JPS59230168A - Current measuring circuit of dc converting device - Google Patents

Current measuring circuit of dc converting device

Info

Publication number
JPS59230168A
JPS59230168A JP58105222A JP10522283A JPS59230168A JP S59230168 A JPS59230168 A JP S59230168A JP 58105222 A JP58105222 A JP 58105222A JP 10522283 A JP10522283 A JP 10522283A JP S59230168 A JPS59230168 A JP S59230168A
Authority
JP
Japan
Prior art keywords
current
transformer
rectifier
phase
rectifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58105222A
Other languages
Japanese (ja)
Inventor
Akira Takai
高井 明
Kaisuke Komatsu
小松 「かい」助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58105222A priority Critical patent/JPS59230168A/en
Publication of JPS59230168A publication Critical patent/JPS59230168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To eliminate the influence of an interphase reactor, and to execute a measurement with high accuracy and stably by measuring a current of the primary side of a star connection in which a neutral point of a stepdown transformer provided with a DC converting device on the secondary side is grounded, through a rectifier brought to a single phase bridge connection of a current transformer. CONSTITUTION:A double star type six phase rectifying circuit with an interphase reactor 2 is provided on the secondary side of a stepdown transformer 1, and a DC Id flows to a load 4. A current flowing to each phase of a star connection in which a neutral point of the primary side of this transformer 1 is grounded is measured by current transformers 5-7, three groups of rectifiers 15a-15d, 16a-16d and 17a-17d brought to a single phase bridge connection of the secondry side of the current transformers 5-7, and an ammeter part 19 for measuring a DC composite value of the three groups of rectifiers, and the current is determined equivalently. In this case, a current flowing through a closed circuit of the current transformer 5, the rectifiers 15a, 16b, current transformer 6, rectifiers 16c, 15d, current transformer 5, etc. does not appear in the ammeter part 19, the influence of the interphase reactor is eliminated, and the current of a DC converting device is measured with high accuracy and stably.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は三相交流電力を直流電力に変換する装置の直流
出力電流を、変圧器の交流巻線に流入する電流を検出す
ることによシ等価計測する回路に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention detects the DC output current of a device that converts three-phase AC power into DC power by detecting the current flowing into the AC winding of a transformer. This relates to a circuit for equivalent measurement.

〔従来技術とその問題点〕[Prior art and its problems]

交流電力を変圧器、整流器を介して直流電力に変換する
直流変換器の直流出力電流を計測する方法としては、従
来つぎのような方法が知られている。すなわち、オニの
方法は、直流出力電流を電磁式あるいはホール素子等の
磁気センサを用いた直流変流器を用いて直接検出する方
法、第2の方法は、変圧器の直流側巻線すなわち整流器
の入力側に変流器を設け、この変流器の二次巻線電流を
整流し変換器の直流出力電流に比例した電流を検出する
方法、第3の方法は、変圧器の交流巻線すなわち変圧器
の入力側に変流器を設け、この質流器の二次巻線電流を
整流して変換器の直流出力電流に比例した電流を検出す
る方法、等である。
The following methods are conventionally known as methods for measuring the DC output current of a DC converter that converts AC power into DC power via a transformer and a rectifier. That is, Oni's method is a method in which the DC output current is directly detected using a DC current transformer using an electromagnetic type or a magnetic sensor such as a Hall element. The third method is to install a current transformer on the input side of the transformer, rectify the secondary winding current of this current transformer, and detect a current proportional to the DC output current of the transformer. That is, there is a method in which a current transformer is provided on the input side of the transformer, the secondary winding current of the current transformer is rectified, and a current proportional to the DC output current of the converter is detected.

ところが、直流出力電流が1万アンペアを超えるような
大電流である場合、オニ、第2の方法は大電流を直接検
出するために用いる変流器が大形かつ高価なものとなシ
、直流電流計測装置が大がかシで高価になシ、かつ広い
設置1場所や大きな支持構造物を必要とするなどの欠点
がある。これに対し、第3の方法は、降圧変圧器の高圧
側巻線電流たとえば数十〜数百アンペアの交流電流を検
出する変流器で済むため、小形かつ安価なブッシング変
流器などを使用することができて有利である。
However, when the DC output current is a large current exceeding 10,000 amperes, the second method requires a large and expensive current transformer to directly detect the large current. The current measuring device has drawbacks such as being bulky and expensive, and requiring a large installation space and a large support structure. On the other hand, the third method requires only a current transformer that detects the high-voltage side winding current of a step-down transformer, for example, an alternating current of several tens to hundreds of amperes, so a small and inexpensive bushing current transformer is used. It is advantageous to be able to do so.

このため、電気分解によって非鉄金属の精錬や、塩素、
か性ソーダの製造などに使用される低電圧。
For this reason, electrolysis can be used to refine non-ferrous metals, chlorine,
Low voltage used for manufacturing caustic soda, etc.

大電流の直流変換器においては、もっばら第3の方法に
よって直流出力電流の計測が行われている。
In large current DC converters, the third method is often used to measure the DC output current.

第1図は従来の直流変換装置およびその電流計測回路の
接続図である。図において、1は変圧器で、星形結線さ
れた交流巻線(−次巻線)1aと、星形結線された2組
の直流巻線(二次巻線)1bおよび1゜とを備え、交流
巻線1aの中性点は接地されている。2組の直流巻線’
b + ’cの中性点間には中点端子を有する相聞リア
クトル2が接続されるとともに各相巻線の出力側には六
相結線された単流方式の整流装置3が設けられている。
FIG. 1 is a connection diagram of a conventional DC converter and its current measuring circuit. In the figure, 1 is a transformer, which includes an AC winding (minusary winding) 1a connected in a star shape, and two sets of DC windings (secondary windings) 1b and 1° connected in a star shape. , the neutral point of the AC winding 1a is grounded. Two sets of DC windings'
A phase reactor 2 having a neutral terminal is connected between the neutral points of b + 'c, and a single-current type rectifier 3 connected to six phases is provided on the output side of each phase winding. .

また整流装置3の直流出力側(正極)と相間リアクトル
2の中点端子との間には負荷4が接続され、負荷4に直
流出力回路工、が供給されるよう形成されている。一方
5,6.7は変圧器1の交流巻線la側に設けられた3
台の変流器で、その二次巻線側は星形結線されるととも
に、整流器8a〜8hからなる整流回路8に接続されて
いる。9は整流回路8の直流出力回路に設けられ、直流
変換装置の直流出力電流Idに比例した直流電流KId
を検出するよう形成された電流計測部である。
Further, a load 4 is connected between the DC output side (positive electrode) of the rectifier 3 and the midpoint terminal of the interphase reactor 2, and the load 4 is configured to be supplied with a DC output circuit. On the other hand, 5, 6.7 are 3 provided on the AC winding la side of the transformer 1.
The secondary winding side of the current transformer is star-connected and connected to a rectifier circuit 8 consisting of rectifiers 8a to 8h. 9 is provided in the DC output circuit of the rectifier circuit 8, and is a DC current KId proportional to the DC output current Id of the DC converter.
This is a current measuring section formed to detect.

牙1図の回路において、二重星形六相整流回路には互い
に電気角60度の相差をもつ三相交流電力を入力とする
2組の3相整流回路が相間リアクトル2を均圧装置とし
て並列運転されておシ、直流巻線lb群およびlc群の
整流器九+ 3V + 3Wおよび3x、 3. 、3
.それぞれに牙2図に示すような波形の電流が流れる。
In the circuit shown in Figure 1, the double star-shaped six-phase rectifier circuit has two sets of three-phase rectifier circuits that receive three-phase AC power with a phase difference of 60 electrical degrees from each other, and uses interphase reactor 2 as a pressure equalizer. Rectifiers 9 + 3V + 3W and 3x with DC windings LB and LC groups operated in parallel; 3. ,3
.. A current with a waveform as shown in Fig. 2 flows through each of them.

すなわち各整流器に変換器の直流出力電流Idの2分の
1の大きさで電気角120度毎に裁断された層形波状の
電流が電気角240度の阻止時間をおいて繰シ返し流れ
、直流出力側に設けられた負荷4には各整流器に流れる
間欠的な直流電流の合成値としてIdなる直流電流が連
続して流れるようになっている。ところが、相間リアク
トル2には直流巻線1bおよび1cの電圧の瞬時値の差
にもとづく励磁電流口が流れておシ、各整流器を流れる
間欠的な直流電流には第2図に示すようにこの励磁電流
(電源周波数の3倍の周波数の正弦波またL三角波等の
交番電流)ムtが重畳する。
That is, in each rectifier, a layered wave-like current cut every 120 electrical degrees with a magnitude of 1/2 of the DC output current Id of the converter flows repeatedly with a blocking time of 240 electrical degrees, A DC current Id, which is a composite value of intermittent DC currents flowing through each rectifier, continuously flows through the load 4 provided on the DC output side. However, an exciting current flows through the interphase reactor 2 based on the difference in the instantaneous voltage values of the DC windings 1b and 1c, and the intermittent DC current flowing through each rectifier has this current as shown in Figure 2. An excitation current (an alternating current such as a sine wave or L triangular wave with a frequency three times the power supply frequency) is superimposed.

第1図には第2図の11時刻に、装置の各部に流れる直
流電流と励磁電流の方向を、直流電流を実線矢印、励磁
電流itを破線矢印で示した。他の時刻に関しては電流
分布と極性が異なるのみで本質的に紘変わらない。図に
おいて実線矢印で示す間欠的直流電流のうち、直流巻線
1bのW相を通る電流■、は整流器3w、負荷4.相間
リアクトル2゜巻#j!1bの中性点という回路を環流
し、巻線1゜のt相を通る電流エラは整流器3X +負
荷4.相関リアクトル22巻線1゜の中性点という回路
をそれぞれ流れて負荷4で二つの電流I、 、 I、、
が加算されてIdなる直流出力電流が形成される。一方
破線矢印で示す相間リアクトルの励磁電流itは、相間
リアクトル29巻線lbのW相、整流器3Wl整流器3
x。
In FIG. 1, at time 11 in FIG. 2, the directions of the direct current and excitation current flowing through each part of the apparatus are shown with solid line arrows representing the DC current and broken line arrows representing the excitation current it. At other times, the current distribution and polarity are essentially the same. Among the intermittent DC currents indicated by solid arrows in the figure, the current (2) passing through the W phase of the DC winding 1b flows through the rectifier 3w and the load 4. Interphase reactor 2° volume #j! The current error that circulates through the circuit called the neutral point of 1b and passes through the t-phase of winding 1° is rectifier 3X + load 4. Two currents I, , I, , flow in the load 4 through the circuit called the neutral point of the 1° winding of the correlation reactor 22, respectively.
are added to form a DC output current Id. On the other hand, the excitation current it of the interphase reactor indicated by the broken arrow is the W phase of the interphase reactor 29 winding lb, rectifier 3Wl, rectifier 3
x.

巻線lcのX相、を介して相間リアクトル2に環流し、
負荷4には流れない。すなわち負荷4には直流電流Id
の箋が流れ、相聞リアクトルの励磁電離itは流れない
。一方変圧器1の交流巻線la  側に変流器5〜7を
介して設けられた整流器にも直流変換器側に流れる間欠
−□的直流電流Idならびに相間リアクトルの励磁電流
itに対応した電流が流れる。
It flows back to the interphase reactor 2 via the X phase of the winding lc,
It does not flow to load 4. In other words, the load 4 has a DC current Id
The note flows, but the excitation ionization IT of the somon reactor does not flow. On the other hand, a current corresponding to the intermittent DC current Id flowing to the DC converter side and the excitation current it of the interphase reactor also flows to the rectifier provided on the AC winding la side of the transformer 1 via current transformers 5 to 7. flows.

破線矢印で示す励磁電流対応電流kitは、変流器5、
整流器8a、電流計測部9.整流器8h、変流器中性点
、変流器6.整流器8f、整流器8hv  変流器中性
点、変流器5という径路で環流し、励磁電流対応成分が
電流検出部9にも流れる。すなわち直流変換装置の直流
出力電流Idには含まれていない相間リアクトル2の励
磁電流成分kitが、変圧器の一次側に設けられた電流
計測部9には検出されてしまう。
The excitation current corresponding current kit indicated by the broken line arrow is the current transformer 5,
Rectifier 8a, current measurement section 9. Rectifier 8h, current transformer neutral point, current transformer 6. It circulates through the paths of the rectifier 8f, the rectifier 8hv, the current transformer neutral point, and the current transformer 5, and a component corresponding to the exciting current also flows to the current detection section 9. That is, the exciting current component kit of the interphase reactor 2, which is not included in the DC output current Id of the DC converter, is detected by the current measurement unit 9 provided on the primary side of the transformer.

相間リアクトルの励磁電流が非常に小さく、変換装置の
直流出力電流Idの測定n度からみて無視できる場合は
問題ないが、特に高い精度で電流を計測したい場合、あ
るいは相間リアクトルの構造上、例えば磁気回路に空隙
があって励磁電流が大きかったシなんらかの原因で相聞
リアクトルに磁気飽和を生じた場合、電流計測部に相間
リアクトルの励磁電流に対応する電流成分が重畳するこ
とは、目的とする直流出力電流測定の等価性が失なわれ
てしまうという致命的な欠陥になる。また電流側測部の
検出電流を制御整流素子の位相角制御に利用するような
場合には、検出電流波形の変動によって位相角が常時変
化してしまう欠点がある。
There is no problem if the excitation current of the interphase reactor is very small and can be ignored from the measurement point of the DC output current Id of the converter, but if you want to measure the current with particularly high accuracy, or due to the structure of the interphase reactor, for example If there is an air gap in the circuit and the excitation current is large, and if magnetic saturation occurs in the interphase reactor for some reason, the current component corresponding to the excitation current of the interphase reactor will be superimposed on the current measurement section, which will prevent the desired DC output. This is a fatal flaw in that the equivalence of current measurements is lost. Furthermore, when the detected current of the current side measuring section is used to control the phase angle of the control rectifier, there is a drawback that the phase angle constantly changes due to fluctuations in the detected current waveform.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、相聞リア
クトルの励磁電流の影響を排除した高い精度と安定性を
有する直流変換装置の直流出方電流計測回路を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned situation, and it is an object of the present invention to provide a DC current measuring circuit for a DC converter that eliminates the influence of the excitation current of the phase reactor and has high accuracy and stability.

〔発明の要点〕[Key points of the invention]

本発明によれば、上述の目的は、二次側に相間リアクト
ル付二重星形六相整流回路を有する変圧器の中性点接地
された一次巻線に、各相電流をそれぞれ変流する変流器
3台を設り、各変流器の二次側に各変流器の二次巻線電
流を入力とする単相ブリッジ結線された整流器3組を設
け、3組の整流器の直流出力側を並列に接続して電流計
測部に接続するよう計測回路を形成することにより、前
記相関リアクトルの励磁電流に対応して前記変流器によ
って変流される高調波電流成分を、前記3組の整流器に
のみ環流させ、前記電流計測部には流れないよう構成す
ることにょシ達成された。
According to the present invention, the above-mentioned object is to transform each phase current to the neutral-grounded primary winding of a transformer having a double star-shaped six-phase rectifier circuit with an interphase reactor on the secondary side. Three current transformers are installed, and three sets of single-phase bridge-connected rectifiers are installed on the secondary side of each current transformer, and the secondary winding current of each current transformer is input. By connecting the output side in parallel and forming a measurement circuit to be connected to the current measurement section, the harmonic current components transformed by the current transformer in response to the excitation current of the correlation reactor can be controlled by the three sets of harmonic current components. This was achieved by configuring the current to circulate only through the rectifier and not to flow through the current measuring section.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を添付図面を参照しつつ説明する
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明の実施例を示す直流変換装置の電流検出
回路の接続図である。図において変圧器1、相間リアク
トル2.六相結線された整流装置3、直流負荷4の構成
および通流作用については第1図および牙2図について
の説明と同様なので省略する。
FIG. 3 is a connection diagram of a current detection circuit of a DC converter according to an embodiment of the present invention. In the figure, a transformer 1, an interphase reactor 2. The configuration and flow operation of the six-phase connected rectifier 3 and the DC load 4 are the same as those described in FIG. 1 and FIG. 2, and will therefore be omitted.

変圧器1の交流巻線laに流入する各相電流を変流する
3台の変流器5,6.7の二次側には、変流器5に対応
して単相ブリッジ結線された整流器15a〜15d+i
流器6に対応して整流器16a−16d 、変流器7に
対応して整流器17a−17dが設けられ、各単相ブリ
ッジ結線された整流回路の直流出力側に共通に設けられ
た電流計測部19によって各整流回路の直流出力電流の
合成電流が計測されるよう形成されている。
On the secondary side of the three current transformers 5, 6.7 that transform each phase current flowing into the AC winding la of the transformer 1, a single-phase bridge connection corresponding to the current transformer 5 is connected. Rectifiers 15a to 15d+i
Rectifiers 16a to 16d are provided corresponding to the current transformer 6, and rectifiers 17a to 17d are provided corresponding to the current transformer 7, and a current measuring section is provided in common on the DC output side of each single-phase bridge-connected rectifier circuit. 19 is configured to measure the composite current of the DC output currents of the respective rectifier circuits.

図において、直流変換装置の各相整流器”u+”V+ 
3W + 3X + 37 r 31に第2図のような
相聞リアクトルの励磁電流1tが重畳した間欠的直流電
流Id/2が流れ、その結果負荷4に直流出力電流Id
が流れた時、変圧器lの交流巻線la側に設けられ巻線
1aに流入する各相電流を変流する変流器5〜7の二次
巻線には、励磁電流itおよび直流出力電流Idに比例
した交流電流が流れ、各変流器の二次側に接続された単
相ブリッジ整流回路15 、16 、17を構成する各
整流器にも環流する。図には第1図についての説明と同
じ瞬時(牙2図の時刻11)における各部の電流を変換
装置の直流出力電流Idに比例した電流を実線矢印で、
相間リアクトルの励磁電流itに比例した電流kitを
破線矢印で示した。他の時刻に関しては電流分布と極性
が異なるのみで本質的には変わらない。
In the figure, each phase rectifier "u+" V+ of the DC converter
3 W + 3
When current flows, an exciting current it and a DC output An alternating current proportional to the current Id flows and also circulates through each rectifier forming the single-phase bridge rectifier circuits 15, 16, and 17 connected to the secondary side of each current transformer. In the figure, the current in each part at the same instant (time 11 in Figure 2) as explained in Figure 1 is expressed by a solid arrow, which is proportional to the DC output current Id of the converter.
A current kit proportional to the excitation current it of the interphase reactor is indicated by a broken line arrow. At other times, only the current distribution and polarity are different, but essentially the same.

図において、まず実線矢印に着目して循環径路をたどっ
てみると、交流巻線1aのW相に流入する電流は、変流
器5によって変流され、変流器5の二次側には一次電流
と電気角1800異なる電流KIwが整流器15a、電
流検出部19.整流器15d、変流器5に環流する。ま
た交流巻線1aのU相から流出する電流は変流器6によ
ってKIuに変流され、整流器16b、電流計測部19
.整流器16o、変流器6に環流する。このようにして
電流計測部19には前記2つの閉回路を流れる電流KI
u 、 KIwが加算され、直流変換装置の出力電流I
dに比例した電流KIdが検出される。一方破線矢印で
示した相聞リアクトル2の励磁電流に対応する電流ki
tの循環径路をたどってみると、並列に動作しているW
相およびU相の変流器5および6のそれぞれの二次巻線
を前記直流出力電流Idに対応した電流が流れている整
流器16b、 16c、 15a、 15dでつないだ
閉回路、すなわち変流器5.整流器15a、整流器16
b、変流器6.整流器16o、整流器15d 、変流器
5からなる閉回路を流れ、電流計測部19に1流れない
In the figure, if we first focus on the solid arrows and follow the circulation path, we can see that the current flowing into the W phase of the AC winding 1a is transformed by the current transformer 5, and the current flowing into the W phase of the AC winding 1a is transformed by the current transformer 5, and the A current KIw that differs from the primary current by 1800 electrical angles flows through the rectifier 15a and the current detection unit 19. The current flows back to the rectifier 15d and the current transformer 5. In addition, the current flowing out from the U phase of the AC winding 1a is transformed to KIu by the current transformer 6, and then the current flows through the rectifier 16b and the current measuring section 19.
.. The current flows back to the rectifier 16o and current transformer 6. In this way, the current measurement unit 19 has the current KI flowing through the two closed circuits.
u and KIw are added, and the output current I of the DC converter is
A current KId proportional to d is detected. On the other hand, the current ki corresponding to the excitation current of phase reactor 2 indicated by the broken line arrow
If you follow the circulation path of t, you will see that W is operating in parallel.
A closed circuit, that is, a current transformer, in which the secondary windings of the phase and U-phase current transformers 5 and 6 are connected by rectifiers 16b, 16c, 15a, and 15d through which a current corresponding to the DC output current Id flows. 5. Rectifier 15a, rectifier 16
b. Current transformer 6. The current flows through a closed circuit consisting of the rectifier 16o, the rectifier 15d, and the current transformer 5, and does not flow into the current measuring section 19.

このように第3図に示す電流計測回路によれば、相間リ
アクトルの励磁電流の影響を除去して、直流変換器の直
流出力電流Idに比例した直流電流のみをt流側測部1
9で検出することができる。
As described above, according to the current measuring circuit shown in FIG. 3, the influence of the excitation current of the interphase reactor is removed, and only the DC current proportional to the DC output current Id of the DC converter is transmitted to the t-flow side measuring section 1.
9 can be detected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば前述のように、二次側に相間リアクトル
付二重星形六相整流結線された直流変換装置を有する降
圧変圧器1の、中性点が接地され星形結線された一次巻
線1aに流出入する電流を変流する変流器5〜7を設け
、それぞれの変流器の二次側に設けられた単相ブリッジ
結線された整流回路15〜17の直流出力側に共通に電
流計測部19を設けるよう構成したことにより、相間リ
アクトル2の励磁電流に比例した交番電流kitが電流
計測部に重畳して流れるのを防ぎ、直流変換装置の直流
出力電流Idに比例した直流電流KIdのみを検出でき
る直流変換装置の電流計測回路を提供できた。
According to the present invention, as described above, a step-down transformer 1 has a DC converter connected in a double star six-phase rectifier with an interphase reactor on the secondary side, and the primary Current transformers 5 to 7 that transform the current flowing in and out of the winding 1a are provided, and the DC output side of the single-phase bridge-connected rectifier circuits 15 to 17 provided on the secondary side of each current transformer is By configuring the current measuring section 19 to be provided in common, the alternating current kit proportional to the excitation current of the interphase reactor 2 is prevented from flowing in the current measuring section in a superimposed manner, and the alternating current kit proportional to the DC output current Id of the DC converter is prevented from flowing in the current measuring section. We were able to provide a current measurement circuit for a DC converter that can detect only the DC current KId.

その結果従来相間リアクトルの励磁電流の影響によって
充分な測定精度が得られなかった、変圧器の一次側に設
けられた電流計測回路の測定精度が向上し、変圧器の一
次側に設けられたブッシング変流器を利用した安価で高
精度な電流計測回路を備えた直流変換装置を提供するこ
とに貢献できた。
As a result, the measurement accuracy of the current measurement circuit installed on the primary side of the transformer, which was previously unable to obtain sufficient measurement accuracy due to the influence of the excitation current of the interphase reactor, has been improved, and the bushing installed on the primary side of the transformer has been improved. We were able to contribute to the provision of a DC converter equipped with an inexpensive and highly accurate current measurement circuit that uses a current transformer.

また、電流計測部19で検出された電流を直流変換装置
の出力電流の制御に利用するような場合、従来は検出電
流波形に重畳する高調枝分の影響により出力電流の制御
が不安定になる欠点があったが、本発明によればこれら
の問題点も回避され、精度の高い出力電流の制御ができ
る利点が得られた。なお本発明は半導体制御整流素子を
用いた直流変換装置にも適用できる。
Furthermore, when the current detected by the current measurement unit 19 is used to control the output current of a DC converter, conventionally, the control of the output current becomes unstable due to the influence of harmonic components superimposed on the detected current waveform. Although there were drawbacks, the present invention avoids these problems and provides the advantage of being able to control the output current with high precision. Note that the present invention can also be applied to a DC converter using semiconductor-controlled rectifying elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流変換装置の電流計測回路の接続図、
第2図は六相結線aれた各相整流器の出力電流波形、第
3図は本発明の実施例を示す電流計測回路の接続図であ
る。 図において、1・・・降圧変圧器、1.l・・・−次巻
線、1b、 1゜・・・二次巻線、2・・・相間リアク
トル、3−六相整流回路、4・・負荷、5,6.7・・
・変流器、15゜16 、17・・・単相ブリ、ジ結線
された整流器、9,19電流計測部、”u + 3V 
+ 3W + ”X + 37 + 3□、・・・各相
竪流器、Id・直流出力電流、 it・・相間リアク第
1図 第2図
Figure 1 is a connection diagram of the current measurement circuit of a conventional DC converter.
FIG. 2 is an output current waveform of each phase rectifier connected in six phases a, and FIG. 3 is a connection diagram of a current measuring circuit showing an embodiment of the present invention. In the figure, 1... step-down transformer; l...-Secondary winding, 1b, 1゜...Secondary winding, 2...Interphase reactor, 3-Six-phase rectifier circuit, 4...Load, 5, 6.7...
・Current transformer, 15゜16, 17... Single-phase bridge, di-wired rectifier, 9, 19 current measurement section, "u + 3V
+ 3W + ”

Claims (1)

【特許請求の範囲】[Claims] l)−次側巻線が星形結線された降圧変圧器の二次側に
相間リアクトル何二重星形六相整流回路を冶する変換装
置において、前記−次側巻線の各相電流をそれぞれ変流
する変流器と、前記変流器の二次側にそれぞれ対応して
設けられた単相ブリッジ結線された3組の整流器と、こ
の3組の整流器の直流出力回路に共通に設けられ各整流
器の直流出力電流の合成値を計測する電流計測部とを備
え、前記変換器の直流出力電流を等価計測するよう形成
されたことを特徴とする直流変換装置の電流計測回路。
l) In a conversion device that forms a double star-shaped six-phase rectifier circuit with an interphase reactor on the secondary side of a step-down transformer whose secondary windings are star-connected, each phase current of the secondary winding is A current transformer that transforms current, three sets of single-phase bridge-connected rectifiers provided corresponding to the secondary sides of the current transformers, and a common DC output circuit of the three sets of rectifiers. 1. A current measuring circuit for a DC converter, comprising: a current measuring section that measures a composite value of DC output currents of the respective rectifiers, and is formed to equivalently measure the DC output current of the converter.
JP58105222A 1983-06-13 1983-06-13 Current measuring circuit of dc converting device Pending JPS59230168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105222A JPS59230168A (en) 1983-06-13 1983-06-13 Current measuring circuit of dc converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105222A JPS59230168A (en) 1983-06-13 1983-06-13 Current measuring circuit of dc converting device

Publications (1)

Publication Number Publication Date
JPS59230168A true JPS59230168A (en) 1984-12-24

Family

ID=14401636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105222A Pending JPS59230168A (en) 1983-06-13 1983-06-13 Current measuring circuit of dc converting device

Country Status (1)

Country Link
JP (1) JPS59230168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018404A (en) * 2019-05-15 2019-07-16 哈尔滨理工大学 Air reactor insulation in-circuit diagnostic system and its diagnostic method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871274A (en) * 1971-12-24 1973-09-27
JPS5544996A (en) * 1978-09-26 1980-03-29 Siemens Ag Current detecting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871274A (en) * 1971-12-24 1973-09-27
JPS5544996A (en) * 1978-09-26 1980-03-29 Siemens Ag Current detecting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018404A (en) * 2019-05-15 2019-07-16 哈尔滨理工大学 Air reactor insulation in-circuit diagnostic system and its diagnostic method

Similar Documents

Publication Publication Date Title
EP2115863A1 (en) Load current detection in electrical power converters
WO2017119125A1 (en) Insulation resistance measurement device
JPS59230168A (en) Current measuring circuit of dc converting device
TWI375394B (en) Three-phase/single-phase power conversion equipment
JPS59230169A (en) Direct current measuring circuit of dc converting device
JPH09247944A (en) Pwm control self-excited rectifier
Oguchi et al. Asymmetrical nine-phase voltage step-up/down diode rectifiers with 18-step input currents
Cham et al. The ANSI 49 rectifier with phase shift
JPS6023736Y2 (en) Current detection device for power conversion circuit
JP5061343B2 (en) Power conversion control method
JP5309500B2 (en) Power supply device and method for determining phase loss thereof
Ghatak et al. Comparative analysis of parallel operation of two three phase systems with and without Interphase transformer
JPH0682137B2 (en) Power detection circuit
KR19980054431A (en) Converter current / voltage controller
JP2509890B2 (en) Pulse width modulation control method for AC / DC converter
JPH08251816A (en) Current-transformer circuit
SU1345295A2 (en) Three-phase annular phase detector
JPH02140669A (en) Testing device for current transformer
JP2004120878A (en) Transformer and rectifier using this transformer
GB1577558A (en) Filter supply circuit in an electrical protection device
JPH0532978B2 (en)
SU1335889A1 (en) Device for measuring load and power in three-phase current system
JPH08256431A (en) Stationary inrush suppressor
JPH10210760A (en) Control method for inverter for power generation by sun ray
JP2003088127A (en) Power converter