JPS59229460A - Method for using metal of similar composition of hard sintered alloys - Google Patents

Method for using metal of similar composition of hard sintered alloys

Info

Publication number
JPS59229460A
JPS59229460A JP10162283A JP10162283A JPS59229460A JP S59229460 A JPS59229460 A JP S59229460A JP 10162283 A JP10162283 A JP 10162283A JP 10162283 A JP10162283 A JP 10162283A JP S59229460 A JPS59229460 A JP S59229460A
Authority
JP
Japan
Prior art keywords
wear
hard
metal
hard sintered
sintered alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10162283A
Other languages
Japanese (ja)
Other versions
JPS6325065B2 (en
Inventor
Tsuneyuki Ide
恒幸 井手
Tsugio Kawamura
次男 河村
Seiichi Ohira
大平 成一
Tadao Watanabe
忠雄 渡辺
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP10162283A priority Critical patent/JPS59229460A/en
Publication of JPS59229460A publication Critical patent/JPS59229460A/en
Publication of JPS6325065B2 publication Critical patent/JPS6325065B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce wear loss under high load and no lubrication by using hard sintered alloys each consisting of iron-base composite boride as a hard phase and a metal such as Cr, Fe, Mo, W or Ti or an alloy thereof as a binding phase in the form of a metal of similar composition. CONSTITUTION:Hard sintered alloys each consisting of 35-96% iron-base composite boride as a hard phase and the balance Cr, Fe, Mo, W, Ti, V, Nb, Ta, Hf, Zr, Ni, Cu, Co, Mn or an alloy thereof as a binding phase are combined with each other and used. The combined material has sufficient wear resistance, does not damage other material, and can show superior function.

Description

【発明の詳細な説明】 本発明は鉄基複硼化物系硬質焼結合金(以下すべて硬質
焼結合金とする)の耐摩耗を目的とした使用方法、さら
に詳しくは無潤滑で高荷重Iこおける耐摩耗に適した使
用方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for using iron-based complex boride hard sintered alloys (hereinafter referred to as hard sintered alloys) for the purpose of wear resistance, and more specifically, for use in high load I without lubrication. The present invention relates to a method of use suitable for wear resistance in industrial applications.

従来、耐摩耗用部材としてよ(知られている材料はJI
SのSC,80M系の調質鋼表面に浸炭、窒化処理や硬
質クロムメッキをほどこした、いわゆる表面処理材や工
具鋼(JISのSK、 SKD、 SKH。
Conventionally, it has been used as a wear-resistant material (the known material is JI
So-called surface-treated materials and tool steels (JIS SK, SKD, SKH) that are made by carburizing, nitriding, or hard chromium plating on the surface of 80M tempered steel.

8KS系割)が挙げられる。さらに高負荷の耐摩耗用部
材としてWC基の超硬合金やTic 、  TiN基の
サーメットが挙げられ、最近ではAI!20sやZrO
2のような各種のセラミックスが脚光をあびている。
8KS system discount). Furthermore, WC-based cemented carbide, Tic, and TiN-based cermets are used as high-load wear-resistant members, and recently AI! 20s and ZrO
Various ceramics such as 2 are in the spotlight.

これらの耐摩耗部材の特徴は当然ながら材料中に含まれ
るあるいは分散した高硬度の炭化物や窒化物あるいは酸
化物粒子1とよって耐摩耗性を有したものである。その
反面、摺動する相手材の摩耗量が多いこともよく知られ
ている。
Naturally, these wear-resistant members have wear resistance due to the high hardness carbide, nitride, or oxide particles 1 contained or dispersed in the material. On the other hand, it is well known that there is a large amount of wear on the sliding mating material.

例えば典型的な摺動摩耗部品として鋼板や鋼線のガイド
やライナー類として、硬質クロムメッキ品や工具鋼が使
われさらに高耐摩耗性を要求される場合には超硬合金や
セラミックスが使用されており、ガイドやライナーの摩
、純量は少ないものの製品であるところの鋼板や鋼線を
傷つけ、摩耗させるという欠点をもあわせ持っている。
For example, hard chrome plated products and tool steel are used for typical sliding wear parts such as guides and liners for steel plates and steel wires, and when higher wear resistance is required, cemented carbide and ceramics are used. However, it also has the drawbacks of abrasion of the guide and liner, and damage and wear of the steel plate and steel wire, which are the products, although the amount is small.

また、高硬度合金同志で摺動する場合は、お互いが相手
材を摩耗させてしまうといういわゆる喧嘩状態を呈する
ようになる。したがって一般にはどちらかの硬度レベル
を犠牲にし、故意に一方を摩耗させ他方を保護するとい
う思想で行っている。
Furthermore, when high-hardness alloys slide against each other, a so-called fighting situation occurs in which each member wears out the other material. Therefore, the idea is generally to sacrifice the hardness level of one of the two, intentionally wearing out one and protecting the other.

例えば鋼板用スリッターカッターや磁気テープ用スリッ
ターカッターのような丸刃カッターの上下刃を共金で使
用した場合、高硬度超硬合金を上刃にし、下刃を低硬度
超硬合金とした絹み合わせで丸刃カッターの摩耗量を減
少するための工夫をしているのが現状である。
For example, when the upper and lower blades of a round blade cutter such as a slitter cutter for steel plates or a slitter cutter for magnetic tape are used with the same metal, the upper blade is made of high-hardness cemented carbide and the lower blade is made of low-hardness cemented carbide. Currently, efforts are being made to reduce the amount of wear on round blade cutters.

一般に同一の高硬度材同志の組み合わせ材(以下共金と
いう)は異種材料間の組み合わせ材に比較して著しく摩
耗量が増大することが知られている。この原因はけつき
りは解明されていないが、摺動面に高硬度の摩耗微粉が
発生することにより摩耗量の増大を招くためと思われる
It is generally known that a combination of the same high-hardness materials (hereinafter referred to as co-metal) has a significantly increased amount of wear compared to a combination of different materials. Although the cause of this is not clear, it is thought to be due to the generation of highly hard wear particles on the sliding surface, which leads to an increase in the amount of wear.

さらに、機械装置類の耐摩部品において、高負荷のため
ベアリングや含油軸受を使用できない軸や軸受が多い、
現状では黄銅スリーブと鋼製軸を組み合わせ、油による
強制潤滑を行うことにより耐摩耗性を持たせている。シ
リンダーとピストンから構成される機械構造においても
摺動部の摩耗を防ぐため油潤滑を施している例が多い。
Furthermore, in the wear-resistant parts of machinery and equipment, there are many shafts and bearings that cannot be used with bearings or oil-impregnated bearings due to high loads.
Currently, a brass sleeve and a steel shaft are combined, and wear resistance is achieved by forced lubrication with oil. Even in mechanical structures consisting of cylinders and pistons, oil lubrication is often applied to prevent the sliding parts from wearing out.

油潤滑は摺動摩擦による摩耗を防ぐためのいわば常套手
段であるが、潤滑油による装置類の汚れがひどい上、日
常点検の手間かかかり、強制潤滑装置では潤滑油の供給
のためのプランジャーポンプおよび配管設備のようなイ
τj帯設備費用が無視できない。
Oil lubrication is a conventional method to prevent wear caused by sliding friction, but the lubricating oil often stains the equipment, requires time-consuming daily inspections, and forced lubrication systems require plunger pumps to supply lubricating oil. In addition, the cost of equipment such as piping equipment cannot be ignored.

以上のように従来材では耐摩耗部品として使用するには
十分な機能を発揮しえない。
As described above, conventional materials cannot exhibit sufficient functionality to be used as wear-resistant parts.

そこで耐摩耗性が十分でかつ相手材を傷めず、特に共金
においてすぐれた機能を発揮しつる耐摩耗部材を鋭意研
究した。
Therefore, we conducted extensive research into a wear-resistant member that has sufficient wear resistance, does not damage the mating material, and exhibits excellent functionality, especially when used with matching metals.

以下に本発明の耐摩耗部材について詳細に説明する。The wear-resistant member of the present invention will be explained in detail below.

超硬合金の硬度、強度及び耐摩耗性に匹敵する特性に加
え耐食性と高温耐酸化性を付与できる耐摩耗)A料とし
て本発明者らは本硬質焼結合金を提案してきた(例えば
特公昭54−27818.特公昭56−8904.特公
昭56−15773)。
The present inventors have proposed this hard sintered alloy as a wear-resistant material that can provide corrosion resistance and high-temperature oxidation resistance in addition to properties comparable to the hardness, strength, and wear resistance of cemented carbide (for example, 54-27818. Special Publication No. 56-8904. Special Publication No. 56-15773).

本硬質焼結合金は、鉄基複硼化物を硬質相とし、結合相
はCr、 Fe、 Mo、 W、 Ti、 V、 Nb
、 Ta、 Hf、 Zr。
This hard sintered alloy has an iron-based complex boride as a hard phase, and a binder phase of Cr, Fe, Mo, W, Ti, V, Nb.
, Ta, Hf, Zr.

Ni 、 Cu、 Co、 Mnから選ばれた1種以上
の金属およ 3− び該金属の合金を主成分とする。
The main component is one or more metals selected from Ni, Cu, Co, and Mn, and alloys of the metals.

該硬質相は35〜96%で、かつ該鉄基複硼化物系硬質
焼結合金のB含有量は3〜2096、Fe含有量は少な
くとも10LX)以上含まれ、さらにCr。
The hard phase is 35 to 96%, and the iron-based complex boride hard sintered alloy has a B content of 3 to 2096, an Fe content of at least 10LX), and further contains Cr.

Mo、Wの1種以上が含まれる場合の範囲は各々0.1
〜50%で、門た、TI、 V、 Nb、 Ta、 H
f、 Zr、 Ni。
If one or more of Mo and W are included, the range is 0.1 each.
~50%, gate, TI, V, Nb, Ta, H
f, Zr, Ni.

Cu、 Co  およびMnのうち1種以上が含まれる
場合は各々0.01〜1596の範囲内である。その他
不可避的に含有する元素としては、AI!は396以下
、0は2.5%以下、Cは196以下で、各元素とも0
%であることが望ましいが前記範囲内であれば強度、靭
性に悪影響はない。
When one or more of Cu, Co and Mn is included, each is within the range of 0.01 to 1596. Other elements that are unavoidably contained include AI! is 396 or less, 0 is 2.5% or less, C is 196 or less, and each element is 0.
%, but within the above range there will be no adverse effect on strength and toughness.

本硬質焼結合金は液相焼結を行うため10096真密度
の焼結体であり、前記の範囲で硬質相と結合相の量の割
合を変えることにより、硬度をHRム80〜92の範囲
で変化させることができる。硬質相はB−Fe系、B−
X−Fe系、B−X−Y−Fe系(x、  yはCr、
 Mo、 W、 TI、 V、 Nb、 Ta、 Hf
、Zr。
This hard sintered alloy is a sintered body with a true density of 10096 due to liquid phase sintering, and by changing the ratio of the amount of hard phase and binder phase within the above range, the hardness can be adjusted to a range of HR 80 to 92. It can be changed with . The hard phase is B-Fe system, B-
X-Fe system, B-X-Y-Fe system (x, y are Cr,
Mo, W, TI, V, Nb, Ta, Hf
, Zr.

Ni、 Cu、 Co、 Mnを示す)の硼化物および
複硼化物で、例えばFezB 、  (re、 Cr)
zB、 MozFeB2. Mo24− (Fe、 Cr)Bz、  (Mo、 W)z(Fe、
 Cr)Bzノような金属間化合物を呈する。
borides and complex borides of Ni, Cu, Co, Mn), such as FezB, (re, Cr)
zB, MozFeB2. Mo24- (Fe, Cr)Bz, (Mo, W)z(Fe,
It exhibits intermetallic compounds such as Cr)Bz.

結合相は前記の金属および/または合金の範囲でFe基
合金とすることができ、CrやNi等添加金属の種類と
量を調整することにより、マルテンサイト、フェライト
、オーステナイト及びこれらの混合組織に変えることが
できる特徴がある。
The binder phase can be an Fe-based alloy within the range of the metals and/or alloys mentioned above, and by adjusting the type and amount of added metals such as Cr and Ni, it can be formed into martensite, ferrite, austenite, or a mixed structure thereof. There are characteristics that can be changed.

これによって、結合相をマルテンサイト基地の工具鋼的
組織から、フェライト系ステンレス、オーステナイト系
ステンレス、耐熱鋼的組織へと巾広く変化させ得るため
、本硬質焼結合金合金、は高rい硬度と高い強度、それ
に耐食性と耐熱性を合わせ持った優れた耐摩耗材料であ
る。比重は8〜8.3であり超硬合金の比重の六割弱で
軽量であり、回転体など重量を嫌う部品にも適する。
As a result, the binder phase can be changed widely from a martensite-based tool steel structure to a ferritic stainless steel, austenitic stainless steel, and heat-resistant steel structure, so this hard sintered alloy has a high hardness. It is an excellent wear-resistant material with high strength, corrosion resistance, and heat resistance. It has a specific gravity of 8 to 8.3, which is less than 60% of the specific gravity of cemented carbide, making it lightweight and suitable for parts that dislike weight, such as rotating bodies.

以下実施例について詳細に説明する。Examples will be described in detail below.

実施例1゜ 第1表に本硬質焼結合金の特性例を示す。Example 1゜ Table 1 shows examples of the properties of this hard sintered alloy.

第1表 本硬質焼結合金の特性例 第1表の本硬質焼結合金について大蛇式摩耗試験法で試
験した。比較のため耐摩耗性材料である8US440 
C、ステライト合金、超硬合金G−5(HRム89)を
試験した。相手材(回転試片)は5KH−3(HRム8
3)で荷重18.9 kgで固定試片に押し付け、すべ
り速度は0.2 m/sec 〜4.39 m/ se
eの範囲ですべり距離200mで測定した。その結果を
第1図1こ示す。
Table 1 Examples of properties of the present hard sintered alloy The present hard sintered alloys shown in Table 1 were tested using the Oroja type abrasion test method. For comparison, 8US440 is a wear-resistant material.
C, Stellite alloy, and cemented carbide G-5 (HR M89) were tested. The mating material (rotated specimen) is 5KH-3 (HR M8
3) was pressed against the fixed specimen with a load of 18.9 kg, and the sliding speed was 0.2 m/sec to 4.39 m/sec.
Measurements were made at a sliding distance of 200 m in the range of e. The results are shown in FIG.

第1図から分かるように、耐摩耗性は硬度依存性を示ず
が、5US440Cやステライト合金に比較して著しく
優れており、同一硬度では超硬合金と同じ耐摩耗性を示
す。第1図の試験結果は回転試片として8KH−3熱処
理材()IRc65 )を使用したものである。次に本
硬質焼結合金を共金として用いた場合に著しい耐摩耗効
果を発揮する。
As can be seen from FIG. 1, the wear resistance does not show hardness dependence, but is significantly superior to 5US440C and Stellite alloy, and exhibits the same wear resistance as cemented carbide at the same hardness. The test results shown in FIG. 1 are obtained using 8KH-3 heat-treated material (IRc65) as a rotating specimen. Next, when this hard sintered alloy is used as a cometal, it exhibits a remarkable wear resistance effect.

すなわち、第2図に大蛇式摩耗試験法で回転試片および
固定試片を共金とした場合の摩耗量を示す。
That is, FIG. 2 shows the amount of wear when the rotary specimen and the fixed specimen were made of the same metal in the Oroja type abrasion test method.

第2図は固定試片をC40、回転試片をV2Oにした場
合、固定試片をC40、回転試片をV2Oにした場合、
固定試片、回転試片をいずれもV2Oとした場合は回転
試片の摩耗量がいずれも零、固定試片の摩耗量も比較材
(5US440CHRc 62 )に比べて著しく少な
いという好結果を得た。
Figure 2 shows the case where the fixed specimen is C40 and the rotating specimen is V2O, the fixed specimen is C40, and the rotating specimen is V2O,
When both the fixed specimen and the rotating specimen were made of V2O, good results were obtained in that the amount of wear on the rotating specimen was zero, and the amount of wear on the fixed specimen was significantly less than that of the comparison material (5US440CHRc 62). .

本硬質焼結合金からなる本発明の組み合わせ耐摩耗材料
が何故相手材を摩耗させないのかは、おおよそ次のよう
に説明される。すなわち、硬質相を形成する複硼化物粒
子の形状が丸味をもっことと、複硼化物の自己潤滑性に
よるものと考えられる。硬質相が丸味をもった粒子であ
ることは走査型電子顕微鏡、オージェ等の手段により確
認済である。
The reason why the combined wear-resistant material of the present invention made of the hard sintered alloy does not cause wear of the mating material is roughly explained as follows. That is, it is thought that this is due to the roundness of the shape of the complex boride particles forming the hard phase and the self-lubricating property of the complex boride. It has been confirmed by means such as a scanning electron microscope and Auger that the hard phase is a rounded particle.

 7一 本硬質焼結合金が相手材を傷めないということ、共金と
して摺動部品に用いたときに摩耗量が顕著に少なくなる
という事実は、先Iζ提案した本硬質焼結合金の機械的
特性を種々調査している中で発見されたものである。
7. The fact that the hard sintered alloy does not damage the mating material and that the amount of wear is significantly reduced when used as a matching material in sliding parts is due to the mechanical properties of the hard sintered alloy proposed earlier. This was discovered during various investigations into its characteristics.

本発明の組み合わせ耐摩耗部材を前記鋼板用丸刃スリッ
ターカッター1こ用いたところ先端刃先の鋭角が長時間
維持されその寿命が著しく延びたことを確認した。
When the combined wear-resistant member of the present invention was used in one round-blade slitter cutter for steel plates, it was confirmed that the sharp angle of the cutting edge was maintained for a long time and its life was significantly extended.

さらに、油圧機器の高圧力伝達機構部の軸と軸受部萎こ
本発明の組み合わせ耐摩耗材料を組み込むこと1こより
、従来、附帯設備であった強制潤滑装置が不要となり、
メンテナンスフリーの軸−軸受となった。
Furthermore, by incorporating the combined wear-resistant material of the present invention into the shaft and bearing parts of the high pressure transmission mechanism of hydraulic equipment, forced lubrication equipment, which was conventionally ancillary equipment, becomes unnecessary.
The shaft-bearing is now maintenance-free.

また、近年注目されている海底のマンガン団鉱採取用の
スラリーポンプ類の軸−軸受にも適用が検討され、無潤
滑の有利さと海水耐食性をも付もできるメリットを市場
に提供できる。また、メタルシールリングに共金として
の使用など、その用途は広いものがある。
In addition, application to the shaft-bearings of slurry pumps for extracting manganese briquettes from the seabed, which have been attracting attention in recent years, is being considered, and the advantages of no lubrication and seawater corrosion resistance can be provided to the market. In addition, it has a wide range of uses, such as being used as a co-metal for metal seal rings.

 8− 以上のように本発明に係る組み合わせ耐摩部材は大気中
、腐食雰囲気や溶液などの腐食環境中において、さらに
は高荷重1こおける無潤滑部品において優れた技術的効
果を発揮する。
8- As described above, the combined wear-resistant member according to the present invention exhibits excellent technical effects in the atmosphere, corrosive environments such as corrosive atmospheres and solutions, and even in non-lubricated parts under high loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大蛇式摩耗試験結果を示す。 第2図は大蛇式摩耗試験法番ζよる共金の摩耗量を示す
Figure 1 shows the results of the Oroja type abrasion test. Figure 2 shows the wear amount of the matching metal according to the Oroja type wear test method No. ζ.

Claims (1)

【特許請求の範囲】[Claims] (1)  硬質相が鉄基複硼化物で35〜96%、残部
がCr、 Fe、 Mo、 ■TI、 V、 Nb、 
Ta、 Hf、 Zr、 Nl、 Cu、 Co、 M
nから選ばれる金属、あるいはこれらの合金から成る結
合相で構成された鉄基複硼化物系硬質焼結合金を組み合
わせて共金として使用する方法。
(1) The hard phase is 35-96% iron-based complex boride, the balance is Cr, Fe, Mo, ■TI, V, Nb,
Ta, Hf, Zr, Nl, Cu, Co, M
A method of using a combination of iron-based complex boride hard sintered alloys composed of a binder phase made of a metal selected from n or an alloy thereof as a co-metal.
JP10162283A 1983-06-09 1983-06-09 Method for using metal of similar composition of hard sintered alloys Granted JPS59229460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162283A JPS59229460A (en) 1983-06-09 1983-06-09 Method for using metal of similar composition of hard sintered alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162283A JPS59229460A (en) 1983-06-09 1983-06-09 Method for using metal of similar composition of hard sintered alloys

Publications (2)

Publication Number Publication Date
JPS59229460A true JPS59229460A (en) 1984-12-22
JPS6325065B2 JPS6325065B2 (en) 1988-05-24

Family

ID=14305494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162283A Granted JPS59229460A (en) 1983-06-09 1983-06-09 Method for using metal of similar composition of hard sintered alloys

Country Status (1)

Country Link
JP (1) JPS59229460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074711A (en) * 2001-09-04 2003-03-12 Keeper Co Ltd Oil seal with retainer
CN104004953A (en) * 2014-06-08 2014-08-27 湖南人文科技学院 Double-hard-phase composite reinforced boride-based metal ceramic and preparation method thereof
CN111575569A (en) * 2020-06-08 2020-08-25 长沙华脉新材料有限公司 Chromium and manganese modified Mo2FeB2Base cermet and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641575U (en) * 1992-11-19 1994-06-03 株式会社タムス Hanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074711A (en) * 2001-09-04 2003-03-12 Keeper Co Ltd Oil seal with retainer
CN104004953A (en) * 2014-06-08 2014-08-27 湖南人文科技学院 Double-hard-phase composite reinforced boride-based metal ceramic and preparation method thereof
CN111575569A (en) * 2020-06-08 2020-08-25 长沙华脉新材料有限公司 Chromium and manganese modified Mo2FeB2Base cermet and method for preparing same

Also Published As

Publication number Publication date
JPS6325065B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
Furlan et al. Self-lubricating composites containing MoS2: A review
Biddulph Boronizing for erosion resistance
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
US7967922B2 (en) Ferrous abrasion resistant sliding material
Schmidt et al. New materials resistant to wear and corrosion to 1000 C
Eyre Wear resistance of metals
Tarel’Nik et al. Increase in the reliability and durability of metal impulse end seals. Part 1
GB2285263A (en) Ferrous alloy composition
CN113373440A (en) Laser cladding powder for preparing hard strengthening layer on surface of zinc pot roller shaft sleeve
US4494988A (en) Galling and wear resistant steel alloy
Bobzin et al. Wear and corrosion resistance of Fe-based coatings reinforced by TiC particles for application in hydraulic systems
Cameron et al. Tribaloy Intermetallic Materials: New Wear‐and Corrosion‐Resistant Alloys
Eyre Wear mechanisms
JPS59229460A (en) Method for using metal of similar composition of hard sintered alloys
Singh et al. Study of dry wear behavior of Novel ferrous samples prepared by powder metallurgy method
US5540750A (en) Friction material for lubircated tribological systems
CN102392199B (en) Material-saving heat-resisting antifriction self-lubricating material
DE10300567A1 (en) Drive seal
Li Abrasive wear
Qiu et al. Preparation and tribological properties of MoS2/graphite composite coatings modified by La2O3
JPS6164838A (en) High density copper sintered alloy
JP3173998B2 (en) Alloy materials for sliding members and equipment parts
EP0953063B1 (en) Material for friction-stressed machine parts
RU2170281C2 (en) Corrosion-resistant antifriction powder iron-based material
Richard Tribocorrosion at elevated temperatures in the metal working industry