is 5 KA.
If the DC voltages Es and Ef are set to the same level when energized at each rated current, the DC voltages Es and Ef will be proportional to the DC current capacity of each rectifier 2, 3. Parallel operation is performed with load sharing commensurate with the DC current capacity.

しかし、交流電力を比較的低電圧、例えば数ボ
ルトないし数十ボルトで、大電流、例えば数千ア
ンペアないしは数万アンペアの直流電力に変換す
る各整流装置2,3においては、直流側の大電流
導体を第1,第2直流変流器5,10に貫通させ
て整流装置2,3の直流側に通ずる電流を検出し
て定電流制御を行なつている。
However, in each of the rectifiers 2 and 3 that converts AC power at a relatively low voltage, for example, several volts to several tens of volts, into DC power with a large current, for example, several thousand amperes or tens of thousands of amperes, the large current on the DC side Constant current control is performed by passing the conductor through the first and second DC transformers 5, 10 and detecting the current flowing to the DC side of the rectifiers 2, 3.

したがつて、既設の複数台の整流装置2,3ま
たは既設および新設の整流装置2,3の並列運転
を行なう場合、大電流導体を切断して直流変流器
の挿入および大電流導体の再接続といつた煩雑か
つ困難な工事を必要とする。
Therefore, when operating multiple existing rectifiers 2, 3 or existing and new rectifiers 2, 3 in parallel, it is necessary to cut the high-current conductor, insert a DC transformer, and reinsert the high-current conductor. Requires complicated and difficult construction work such as connection.

また、第1,第2直流変流器5,10はその性
質上、励磁用交流電流6を必要とし、相当な費用
を要して不経済である。
Furthermore, due to their nature, the first and second DC transformers 5 and 10 require an excitation alternating current 6, which is uneconomical as it requires a considerable amount of cost.

さらに、各整流装置2,3の直流側が大電流に
なればなるほど、直流導体サイズが大となり、そ
れに伴なつて第1,第2直流変流器5,10の外
形寸法も大形となり、整流装置2,3の製造上、
構造面での不利が生じる。
Furthermore, as the DC side of each rectifier 2, 3 becomes larger, the size of the DC conductor becomes larger, and accordingly, the external dimensions of the first and second DC transformers 5, 10 also become larger. In manufacturing devices 2 and 3,
Structural disadvantages arise.

また、各整流装置2,3の交流側と直流側の各
電流は理想値として比例関係にあるが、大電流導
体を直流変流器5,10に貫通させるため、その
もれ磁束や周辺の磁性体の影響を受けやすく、前
述の方法による実測値においては、両電流間の直
線性が得にくく円みをもつた曲線となる欠点を有
している。
In addition, although the currents on the AC and DC sides of each rectifier 2 and 3 have a proportional relationship as an ideal value, since a large current conductor is passed through the DC transformers 5 and 10, the leakage magnetic flux and the surrounding It is susceptible to the influence of magnetic materials, and has the disadvantage that it is difficult to obtain linearity between the two currents, resulting in a rounded curve in the actual measured values using the above-mentioned method.

一方、交流電源の電流を交流変流器を用いて検
出し、制御装置を制御する方法も提案されている
が、この場合、交流電源の2線に交流電流器を設
け、その2次側を星形結線して使用されている。
On the other hand, a method has also been proposed in which the current of an AC power source is detected using an AC current transformer to control a control device, but in this case, an AC current transformer is provided on two wires of the AC power source, and the secondary side It is used in a star-shaped connection.

したがつて、サイリスタ等の位相制御により整
流装置を制御すると、高調波電流が交流側に流
れ、交流変流器2次電流と整流装置の出力電流と
の間の比例関係がずれ、電流検出精度および整流
装置の電流平衡が悪くなる。
Therefore, when a rectifier is controlled by phase control such as a thyristor, harmonic current flows to the AC side, causing a shift in the proportional relationship between the AC transformer secondary current and the output current of the rectifier, resulting in poor current detection accuracy. and the current balance of the rectifier becomes poor.

この発明は、前記従来の欠点に留意し、整流装
置の交流側の電流が直流側のそれに比して著しく
小さい点に着目し、比較的簡単でかつ経済的に、
また高信頼性を得られる複数台の整流装置のそれ
ぞれの交流側の電流を検出して並列運転制御を行
ない、各整流装置にそれぞれの電流容量以上の負
荷電流が流れ、各整流装置が破壊されるのを防止
するものである。
The present invention takes into account the drawbacks of the conventional art, focuses on the fact that the current on the AC side of the rectifier is significantly smaller than that on the DC side, and achieves relatively simple and economical
In addition, high reliability can be achieved by detecting the current on the AC side of each of multiple rectifiers and performing parallel operation control, so that a load current exceeding the current capacity of each rectifier flows through each rectifier, and each rectifier is destroyed. This is to prevent

つぎに、この発明をその1実施例を示した第4
図とともに詳細に説明する。
Next, a fourth embodiment of the present invention will be described.
This will be explained in detail with reference to figures.

同図において、第1図ないし第3図と同一記号
は同一のものを示し、3相交流電源1,1′と基
準側および従属側の整流装置2,3の各交流側3
線との間に、それぞれ3個の交流変流器14およ
び15を接続し、各3個の交流変流器14および
15の2次巻線を3角結線するとともに、それぞ
れ第1,第2の3相全波整流回路16,17に接
続し、かつ第1,第2の3相波整流回路16,1
7をそれぞれ第1および第2電流−電圧変換用抵
抗器18,19に接続するとともに、第1電流−
電圧変換用抵抗器18に第1制御用抵抗器20を
並列に接続し、第2制御用抵抗器21を第1制御
用抵抗器20に直列接続し、かつ、第1制御用抵
抗器20と第2制御用抵抗器21との直列回路に
並列に第2電流−電圧変換用抵抗器19を接続
し、第2制御用抵抗器21が増幅器13aおよび
位相制御器13bから構成される制御回路を介し
て従属側の整流装置3に接続され、基準側および
従属側の整流装置2,3の各直流側端子P,Nお
よびp,nが共通負荷4に並列に接続されて構成
されている。
In the figure, the same symbols as in Figures 1 to 3 indicate the same things, and the three-phase AC power supply 1, 1' and each AC side 3 of the reference side and dependent side rectifiers 2, 3.
Three AC current transformers 14 and 15 are connected between the lines, and the secondary windings of the three AC current transformers 14 and 15 are triangularly connected, and the first and second connected to the three-phase full-wave rectifier circuits 16, 17, and the first and second three-phase wave rectifier circuits 16, 1.
7 are connected to the first and second current-voltage conversion resistors 18 and 19, respectively, and the first current-
A first control resistor 20 is connected in parallel to the voltage conversion resistor 18, a second control resistor 21 is connected in series to the first control resistor 20, and the first control resistor 20 and the second control resistor 21 are connected in series. A second current-voltage conversion resistor 19 is connected in parallel to the series circuit with the second control resistor 21, and the second control resistor 21 is connected to a control circuit consisting of an amplifier 13a and a phase controller 13b. The DC side terminals P, N and p, n of the reference side and dependent side rectifiers 2 and 3 are connected to a common load 4 in parallel.

つぎに、前記実施例の動作について説明する。 Next, the operation of the embodiment will be explained.

3相交流電源1,1′が投入されると、基準側
および従属側の整流装置2,3の3相各相の線電
流が各交流変流器14,15により検出され、そ
れぞれ第1,第2の3相全波整流回路16,17
を介して直流に変換されたのち、第1および第2
電流−電圧変換用抵抗器18,19に図示する極
性に各整流装置2,3の出力電流に直線比例した
直流電圧が発生する。そして、第1電流−電圧変
換用抵抗器18の直流電圧が第1制御用抵抗器2
0に印加される。
When the three-phase AC power supplies 1 and 1' are turned on, the line currents of the three phases of the reference side and dependent side rectifiers 2 and 3 are detected by the respective AC current transformers 14 and 15, and the Second three-phase full-wave rectifier circuit 16, 17
The first and second
A DC voltage linearly proportional to the output current of each rectifier 2, 3 is generated in the current-voltage converting resistors 18, 19 with the polarities shown. Then, the DC voltage of the first current-voltage conversion resistor 18 is changed to the first control resistor 2.
Applied to 0.

一方、第2電流−電圧変換用抵抗器19の直流
電圧が第1,第2制御用抵抗器20,21により
分圧され、第2制御用抵抗器21に発生する電圧
が増幅器13aに内蔵されている基準電源(図示
せず)の基準電圧と比較されてその差電圧が増幅
され、増幅器13aの出力電圧により位相制御器
13bを介して従属側の整流装置3の制御素子3
aを制御し、従属側の整流装置3から定電流が出
力されている。
On the other hand, the DC voltage of the second current-voltage conversion resistor 19 is divided by the first and second control resistors 20 and 21, and the voltage generated at the second control resistor 21 is built into the amplifier 13a. The difference voltage is amplified, and the output voltage of the amplifier 13a is used to control the control element 3 of the slave rectifier 3 via the phase controller 13b.
a, and a constant current is output from the slave rectifier 3.

ところで、第1電流−電圧変換用抵抗器18の
直流電圧が第1制御用抵抗器20に印加されてい
ることにより、該抵抗器20に発生する電圧が制
御されるとともに、第2制御抵抗器21に発生す
る電圧も制御されている。すなわち基準側の整流
装置2の出力電流に直線比例した直流電圧を第1
電流−電圧変換用抵抗器18に発生させ、この直
流電圧により従属側の整流装置3の出力電流を制
御している。
By the way, by applying the DC voltage of the first current-voltage conversion resistor 18 to the first control resistor 20, the voltage generated in the resistor 20 is controlled, and the voltage generated in the second control resistor 20 is controlled. The voltage generated at 21 is also controlled. In other words, the DC voltage linearly proportional to the output current of the rectifier 2 on the reference side is
The DC voltage is generated in the current-voltage conversion resistor 18, and the output current of the slave rectifier 3 is controlled by this DC voltage.

したがつて、基準側の整流装置2の出力電流を
制御、例えば増加させれば、基準側の整流装置2
の交流側にそれに相応して増加した交流電流が流
れ、各交流変流器14および第1の3相全波整流
回路16の各出力電流も増加し、第1電流−電圧
変換用抵抗器18に発生する電圧および第1制御
用抵抗器20の電圧も増大し、増幅器13aが基
準電圧と2制御用抵抗器21の電圧との差電圧が
零になるように働く。
Therefore, if the output current of the rectifier 2 on the reference side is controlled, for example, increased, the rectifier 2 on the reference side
A commensurately increased alternating current flows through the alternating current side of the AC current transformer 14 and the first three-phase full-wave rectifier circuit 16, and the output current of each alternating current transformer 14 and the first three-phase full-wave rectifier circuit 16 also increases. The voltage generated in the first control resistor 20 also increases, and the amplifier 13a operates so that the voltage difference between the reference voltage and the voltage of the second control resistor 21 becomes zero.

すなわち、第2電流−電圧変換用抵抗器19お
よび各交流変流器15の検出電圧が増加し、従属
側の整流装置3の出力電流も増大する。同様に、
基準側の整流装置2の出力電流が減少すれば、従
属側の整流装置3の出力電流もそれに相応して減
少するのはもちろんである。
That is, the detected voltages of the second current-voltage conversion resistor 19 and each AC current transformer 15 increase, and the output current of the dependent rectifier 3 also increases. Similarly,
Of course, if the output current of the rectifier 2 on the reference side decreases, the output current of the rectifier 3 on the slave side also decreases accordingly.

いま、基準側および従属側の整流装置2,3の
直流電流容量がそれぞれ10KAおよび5KAで、基
準側の整流装置2から5KAおよび従属側の整流
装置3から2KAがそれぞれ出力されていると
し、基準側の整流装置2の出力電流が10KAに増
大すれば、従属側の整流装置3の出力電流が
4KAに増大する。すなわち各整流装置2,3の
出力電流をその直流電流容量に相応した負荷分担
比で制御しながら並列運転することができる。
Now, assume that the DC current capacities of the rectifiers 2 and 3 on the reference side and slave side are 10 KA and 5 KA, respectively, and that 5 KA is output from the rectifier 2 on the reference side and 2 KA from the rectifier 3 on the slave side. If the output current of the side rectifier 2 increases to 10KA, the output current of the slave side rectifier 3 increases.
Increased to 4KA. That is, parallel operation can be performed while controlling the output current of each rectifier 2, 3 at a load sharing ratio corresponding to its DC current capacity.

以上のように、この発明の整流装置の並列運転
方法は、3相交流電流を直流電流に変換する整流
装置を複数台備えて並列運転制御を行なう整流装
置の並列運転方法において、基準側および従属側
の各整流装置の交流電源側の各相にそれぞれ交流
変流器を接続し、前記各交流変流器の2次側を3
角結線するとともにそれぞれ第1,第2の3相全
波整流回路に接続し、前記各整流回路にそれぞれ
の前記整流装置の出力電流に比例した直流電圧を
発生する第1,第2電流−電圧変換用抵抗器を接
続し、前記第1電流−電圧変換用抵抗器に並列に
第1制御用抵抗器を接続し、前記第1制御用抵抗
器に第2制御用抵抗器を直列に接続し、前記第1
制御用抵抗器と前記第2制御用抵抗器との直列回
路に並列に前記第2電流−電圧変換用抵抗器を接
続し、前記第1の3相全波整流回路に検出された
直流電流を基準電流とし、該基準電流により前記
第1電流−電圧変換用抵抗器に発生した直流電圧
を前記第1制御用抵抗器い印加し、前記第2制御
用抵抗器に発生した直流電圧と前記従属側の整流
装置の制御回路の増幅器に内蔵された基準電源の
基準電圧とを比較することにより、前記従属側の
整流装置の出力電流を制御し、前記各整流装置の
出力電流をその直流電流容量比に相応した負荷分
担比で制御するものである。
As described above, the method for parallel operation of rectifiers of the present invention is a method for parallel operation of rectifiers that includes a plurality of rectifiers that convert three-phase alternating current into direct current and performs parallel operation control. An AC current transformer is connected to each phase of the AC power supply side of each rectifier on the side, and the secondary side of each AC current transformer is connected to the
first and second current-voltage wires connected in a rectangular manner and respectively connected to first and second three-phase full-wave rectifier circuits to generate a DC voltage proportional to the output current of each of the rectifiers in each of the rectifier circuits; A conversion resistor is connected, a first control resistor is connected in parallel to the first current-voltage conversion resistor, and a second control resistor is connected in series to the first control resistor. , said first
The second current-voltage conversion resistor is connected in parallel to the series circuit of the control resistor and the second control resistor, and the DC current detected by the first three-phase full-wave rectifier circuit is connected to the series circuit of the control resistor and the second control resistor. The DC voltage generated in the first current-voltage conversion resistor by the reference current is applied to the first control resistor as a reference current, and the DC voltage generated in the second control resistor and the dependent voltage are applied to the first control resistor. The output current of the slave rectifier is controlled by comparing the reference voltage of the reference power supply built in the amplifier of the control circuit of the slave rectifier, and the output current of each rectifier is determined by its DC current capacity. The load sharing ratio is controlled according to the ratio.

したがつて、この発明によると、各整流装置の
出力電流に直線比例する電流を微少電流回路であ
る各整流装置の交流側から検出して各整流装置の
出力電流を制御でき、各整流装置の内部インピー
ダンス等の相違により、各整流装置にそれぞれの
電流容量以上の負荷電流が流れ、各整流装置が破
壊されるのを防止することができる。
Therefore, according to the present invention, it is possible to control the output current of each rectifier by detecting a current linearly proportional to the output current of each rectifier from the AC side of each rectifier, which is a minute current circuit, and to control the output current of each rectifier. Due to the difference in internal impedance, etc., it is possible to prevent a load current exceeding the current capacity of each rectifier from flowing through each rectifier, thereby preventing each rectifier from being destroyed.

また、負荷が既設の整流装置では容量不足にな
つて増設する場合、大電流導体の切断、再接続の
工事が不要であり、特に大容量の整流装置の増設
に有利である。
Furthermore, when an existing rectifier is installed to increase the load due to insufficient capacity, there is no need to disconnect and reconnect large current conductors, which is particularly advantageous for expanding a large-capacity rectifier.

また、交流変流器を交流電流の3線に設け、そ
の2次側を3角結線しているため、サイリスタ等
の位相制御による高調波電流が2次側出力に出力
されることがなく、交流変流器の2次電流と整流
装置の出力電流とが比例し、電流検出精度が良
く、整流装置の電流平衡が良い。
In addition, because AC current transformers are installed on three AC current wires and the secondary sides are connected in a triangular manner, harmonic currents caused by phase control of thyristors, etc. are not output to the secondary side output. The secondary current of the AC transformer and the output current of the rectifier are proportional, the current detection accuracy is good, and the current balance of the rectifier is good.

さらに、励磁用交流電源が不要で配線数が少な
くて済み、増設工事が簡単になるとともに非常に
経済的である。
Furthermore, there is no need for an AC power supply for excitation, and the number of wirings is small, making expansion work simple and very economical.

また、大電流導体を変流器に貫通していないた
め、整流装置の製造上、構造面で有利になる。
Further, since the large current conductor does not pass through the current transformer, it is advantageous in terms of structure when manufacturing the rectifier.

さらに、整流装置の交流側で電流検出するた
め、整流装置の出力電流に直線比例する電流を検
出することができ、信頼性が高い。
Furthermore, since the current is detected on the alternating current side of the rectifier, it is possible to detect a current that is linearly proportional to the output current of the rectifier, resulting in high reliability.

したがつて、この発明は工業的効果の大きいも
のである。
Therefore, this invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の整流装置の並列運転の結線図、
第2図および第3図は第1図の各部の詳細結線
図、第4図はこの発明の整流装置の並列運転方法
の1実施例の結線図である。 1,1′……3相交流電源、2……基準側の整
流装置、3……従属側の整流装置、14,15…
…交流変流器、16,17……第1,第2の3相
全波整流回路、18,19……第1,第2電流−
電圧変換用抵抗器、20,21……第1,第2制
御用抵抗器。
Figure 1 is a wiring diagram for parallel operation of a conventional rectifier.
2 and 3 are detailed wiring diagrams of the various parts shown in FIG. 1, and FIG. 4 is a wiring diagram of an embodiment of the method for parallel operation of rectifiers according to the present invention. 1, 1'...Three-phase AC power supply, 2...Reference side rectifier, 3...Slave side rectifier, 14, 15...
...AC current transformer, 16, 17...First and second three-phase full-wave rectifier circuit, 18, 19...First and second current -
Voltage conversion resistor, 20, 21...first and second control resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 3相交流電流を直流電流に変換する整流装置
を2台備えて並列運転制御を行なう整流装置の並
列運転方法において、基準側および従属側の各整
流装置の交流電源側の各相にそれぞれ交流変流器
を接続し、前記各交流変流器の2次側を3角結線
するとともにそれぞれ第1,第2の3相全波整流
回路に接続し、前記各整流回路にそれぞれの前記
整流装置の出力電流に比例した直流電圧を発生す
る第1,第2電流−電圧変換用抵抗器を接続し、
前記第1電流−電圧変換用抵抗器に並列に第1制
御用抵抗器を接続し、前記第1制御用抵抗器に第
2制御用抵抗器を直列に接続し、前記第1制御用
抵抗器と前記第2制御用抵抗器との直列回路に並
列に前記第2電流−電圧変換用抵抗器を接続し、
前記第1の3相全波整流回路に検出された直流電
流を基準電流とし、該基準電流により前記第1電
流.電圧変換用抵抗器に発生した直流電圧を前記
第1制御用抵抗器に印加し、前記第2制御用抵抗
器に発生した直流電圧と前記従属側の整流装置の
制御回路の増幅器に内蔵された基準電源の基準電
圧とを比較することにより、前記従属側の整流装
置の出力電流を制御し、前記各整流装置の出力電
流をその直流電流容量比に相応した負荷分担比で
制御することを特徴とする整流装置の並列運転方
法。
1. In a method for parallel operation of rectifiers that is equipped with two rectifiers that convert three-phase alternating current into direct current and performs parallel operation control, AC is applied to each phase of the AC power supply side of each rectifier on the reference side and slave side. A current transformer is connected, and the secondary side of each of the AC current transformers is triangularly connected and connected to a first and second three-phase full-wave rectifier circuit, respectively, and each of the rectifiers is connected to each of the rectifier circuits. Connecting first and second current-voltage conversion resistors that generate a DC voltage proportional to the output current of the
A first control resistor is connected in parallel to the first current-voltage conversion resistor, a second control resistor is connected in series to the first control resistor, and the first control resistor is connected in series to the first control resistor. and the second current-voltage conversion resistor is connected in parallel to a series circuit of the second control resistor,
The DC current detected by the first three-phase full-wave rectifier circuit is used as a reference current, and the first current. The DC voltage generated in the voltage conversion resistor is applied to the first control resistor, and the DC voltage generated in the second control resistor is combined with the DC voltage generated in the slave side rectifier. The output current of the slave side rectifier is controlled by comparing the reference voltage of a reference power source, and the output current of each rectifier is controlled with a load sharing ratio corresponding to its DC current capacity ratio. A method for parallel operation of rectifiers.
JP2403677A 1977-03-04 1977-03-04 Method of parallel operation of rectifiers Granted JPS53109126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403677A JPS53109126A (en) 1977-03-04 1977-03-04 Method of parallel operation of rectifiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403677A JPS53109126A (en) 1977-03-04 1977-03-04 Method of parallel operation of rectifiers

Publications (2)

Publication Number Publication Date
JPS53109126A JPS53109126A (en) 1978-09-22
JPS6120213B2 true JPS6120213B2 (en) 1986-05-21

Family

ID=12127272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403677A Granted JPS53109126A (en) 1977-03-04 1977-03-04 Method of parallel operation of rectifiers

Country Status (1)

Country Link
JP (1) JPS53109126A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803728B2 (en) * 1987-10-22 1998-09-24 三菱電機株式会社 Power converter
JPH02111264A (en) * 1988-10-18 1990-04-24 Toshiba Corp Controller for semiconductor rectifier

Also Published As

Publication number Publication date
JPS53109126A (en) 1978-09-22

Similar Documents

Publication Publication Date Title
JPH0532977B2 (en)
KR880013284A (en) Circuit breaker
US3444457A (en) Voltage regulator system utilizing a center-tapped inductor
US3745375A (en) Phase unbalance or open-phase detecting apparatus
US3422341A (en) Rectifying apparatus for producing constant d.c. output voltage
US4147972A (en) Control circuit for an a-c control element
US3605006A (en) Compound excitation system of ac generator by thyristor control
US2981867A (en) Electric relay
JPS6120213B2 (en)
JP4765006B2 (en) Power conversion system
US5206801A (en) Ac/dc converter fault detector
US3530358A (en) Three-phase regulator systems
US3274479A (en) Rectifying apparatus for producing constant voltage
US3018380A (en) Current balancing apparatus
US3099784A (en) Frequency multiplier
US3281641A (en) Rectifier apparatus
US4706179A (en) Arrangement for switching rectified alternating current
JP2000083378A (en) Power converter
JPS6023736Y2 (en) Current detection device for power conversion circuit
JPH01222319A (en) Automatic power factor controller for inductive load
US2920261A (en) Control systems for generators
US3401307A (en) Electrical protective relay arrangement
US3319148A (en) Device for generating a measuring voltage proportional to the output current of a power rectifier
US2879464A (en) Generator power factor, voltage and current control apparatus
US3328665A (en) Voltage divider transformer connection