JPH10210760A - Control method for inverter for power generation by sun ray - Google Patents

Control method for inverter for power generation by sun ray

Info

Publication number
JPH10210760A
JPH10210760A JP9008124A JP812497A JPH10210760A JP H10210760 A JPH10210760 A JP H10210760A JP 9008124 A JP9008124 A JP 9008124A JP 812497 A JP812497 A JP 812497A JP H10210760 A JPH10210760 A JP H10210760A
Authority
JP
Japan
Prior art keywords
inverter
output
transformer
current
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9008124A
Other languages
Japanese (ja)
Other versions
JP3427656B2 (en
Inventor
Osamu Enomoto
修 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP00812497A priority Critical patent/JP3427656B2/en
Publication of JPH10210760A publication Critical patent/JPH10210760A/en
Application granted granted Critical
Publication of JP3427656B2 publication Critical patent/JP3427656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the biased magnetization of a transformer, in a sun ray power generation system which supplies load with the output voltage of an inverter whose input is the output of a solar battery through the above transformer. SOLUTION: The formation of the output voltage of an inverter is performed by the PWM control which performs the comparison between a triangular wave carriage signal and a new sine wave command signal which is obtained by adding the output of an ACR 34, which receives the input of the deviation between the detection signal IINV of the inverter output current by CT1 and the detection signal IAC of a load current by CT2, to a modified sine wave command signal being obtained by adding the output of an instantaneous AVR 33, which receives the input of the deviation between a command signal and the detection signal VAC of load voltage by PT, to the sine wave command signal which constitutes the reference of the load voltage, being outputted by a sine wave generator 32. Then, DC components within the output current of an inverter which causes the biased magnetization of the transformer are removed, and the increase of the resonance current in an LC resonance system on output side of the transformer is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池の出力
を受けこれを所定の交流に変換するインバータの出力電
圧を変圧器を介して適当な電圧に変圧し負荷に給電する
太陽光発電系において、前記変圧器の偏磁を防止し同変
圧器とその出力側コンデンサ間の共振電流の低減を図る
太陽光発電用インバータの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system for converting an output voltage of an inverter which receives an output of a solar cell into a predetermined alternating current to an appropriate voltage via a transformer and feeds the load to a load. The present invention also relates to a method for controlling a photovoltaic power generation inverter for preventing the transformer from being demagnetized and reducing the resonance current between the transformer and its output-side capacitor.

【0002】[0002]

【従来の技術】従来のこの種の太陽光発電系におけるイ
ンバータ制御としては図3に例示する制御ブロック図の
如く行われるものが知られている。なお、図4の主回路
図は、図3に示す太陽光発電系が外部交流電源系と負荷
を共通として並列運転するか、或いは、前記両電源系が
それぞれ単独に前記負荷に給電するか、何れの運転も可
能な如く構成された主回路の例示である。
2. Description of the Related Art As a conventional inverter control in this type of photovoltaic power generation system, there is known an inverter control performed as shown in a control block diagram illustrated in FIG. In addition, the main circuit diagram of FIG. 4 shows whether the solar power generation system shown in FIG. 3 operates in parallel with the external AC power supply system and the load in common, or whether the two power supply systems individually supply power to the load, It is an example of a main circuit configured so that any operation is possible.

【0003】先ず、図4の主回路図において、1は太陽
電池、2Aはインバータ装置、3は商用電源等の外部交
流電源、4は負荷である。ここに、インバータ装置2A
において、21は太陽電池1の直流出力を受けこれを所
定の電圧と周波数を有する交流に変換するインバータ、
22はインバータ21の出力電圧を所要の負荷給電用電
圧に変換する変圧器、23はリアクトル、24は変圧器
22を経由したインバータ21の出力平滑用のコンデン
サ、25はインバータ出力平滑系に発生する共振電流抑
制用の制動抵抗である。
First, in the main circuit diagram of FIG. 4, 1 is a solar cell, 2A is an inverter device, 3 is an external AC power supply such as a commercial power supply, and 4 is a load. Here, the inverter device 2A
, 21 is an inverter that receives the DC output of the solar cell 1 and converts it into an AC having a predetermined voltage and frequency.
22 is a transformer for converting the output voltage of the inverter 21 into a required load power supply voltage, 23 is a reactor, 24 is a capacitor for smoothing the output of the inverter 21 via the transformer 22, 25 is generated in an inverter output smoothing system. This is a braking resistor for suppressing the resonance current.

【0004】また、MCは外部交流電源3とインバータ
21等から成る前記の太陽光発電系との並列運転用の電
磁接触器、COSは前記太陽光発電系と外部交流電源3
とがそれぞれ単独に負荷4に給電する場合の給電経路切
替え用の切替開閉器であり、CB1 〜CB3 は遮断器で
ある。即ち、電磁接触器MCを開路し、切替開閉器CO
Sを変圧器22の出力側にて閉路すれば前記太陽光発電
系による負荷4への単独給電となり、また、前記MCを
開路し、前記COSを外部交流電源3側にて閉路すれば
この外部交流電源3による負荷4への単独給電となり、
更に、前記のCOSを変圧器22の出力側にて閉路し前
記MCを前記の太陽光発電系と外部交流電源系との同期
状態にて閉路すればこれら太陽光発電系と外部交流電源
3両者による負荷4への給電となる。
[0004] MC is an electromagnetic contactor for parallel operation of the external AC power supply 3 and the photovoltaic power generation system including an inverter 21 and the like, and COS is the photovoltaic power generation system and the external AC power supply 3
And CB1 to CB3 are switching switches for switching the power supply path when power is independently supplied to the load 4. That is, the electromagnetic contactor MC is opened, and the switching switch CO
When S is closed at the output side of the transformer 22, the solar power generation system supplies power to the load 4 alone, and when the MC is opened and the COS is closed on the side of the external AC power supply 3, the external power is supplied. The AC power supply 3 supplies power to the load 4 alone,
Further, if the COS is closed at the output side of the transformer 22 and the MC is closed in a synchronized state between the photovoltaic power generation system and the external AC power supply system, both the photovoltaic power generation system and the external AC power supply 3 are used. To the load 4.

【0005】なお、前記の太陽光発電系は外部交流電源
3との並列運転を行うために、インバータ21は、その
出力周波数と変圧器22で変圧される出力電圧において
外部交流電源3と等しくなる如く制御される。次に、図
3の制御ブロック図は、図4に示す太陽光発電系主回路
のインバータ21に対する制御系の構成を示すものであ
る。従って、図3に示す主回路要素に関する説明は図4
の場合と同一であり、ここでは省略する。
Since the photovoltaic power generation system operates in parallel with the external AC power supply 3, the inverter 21 becomes equal to the external AC power supply 3 at the output frequency and the output voltage transformed by the transformer 22. It is controlled as follows. Next, the control block diagram of FIG. 3 shows a configuration of a control system for the inverter 21 of the photovoltaic power generation system main circuit shown in FIG. Therefore, the description of the main circuit elements shown in FIG.
And is omitted here.

【0006】図3において、λ設定器31はPWM制御
(パルス幅変調制御)における制御パラメータであるλ
を設定するものである。ここに、パラメータλはインバ
ータの所要の出力電圧とその振幅が比例し周波数が同一
である正弦波指令信号の振幅VM と三角波搬送信号の振
幅VC との比(λ=VM /VC )で規定される。また、
オフセット設定器38は変圧器22の偏磁成分をなすイ
ンバータ出力中の直流分を消滅させるために前記正弦波
指令信号の零レベル移行幅を設定するものであり、正弦
波発生器32は前記パラメータλにより指定された振幅
を有し且つ前記設定器38により指定された幅の零レベ
ル移行がなされた正弦波を前記のPWM制御における正
弦波指令信号として出力するものである。
In FIG. 3, a λ setter 31 is a control parameter λ in PWM control (pulse width modulation control).
Is set. Here, the parameter lambda is the desired output voltage and its sine wave command signal amplitude is proportional to the frequency of the same inverter amplitude V M and the ratio between the amplitude V C of the triangular wave carrier signal (lambda = V M / V C ). Also,
The offset setting unit 38 sets the zero level transition width of the sine wave command signal in order to eliminate the DC component in the output of the inverter, which constitutes the demagnetization component of the transformer 22, and the sine wave generator 32 has the parameter A sine wave having an amplitude specified by λ and having a zero-level shift having a width specified by the setting unit 38 is output as a sine wave command signal in the PWM control.

【0007】また、瞬時AVR33は、正弦波発生器3
2の出力する正弦波指令信号と計器用変圧器PTにより
検出された負荷電圧VACとの偏差を入力としこの偏差の
修正指令を前記正弦波指令信号の各波形毎に出力する瞬
時動作形の自動電圧調整器であって、前記の電圧偏差修
正指令は正弦波発生器32の出力する正弦波指令信号に
加算され、新たに前記PWM制御における修正された正
弦波指令信号が形成される。
Further, the instantaneous AVR 33 includes a sine wave generator 3
As input a deviation between the load voltage V AC detected by a sine wave command signal output from the 2 and instrument transformer PT instantaneous operation type that outputs a correction instruction for the deviation for each waveform of the sine-wave command signal In the automatic voltage regulator, the voltage deviation correction command is added to a sine wave command signal output from the sine wave generator 32, and a corrected sine wave command signal in the PWM control is newly formed.

【0008】次に、三角波発生器35は前記パラメータ
λにより規定された振幅を有し所定の搬送周波数にて変
化する三角波搬送信号をPWM制御における前記正弦波
指令信号に対する比較信号として出力するものである。
また、PWM36はパルス幅変調制御回路であって、前
記の正弦波指令信号と三角波搬送信号との大小比較演算
の結果に従い各パルス幅が変調されたパルス列をインバ
ータ21に入力される太陽電池出力直流電圧の断続基本
信号として出力するものである。
Next, the triangular wave generator 35 outputs a triangular wave carrier signal having an amplitude defined by the parameter λ and changing at a predetermined carrier frequency as a comparison signal with respect to the sine wave command signal in PWM control. is there.
Further, a PWM 36 is a pulse width modulation control circuit, which converts a pulse train whose pulse width is modulated in accordance with the result of the magnitude comparison operation between the sine wave command signal and the triangular wave carrier signal into a solar cell output DC input to the inverter 21. This is output as a voltage intermittent basic signal.

【0009】更に、ゲート信号分配器37は前記PWM
回路の出力するパルス幅変調されたパルス列をインバー
タ21の出力相数に従う電気的位相差,例えば3相出力
時には電気角120度,の各相間位相差を有する3組の
パルス列に変成し、前記インバータ主回路における各相
スイッチング素子に対する断続制御信号として出力する
ものである。
Further, the gate signal distributor 37 is provided with the PWM
The pulse train modulated by the pulse width output from the circuit is transformed into three sets of pulse trains having an electrical phase difference according to the number of output phases of the inverter 21, for example, an electrical angle of 120 degrees when outputting three phases. This is output as an intermittent control signal for each phase switching element in the main circuit.

【0010】[0010]

【発明が解決しようとする課題】一般に、変圧器の偏磁
はその巻線を通過し鉄心励磁電流となる交流電流に直流
分が重畳することに起因して発生する。この励磁電流中
の直流分はその重畳方向の励磁を強めて鉄心励磁におけ
る対称性を崩して変圧器2次出力電圧の波形を歪ませ
る。即ち、変圧器2次出力電圧における高調波成分発生
の原因をなす。
Generally, the magnetizing of a transformer is caused by the superposition of a direct current component on an alternating current which passes through the windings and becomes an iron core exciting current. The direct current component in the exciting current strengthens the excitation in the superimposing direction, breaks the symmetry in the core excitation, and distorts the waveform of the transformer secondary output voltage. That is, it causes the generation of harmonic components in the secondary output voltage of the transformer.

【0011】なお、本発明に関しては、前記の変圧器励
磁電流はその1次側交流電流である太陽電池出力変換用
インバータの出力電流である。一方、前記の如く従来の
太陽光発電用インバータの制御方法は、前記λ設定器に
よる振幅指定と、前記オフセット設定器により,変圧器
偏磁の原因をなす前記インバータ出力電流中の直流分に
よる零レベル移行幅に対応するオフセット設定と、に従
いその振幅方向に非対称に形成された正弦波指令信号に
対し負荷電圧を等しくする如く制御を行うものである。
なお、前記の負荷電圧の形成要因をなす負荷電流状態を
前記正弦波指令信号の形成に配慮することは行われてい
ない。
In the present invention, the transformer exciting current is an output current of a solar cell output conversion inverter which is a primary alternating current. On the other hand, as described above, the conventional method of controlling an inverter for photovoltaic power generation uses an amplitude designation by the λ setting device and a zero by the DC component in the inverter output current, which causes a transformer demagnetization, by the offset setting device. In accordance with the offset setting corresponding to the level shift width, control is performed so that the load voltage is equal to a sine wave command signal formed asymmetrically in the amplitude direction according to the offset setting.
Note that no consideration is given to the formation of the sine wave command signal for the state of the load current that forms the load voltage.

【0012】しかしながら、前記の変圧器偏磁の原因を
なすインバータ出力電流中の直流分は、インバータ主回
路のブリッジ構成における上下各アーム素子のスイッチ
ング特性の差異或いはスイッチング指令信号系の時間特
性の差異等に起因して発生するものであり、その大きさ
は前記インバータの負荷状態或いは入力電圧の変動に伴
って変化し、一定値ではない。
However, the DC component in the inverter output current, which causes the transformer demagnetization, depends on the difference in switching characteristics between the upper and lower arm elements in the bridge configuration of the inverter main circuit or the difference in time characteristics in the switching command signal system. And the magnitude thereof changes according to the load state of the inverter or the fluctuation of the input voltage, and is not a constant value.

【0013】従って、インバータ出力電流中の直流分を
一定と見做し前記正弦波指令信号に対する零レベル移行
幅を定値となす固定オフセット設定を行う従来の制御方
法では、負荷状態の変化或いは入力電圧の変動に伴うオ
フセットレベルの変化に対応することが出来ず、変圧器
2次出力電圧の波形歪みとこれに伴う2次側高調波の発
生を来し、更に、変圧器洩れリアクタンスと出力平滑用
コンデンサとで形成するLC共振系における前記高調波
による共振電流の増大を招く危険があった。
Therefore, in the conventional control method in which the DC component in the inverter output current is regarded as constant and the fixed offset is set so that the zero level transition width with respect to the sine wave command signal becomes a constant value, the change in the load state or the input voltage Cannot cope with the change of the offset level due to the fluctuation of the output voltage, resulting in the waveform distortion of the secondary output voltage of the transformer and the generation of the secondary harmonics, and also the leakage reactance and the output smoothing of the transformer. There is a danger that the harmonic current in the LC resonance system formed with the capacitor increases due to the harmonics.

【0014】上記に鑑みこの発明は、太陽電池の出力を
受けてこれを所定の交流に変換するインバータの出力電
圧を変圧器を介して適当な電圧に変圧し負荷に給電する
太陽光発電系において、前記変圧器の偏磁を防止すると
共に,同変圧器とその出力側コンデンサ間の共振電流の
低減を図るインバータ制御方法の提供を目的とするもの
である。
In view of the above, the present invention relates to a photovoltaic power generation system which receives an output of a solar cell and converts the output to a predetermined AC, converts the output voltage of the inverter to an appropriate voltage via a transformer, and supplies the voltage to a load. It is another object of the present invention to provide an inverter control method for preventing the transformer from being demagnetized and reducing the resonance current between the transformer and an output-side capacitor thereof.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、この発明の太陽光発電用インバータの制御方法にお
いて、 1)請求項1の発明は、太陽電池の直流出力を受けてこ
れを所定の交流に変換するインバータと、このインバー
タの出力電圧を所要の負荷給電用電圧に変換する変圧器
と、この変圧器の2次側に設けられた変圧器出力平滑用
コンデンサとを以て構成された太陽光発電系における前
記インバータに対して、所要負荷電圧とその振幅が比例
し且つその周波数が同一の正弦波指令信号と前記負荷電
圧の検出信号との間の偏差を入力とし前記指令信号の各
波毎にその波形修正信号を出力する瞬時動作形自動電圧
調整手段の出力を前記指令信号に加算して得た修正され
た正弦波指令信号と三角波搬送信号との比較によるパル
ス幅変調制御を行い、インバータ出力電圧制御を介し前
記負荷電圧をその所要値に維持する如く回路構成された
太陽光発電系における前記インバータの制御方法におい
て、前記インバータと変圧器間におけるインバータ出力
電流の検出手段と、前記平滑用コンデンサと負荷間にお
ける負荷電流の検出手段と、検出された前記のインバー
タ出力電流と変圧比換算された前記負荷電流との間の偏
差をその入力とする自動電流調整手段と、を設け、この
自動電流調整手段の出力信号を前記のパルス幅変調制御
における修正された正弦波指令信号に対する加算補正信
号となすものとする。
To achieve the above object, the present invention provides a method for controlling an inverter for photovoltaic power generation according to the present invention. 1) The invention according to claim 1 receives a DC output of a solar cell and controls An inverter for converting the output voltage of the inverter into an AC voltage, a transformer for converting an output voltage of the inverter into a required load power supply voltage, and a transformer output smoothing capacitor provided on a secondary side of the transformer. With respect to the inverter in the photovoltaic power generation system, a deviation between a sine wave command signal having a required load voltage and its amplitude proportional and having the same frequency and a detection signal of the load voltage is input and each wave of the command signal is inputted. A pulse width modulation system based on a comparison between a corrected sine wave command signal obtained by adding an output of an instantaneous operation type automatic voltage adjusting means for outputting a waveform correction signal every time to the command signal and a triangular carrier signal. And controlling the inverter in a photovoltaic power generation system configured to maintain the load voltage at the required value through inverter output voltage control. The method for detecting an inverter output current between the inverter and a transformer And a load current detecting means between the smoothing capacitor and the load, an automatic current adjusting means having a deviation between the detected inverter output current and the load current converted into a transform ratio as its input, And the output signal of the automatic current adjusting means is used as an addition correction signal to the corrected sine wave command signal in the pulse width modulation control.

【0016】2)請求項2の発明は、請求項1記載の太
陽光発電用インバータの制御方法において、前記インバ
ータ出力電流の検出手段を、ホール素子をその基本要素
とするホール素子形変流器となすものとする。 3)請求項3の発明は、請求項1記載の太陽光発電用イ
ンバータの制御方法において、前記インバータ出力電流
の検出手段を分流器をその基本要素として構成するもの
とする。
According to a second aspect of the present invention, in the method of controlling an inverter for photovoltaic power generation according to the first aspect, a Hall element type current transformer including a Hall element as a basic element of the inverter output current detecting means. And 3) The invention according to claim 3 is the method of controlling an inverter for photovoltaic power generation according to claim 1, wherein the means for detecting the inverter output current is constituted by a shunt as its basic element.

【0017】上記の如くこの発明は、インバータ出力電
流と変圧比換算された負荷電流間の偏差として、前記の
インバータ出力電流中の直流分と変圧器出力側において
形成されるLC共振系における共振電流との両者の合成
状態を検出し、この検出値を自動電流調整器を介して量
的及び時間的に適値となされた電流分補正信号として変
成し、この電流分補正信号を正弦波発生器の出力する正
弦波指令信号に対して前記の電圧分補正信号と共に加算
して得た修正された正弦波指令信号を基準としたPWM
制御を行ってインバータ出力電圧の形成を行うことによ
り、前記変圧器偏磁の原因をなすインバータ出力電流中
の直流分と、前記偏磁による波形歪みに起因する高調波
による前記LC共振系共振電流との両者の低減或いは除
去を図るものである。
As described above, the present invention relates to a DC component in the inverter output current and a resonance current in an LC resonance system formed on the transformer output side, as a deviation between the inverter output current and the load current converted into a transformer ratio. Detects the combined state of the two, and transforms the detected value as a current component correction signal that is quantitatively and temporally appropriate through an automatic current regulator, and converts this current component correction signal to a sine wave generator. PWM based on the corrected sine wave command signal obtained by adding the sine wave command signal output by
By performing control to form an inverter output voltage, the DC component in the inverter output current that causes the transformer demagnetization and the LC resonance system resonance current due to harmonics resulting from waveform distortion due to the demagnetization To reduce or eliminate both.

【0018】更にまた、請求項2或いは請求項3による
如く、直流分を含む前記インバータ出力電流の検出手段
として、ホール素子形変流器、或いは分流器をその基本
要素として演算増幅器等を以て構成した分流器形を用い
ることにより、直流分含有の如何を問わず正確な電流検
出を図っている。
Further, as a means for detecting the inverter output current including a direct current component, a Hall element type current transformer or a current divider is constituted by an operational amplifier or the like as a basic element. By using the shunt type, accurate current detection is achieved regardless of whether the DC component is contained.

【0019】[0019]

【発明の実施の形態】以下この発明の実施例を図1の制
御ブロック図と図2の主回路図とに従い説明する。な
お、図1と図2及び従来技術の実施例を示す前述の図3
と図4とにおいては、同一機能の構成要素に対しては同
一の表示符号を付している。先ず、図2に示す太陽光発
電系の主回路図は、前記図4と比較し、インバータ21
と変圧器22との間に設けたインバータ出力電流検出用
の変流器CT1 と、COSを介し変圧器22と負荷4と
の間に設けた負荷電流検出用の変流器CT2とを加える
と共に各CTの出力をインバータ21に印加し、更にコ
ンデンサ24に直列接続された共振電流抑制用の抵抗2
5を削除した構成をなすものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to a control block diagram of FIG. 1 and a main circuit diagram of FIG. 1 and 2 and FIG. 3 showing an embodiment of the prior art.
4 and FIG. 4, the same reference numerals are given to the components having the same functions. First, the main circuit diagram of the photovoltaic power generation system shown in FIG.
And a current transformer CT1 provided between the transformer 22 and the load 4 for detecting the output current of the inverter, and a current transformer CT2 provided between the transformer 22 and the load 4 via the COS. The output of each CT is applied to an inverter 21, and a resistor 2 for suppressing a resonance current connected in series to a capacitor 24.
5 is omitted.

【0020】次に、図1の制御ブロック図は、前記図2
の主回路図における変更を受け前記図3と比較すれば、
変流器CT1 によるインバータ出力電流の検出信号I
INV と変流器CT2 による負荷電流の検出信号IACとの
偏差(IAC−IINV )を入力とする自動電流調整器であ
るACR34を設けると共に、正弦波発生器32と瞬時
AVR33両者の出力の和として形成される正弦波指令
信号に対してACR34の出力を加算することにより、
インバータ出力電圧形成用のPWM制御における新たな
修正された正弦波指令信号を得る構成をなすものであ
る。
Next, the control block diagram of FIG.
In response to the change in the main circuit diagram of FIG.
Inverter output current detection signal I by current transformer CT1
An automatic current regulator (ACR) 34 is provided for inputting a deviation (I AC -I INV ) between INV and the load current detection signal I AC by the current transformer CT 2, and outputs both the sine wave generator 32 and the instantaneous AVR 33. By adding the output of the ACR 34 to the sine wave command signal formed as the sum of
It is configured to obtain a new and modified sine wave command signal in PWM control for forming an inverter output voltage.

【0021】即ち、前記正弦波指令信号に対して前記電
流偏差(IAC−IINV )に対応する電流分補正を行うこ
とにより、インバータの運転状態に従って不規則に変化
して変圧器偏磁の原因をなすインバータ出力電流中の直
流分に追従しインバータ出力電圧における零レベル移行
幅を自動的に適値に選定する自動オフセット設定動作が
可能となり、前記インバータ出力電流中の直流分の低減
に伴う変圧器2次出力電圧の波形歪みが低減或いは除去
され、また、これに伴い、前記変圧器2次出力電圧にお
ける含有高調波分も低減或いは除去されて、変圧器洩れ
リアクタンスと平滑用コンデンサとで形成するLC共振
系における前記高調波による共振電流も低減或いは除去
されることになる。
That is, by correcting the sine wave command signal by a current corresponding to the current deviation (I AC −I INV ), the sine wave command signal changes irregularly in accordance with the operation state of the inverter, and the transformer demagnetization. The automatic offset setting operation that follows the direct current component in the inverter output current and automatically selects the zero level shift width in the inverter output voltage to an appropriate value becomes possible, and the reduction of the direct current component in the inverter output current is possible. The waveform distortion of the secondary output voltage of the transformer is reduced or eliminated, and the harmonic content contained in the secondary output voltage of the transformer is also reduced or eliminated, thereby reducing the transformer leakage reactance and the smoothing capacitor. The resonance current due to the harmonics in the LC resonance system to be formed is also reduced or eliminated.

【0022】更に、その回路構成を図示するものではな
いが、電流検出手段として図1或いは図2に示す各CT
の内容は、ホール素子を基本検出素子としこれに所要の
演算増幅器を組み合わせて構成したホール素子形変流
器、或いは、分流器をその基本検出要素としこれに所要
の演算増幅器を組み合わせて構成した分流器形変流器で
ある。
Although the circuit configuration is not shown, each of the CTs shown in FIG.
The content of is that a Hall element type current transformer in which a Hall element is used as a basic detection element and a required operational amplifier is combined with the Hall element type current transformer, or a shunt is used as a basic detection element and a required operational amplifier is combined with the element. It is a shunt type current transformer.

【0023】[0023]

【発明の効果】この発明によれば、太陽電池の出力を受
けてこれを所定の交流に変換するインバータと、このイ
ンバータの出力電圧を所要の負荷給電用電圧に変換する
変圧器と、変圧器出力平滑用コンデンサとを以て構成さ
れた太陽光発電系における前記インバータに対して、所
要の負荷電圧とその振幅が比例し且つその周波数が同一
の正弦波指令信号と前記負荷電圧の検出信号間の偏差を
入力とする瞬時動作形の自動電圧調整手段の出力を前記
正弦波指令信号の各波毎に加算して得た修正された正弦
波指令信号と三角波搬送信号との比較によるパルス幅変
調(PWM)制御を行う前記インバータの制御方法にお
いて、請求項1の如く、前記インバータの出力電流の検
出信号と前記変圧器の変圧比により換算された前記負荷
電流の検出信号間の偏差をその入力とする自動電流調整
手段の出力信号を前記の正弦波指令信号に加算し、前記
PWM制御において三角波搬送信号と比較すべき正弦波
指令信号に対し前記電流偏差に対応する電流分補正を行
うことにより、変圧器偏磁の原因をなすインバータ出力
電流中の直流分の変化に追従しインバータ出力電圧にお
ける零レベル移行幅を自動的に適値に選定する自動オフ
セット設定動作が可能となり、前記の如き直流分の低減
に伴う変圧器2次出力電圧の波形歪みが低減或いは除去
され、これに伴い変圧器2次出力電圧における含有高調
波分も低減或いは除去され、従って、変圧器洩れリアク
タンスと平滑用コンデンサとで形成するLC共振系にお
ける前記高調波による共振電流も低減或いは除去される
ことになる。更に、請求項2或いは請求項3の如く、直
流分を含むインバータ出力電流の検出手段として、ホー
ル素子形変流器、或いは分流器をその基本要素として演
算増幅器等を以て構成した分流器形を用いることによっ
て、直流電流或いは高調波電流を含めて正確な電流検出
を行うことが可能となる。
According to the present invention, an inverter which receives an output of a solar cell and converts it into a predetermined alternating current, a transformer which converts an output voltage of the inverter into a required load power supply voltage, and a transformer For the inverter in a photovoltaic power generation system configured with an output smoothing capacitor, a deviation between a required load voltage and a sine wave command signal whose amplitude is proportional and whose frequency is the same and a detection signal of the load voltage. Pulse width modulation (PWM) by comparing the corrected sine wave command signal obtained by adding the output of the instantaneous operation type automatic voltage adjusting means having the 2.) In the method of controlling an inverter according to claim 1, wherein between the detection signal of the output current of the inverter and the detection signal of the load current converted based on a transformation ratio of the transformer. The output signal of the automatic current adjusting means having the deviation as its input is added to the sine wave command signal, and the sine wave command signal to be compared with the triangular wave carrier signal in the PWM control is corrected by a current corresponding to the current deviation. By performing the above, it is possible to perform an automatic offset setting operation that follows a change in the DC component in the inverter output current that causes the transformer demagnetization and automatically selects an appropriate zero-level transition width in the inverter output voltage. As described above, the waveform distortion of the secondary output voltage of the transformer accompanying the reduction of the DC component is reduced or eliminated, and the harmonic content contained in the secondary output voltage of the transformer is also reduced or eliminated. Accordingly, the transformer leakage reactance is reduced. Also, the resonance current due to the harmonic in the LC resonance system formed by the capacitor and the smoothing capacitor is reduced or eliminated. Further, as a means for detecting an inverter output current including a direct current component, a Hall element type current transformer or a shunt type having an operational amplifier or the like as a basic element thereof is used as a means for detecting an inverter output current including a DC component. This makes it possible to accurately detect a current including a DC current or a harmonic current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す制御ブロック図FIG. 1 is a control block diagram showing an embodiment of the present invention.

【図2】この発明の実施例を示す主回路図FIG. 2 is a main circuit diagram showing an embodiment of the present invention.

【図3】従来技術の実施例を示す制御ブロック図FIG. 3 is a control block diagram showing an embodiment of the prior art.

【図4】従来技術の実施例を示す主回路図FIG. 4 is a main circuit diagram showing an embodiment of the prior art.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 インバータ装置 2A インバータ装置 3 外部交流電源 4 負荷 21 インバータ 22 変圧器 23 リアクトル 24 コンデンサ 25 抵抗 31 λ設定器 32 正弦波発生器 33 瞬時AVR(瞬時動作形自動電圧調整器) 34 ACR(自動電流調整器) 35 三角波発生器 36 PWM(パルス幅変調制御回路) 37 ゲート信号分配器 38 オフセット設定器 CBn 遮断器(n=1〜3) COS 切替開閉器 CTn 計器用変流器(n=1,2) MC 電磁接触器 PT 計器用変圧器DESCRIPTION OF SYMBOLS 1 Solar cell 2 Inverter device 2A Inverter device 3 External AC power supply 4 Load 21 Inverter 22 Transformer 23 Reactor 24 Capacitor 25 Resistance 31 λ setting device 32 Sine wave generator 33 Instantaneous AVR (instantaneous operation type automatic voltage regulator) 34 ACR ( Automatic current regulator) 35 Triangular wave generator 36 PWM (pulse width modulation control circuit) 37 Gate signal distributor 38 Offset setting device CB n breaker (n = 1 to 3) COS switching switch CT n current transformer for instrument ( n = 1,2) MC Magnetic contactor PT Transformer for instrument

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の直流出力を受けてこれを所定の
交流に変換するインバータと、このインバータの出力電
圧を所要の負荷給電用電圧に変換する変圧器と、この変
圧器の2次側に設けられた変圧器出力平滑用コンデンサ
とを以て構成された太陽光発電系における前記インバー
タに対し、所要負荷電圧とその振幅が比例し且つその周
波数が同一の正弦波指令信号と前記負荷電圧の検出信号
との間の偏差を入力とし前記指令信号の各波毎にその波
形修正信号を出力する瞬時動作形自動電圧調整手段の出
力を前記指令信号に加算して得た修正された正弦波指令
信号と三角波搬送信号との比較によるパルス幅変調制御
を行い、インバータ出力電圧制御を介し前記負荷電圧を
その所要値に維持する如く回路構成された太陽光発電系
における前記インバータの制御方法において、前記のイ
ンバータと変圧器間におけるインバータ出力電流の検出
手段と、前記の平滑用コンデンサと負荷間における負荷
電流の検出手段と、検出された前記のインバータ出力電
流と変圧比換算された前記負荷電流との間の偏差をその
入力とする自動電流調整手段と、を設け、この自動電流
調整手段の出力信号を前記のパルス幅変調制御における
修正された正弦波指令信号に対する加算補正信号となす
ことを特徴とする太陽光発電用インバータの制御方法。
An inverter for receiving a DC output of a solar cell and converting it into a predetermined AC, a transformer for converting an output voltage of the inverter into a required load power supply voltage, and a secondary side of the transformer And a detection of the load voltage and a sine wave command signal whose amplitude is proportional to the required load voltage and whose frequency is the same with respect to the inverter in the photovoltaic power generation system having the transformer output smoothing capacitor provided in A modified sine wave command signal obtained by adding to the command signal the output of the instantaneous operation type automatic voltage adjusting means for inputting a deviation from the signal and outputting a waveform correction signal for each wave of the command signal. And a triangular wave carrier signal to perform pulse width modulation control, and the inverter in the photovoltaic power generation system configured to maintain the load voltage at the required value through inverter output voltage control. In the method of controlling a motor, the inverter output current detecting means between the inverter and the transformer, the load current detecting means between the smoothing capacitor and the load, the detected inverter output current and the transformer ratio Automatic current adjusting means having as its input a deviation from the converted load current, and adding an output signal of the automatic current adjusting means to the corrected sine wave command signal in the pulse width modulation control. A method for controlling an inverter for photovoltaic power generation, wherein the method is used as a correction signal.
【請求項2】請求項1記載の太陽光発電用インバータの
制御方法において、前記インバータ出力電流の検出手段
を、ホール素子をその基本要素とするホール素子形変流
器とすることを特徴とする太陽光発電用インバータの制
御方法。
2. The method for controlling an inverter for photovoltaic power generation according to claim 1, wherein said means for detecting the inverter output current is a Hall element type current transformer having a Hall element as its basic element. How to control a solar power inverter.
【請求項3】請求項1記載の太陽光発電用インバータの
制御方法において、前記インバータ出力電流の検出手段
を、分流器をその基本要素として構成したことを特徴と
する太陽光発電用インバータの制御方法。
3. The method for controlling an inverter for photovoltaic power generation according to claim 1, wherein said means for detecting the output current of said inverter comprises a shunt as its basic element. Method.
JP00812497A 1997-01-21 1997-01-21 Control method of inverter for photovoltaic power generation Expired - Fee Related JP3427656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00812497A JP3427656B2 (en) 1997-01-21 1997-01-21 Control method of inverter for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00812497A JP3427656B2 (en) 1997-01-21 1997-01-21 Control method of inverter for photovoltaic power generation

Publications (2)

Publication Number Publication Date
JPH10210760A true JPH10210760A (en) 1998-08-07
JP3427656B2 JP3427656B2 (en) 2003-07-22

Family

ID=11684552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00812497A Expired - Fee Related JP3427656B2 (en) 1997-01-21 1997-01-21 Control method of inverter for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP3427656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288437A (en) * 2009-05-13 2010-12-24 Meidensha Corp Control method for power converting device, uninterruptible power supply device, and parallel instantaneous-voltage-drop compensation device
JP2013233005A (en) * 2012-04-27 2013-11-14 Toshiba Mitsubishi-Electric Industrial System Corp Control method of power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288437A (en) * 2009-05-13 2010-12-24 Meidensha Corp Control method for power converting device, uninterruptible power supply device, and parallel instantaneous-voltage-drop compensation device
JP2013233005A (en) * 2012-04-27 2013-11-14 Toshiba Mitsubishi-Electric Industrial System Corp Control method of power converter

Also Published As

Publication number Publication date
JP3427656B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
Jussila et al. Comparison of simple control strategies of space-vector modulated indirect matrix converter under distorted supply voltage
JP2526992B2 (en) AC output converter parallel operation system
JPH08503117A (en) Synchronous conversion control type active power line regulator
Le Roux et al. Integrated active rectifier and power quality compensator with reduced current measurement
JPH07163153A (en) Control method for single-phase three-wire inverter
JP2527911B2 (en) PWM converter
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
Coelho et al. Modelling and control of the single-phase dc-ac PWM converter for grid-connected applications including a loop for average primary current controlling
JPH07298627A (en) Controller for power converter
US7233081B2 (en) Power-supply device
JPH0956170A (en) Controller for inverter for system linkage
JP3070314B2 (en) Inverter output voltage compensation circuit
JPH02307374A (en) Power converter
JPH0728538B2 (en) PWM inverter control device
JP2002095256A (en) Controller for dc reactor
JPH0487572A (en) Power unit
JP2509890B2 (en) Pulse width modulation control method for AC / DC converter
Dinh et al. Observer-based nonlinear control for frequency modulated dual-active-bridge converter
JPH11225477A (en) Sine wave converter with filtering function
JPH11289775A (en) Power converter
JP3321297B2 (en) Control device for voltage source self-excited converter
De Paris et al. Third Harmonic Content Correction Technique for DCM Boost Rectifier
JPH07308072A (en) Pwm inverter
CN118100614A (en) Excitation inrush current suppression method for hybrid transformer and hybrid transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees