JPS59228432A - Alc circuit of transmitter - Google Patents

Alc circuit of transmitter

Info

Publication number
JPS59228432A
JPS59228432A JP10376583A JP10376583A JPS59228432A JP S59228432 A JPS59228432 A JP S59228432A JP 10376583 A JP10376583 A JP 10376583A JP 10376583 A JP10376583 A JP 10376583A JP S59228432 A JPS59228432 A JP S59228432A
Authority
JP
Japan
Prior art keywords
output
voltage
alc
circuit
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10376583A
Other languages
Japanese (ja)
Other versions
JPH0125451B2 (en
Inventor
Mitsuo Sano
光夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP10376583A priority Critical patent/JPS59228432A/en
Publication of JPS59228432A publication Critical patent/JPS59228432A/en
Publication of JPH0125451B2 publication Critical patent/JPH0125451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers

Abstract

PURPOSE:To apply automatically automatic load control at a value being a ratio of prescribed rise and fall or over by providing an automatic load control voltage generating circuit activated only with the polarity of a DC component of a high frequency voltage proportional to the root of a power of reflected wave going backward from a feeder. CONSTITUTION:A high frequency voltage epsilonR proportional to the root of the power PR of reflected wave going backward from the feeder is obtained at other output terminal of a current transformer. A DC output ER is obtained by rectifying the voltage by means of diodes D1, D2. The automatic load control is applied automatically at a ratio S of rise and fall of a prescribed signal wave or over by providing an automatic load control (ALC) voltage generating circuit X activated only at the polarity of the DC output ER and the more the ratio of rise to fall is increased, the more the automatic load control becomes effective, thereby decreasing the output.

Description

【発明の詳細な説明】 この発明は1次側に送信電力を通過し、2次側の一出力
端には進行波電力の平方根に比例する高周波電圧を、ま
た2次側の他の出力端には反射波電力の平方根に比例す
る高周波電圧を発生するCM形方向性結合器の両出力端
にそれぞれ整流ダイオードを互に逆極性出力を得るよう
に接続し、該ダイオードの出力間に接続する負荷抵抗を
2等分して進行波出力側は固定抵抗とし、反射波出力側
はポテンショメータまたはポテンショメータと固定抵抗
を直列に接続した抵抗網とし、該ポテンシ。
Detailed Description of the Invention This invention passes transmission power to the primary side, transmits a high frequency voltage proportional to the square root of the traveling wave power to one output terminal of the secondary side, and transmits a high frequency voltage proportional to the square root of the traveling wave power to one output terminal of the secondary side. In this case, rectifier diodes are connected to both output terminals of a CM type directional coupler that generates a high frequency voltage proportional to the square root of the reflected wave power, so as to obtain outputs of opposite polarity, and the outputs of the diodes are connected. The load resistance is divided into two, and the traveling wave output side is a fixed resistance, and the reflected wave output side is a potentiometer or a resistance network in which a potentiometer and a fixed resistance are connected in series.

メータのスライダ端子に、送信出力回路のSWR値と正
比例的に発生する直流電圧を送信出力を制御するALC
電圧に変換するALC電圧発生回路に加えると共に、前
記整流ダイオードの進行波側出力電圧を制御しきい値設
定回路を通して前記ALC電圧発生回路の動作制御入力
とすることにょシ、送信出力回路のSWR値の増大に伴
い送信出力を低下せしめ、また設定出力以下においては
ALC電圧を発生しないことを特徴とする送信機のAL
C回路である。
An ALC that controls the transmission output is applied to the meter's slider terminal by applying a DC voltage that is generated in direct proportion to the SWR value of the transmission output circuit.
The SWR value of the transmission output circuit is added to the ALC voltage generation circuit that converts it into a voltage, and the traveling wave side output voltage of the rectifier diode is used as the operation control input of the ALC voltage generation circuit through the control threshold setting circuit. AL of a transmitter is characterized in that it reduces the transmission output as the output increases, and does not generate an ALC voltage below the set output.
It is a C circuit.

送信機の出力増幅器から送出される送信電力が空中線か
ら電磁波として完全に放射されるためには送信機の出力
インピーダンスとフィーダと空中線の特性インダーダン
スが一致する必要があシ、いづれかが相違していると、
その接続部分で電力の一部が反射される現象が発生する
。通常送信機はフィーダの特性インピーダンスに整合す
るように調整しているので、との種の反射はフィーダと
負荷の不整合により生ずることが多く、空中線との接続
部から反射された(以下には反射波電力と記す)がフィ
ーダ線内を逆行して、送信機の出力電力(以下には進行
波電力と記す)と干渉し合って、音波の干渉による定在
波と同じようにフィーダ内に電圧や電流の山(大きいと
ころ)と谷(小さいところ)を生じ、不整合度が大きく
反射が大きいほど山と谷の比が大きくなることから、S
wR(Standing Wave Ratlo )で
整合状態を表わすことが多い。このSWRの値は完全整
合で無反射状態が1.0で、フィーダの終端が開放また
は短絡状態で全反射のときかのである。
In order for the transmission power sent out from the output amplifier of the transmitter to be completely radiated from the antenna as electromagnetic waves, the output impedance of the transmitter and the characteristic inductance of the feeder and antenna must match; When you are there,
A phenomenon occurs in which a portion of the power is reflected at the connection. Since the transmitter is usually tuned to match the characteristic impedance of the feeder, such reflections are often caused by a mismatch between the feeder and the load, and are reflected from the connection to the antenna. The reflected wave power (hereinafter referred to as reflected wave power) travels backwards within the feeder line and interferes with the output power of the transmitter (hereinafter referred to as forward wave power), creating a wave within the feeder similar to standing waves caused by sound wave interference. S
A consistent state is often expressed as wR (Standing Wave Ratlo). The value of this SWR is 1.0 when there is perfect matching and no reflection, and when the end of the feeder is open or shorted and total reflection occurs.

送信機出力回路の不整合にょシ実効放射電力が減少する
のみならず、送信出力段の内部損失の増加や印加電圧の
超過の問題も発生する。特にトランジスタ増幅器は逆耐
圧に弱いので、素子の保安のためにも出力回路の整合度
が重要である。実用上は整合度の悪い(SWRの大きい
)状態で使用しなければならない場合には送信機出方を
低減する必要がある。
Mismatching in the transmitter output circuit not only reduces the effective radiated power, but also causes problems such as increased internal loss in the transmitting output stage and excessive applied voltage. In particular, since transistor amplifiers are vulnerable to reverse breakdown voltage, the degree of matching of the output circuit is important for the safety of the device. In practice, if it has to be used in a state with poor matching (high SWR), it is necessary to reduce the amount of output from the transmitter.

第1図はこのような目的に使用される従来回路例であっ
て、点線内はCM形力方向性結合器あシ、その1次側の
入力端に送信機出力を、出方端にアンテナフィーダを接
続すると、カーレントトランスMの一方の出力端には進
向波電力p、の平方根に比例する高周波電圧ε2を、ま
た他方の出方端にはフィーダから逆行する反射波電力P
Rの平方根に比例する高周波電圧ε8が得られるから、
これを整流ダイオードD、・D2で整流して得た直流電
圧E。
Figure 1 shows an example of a conventional circuit used for this purpose.The dotted line shows a CM-type force directional coupler, with the transmitter output at its primary input end and the antenna at its output end. When the feeder is connected, one output end of the current transformer M receives a high frequency voltage ε2 proportional to the square root of forward wave power p, and the other output end receives reflected wave power P going backwards from the feeder.
Since a high frequency voltage ε8 proportional to the square root of R is obtained,
The DC voltage E obtained by rectifying this with rectifier diodes D and D2.

とERを合成してALC(Automatic Loa
d ControlまたはAutomatic Lev
el Controlの略)電圧に利用している。実際
にはE、かERのどちらか先に現れた方、あるいは電圧
の大きい方に従って動作するから、D、・D2には予め
運動バイアスを加えておき、vR4・vR2によりバイ
アス値を加減してALCの動作レベルを設定しているも
のである。この方法は構成が極めて簡単であるが、使用
状態の変化に伴って動作レベルの設定をやシ直さなけれ
ばならない欠点がある。
and ER to synthesize ALC (Automatic Loa
d Control or Automatic Lev
Abbreviation of el Control) is used for voltage. In reality, it operates according to whichever of E or ER appears first, or whichever has a larger voltage, so a motion bias is added to D and D2 in advance, and the bias value is adjusted by vR4 and vR2. This sets the ALC operation level. Although this method has an extremely simple configuration, it has the disadvantage that the setting of the operating level must be readjusted as the usage conditions change.

そこで本発明においては、第2図に実施例を示すように
、点線内のCM形力方向性結合器1次側の入力端に送信
機出力を、出力端にアンテナフィーダを接続すると、カ
ーレントトランスの一方の出力端には進行波電力P、の
平方根に比例する高周波電圧りを、また他方の出方端に
はフィーダから逆行する反射波電力PRの平方根に比例
する高周波電圧ε8が得られ、これを互に逆極性方向に
接続した整流ダイオードD、とD2で整流すると、得ら
れ(5) る直流出力E、とERは一方が正電圧ならば他方は負電
圧となるから、D、出力FとD2出カRとの間に抵抗を
負荷すると抵抗上の電位分布は第3図に示すように、抵
抗五の両端から、反対方向に引いたベクトルFF’とR
R’の先端F′とR′を結ぶ直線F′R′とFRの間隔
が抵抗上の電位に和尚する。従ってF / R/とFR
との交点Qが零電位であシ、それよりF側とR側では電
位の正負が逆転している。
Therefore, in the present invention, as shown in the embodiment shown in FIG. At one output end of the transformer, a high frequency voltage proportional to the square root of the traveling wave power P is obtained, and at the other output end, a high frequency voltage ε8 proportional to the square root of the reflected wave power PR traveling backward from the feeder is obtained. , which are rectified by rectifier diodes D and D2 connected in opposite polarity directions, the resulting DC outputs E and ER are obtained (5).If one is a positive voltage, the other is a negative voltage, so D, When a resistor is loaded between the output F and the output R of D2, the potential distribution on the resistor is as shown in Figure 3.
The distance between the straight line F'R' and FR connecting the tips F' and R' of R' corresponds to the potential on the resistor. Therefore F/R/ and FR
The intersection point Q is zero potential, and the positive and negative potentials are reversed on the F side and R side.

以下に零電位点QがSWRにょシ決定することを説明す
る。
How the zero potential point Q determines the SWR will be explained below.

SWRは次式にょシ算出される値である進行波電圧をv
2、反射波電圧をv8、回路インピーダンスをRとすれ
ば (6) (2)式の分母項と分子環をV、で割っても表わすこと
ができるわけである。
SWR is the value calculated by the following formula, which is the traveling wave voltage v
2. If the reflected wave voltage is v8 and the circuit impedance is R, it can also be expressed by dividing the denominator term and molecular ring in equation (6) (2) by V.

第3図においてΔQFF ’とΔQRR’とは合同であ
るから、 決まるということができるわけである。
In Figure 3, ΔQFF' and ΔQRR' are congruent, so it can be determined.

また回路が完全整合で無反射の状態ではSWR=1であ
るから、(3)式から これはQ点はR点と一致することを意味する。
Furthermore, since SWR=1 when the circuit is completely matched and there is no reflection, this means that the Q point coincides with the R point from equation (3).

また回路が終端開放または短絡で全反射状態でSwRは
ωであるから、(3)式から RQ  =  FQ これはQ点は■の中点であることを意味する。
Furthermore, since the SwR is ω when the circuit is in a total reflection state with the terminal open or short-circuited, from equation (3), RQ = FQ. This means that the Q point is the midpoint of (2).

以上から判るように電位が零となるQ点は抵抗FRの中
点PからR側にのみ存在するから、負荷抵抗を2等分し
て進行波出力側のFQは固定抵抗とし、反射波出力側の
RQをポテンショメータとすれば、ポテンショメータの
スライダ端子の電位が零となる位置からSWRが直接に
知ることが可能である。そこで予めSWR= 8の位置
にスライダをセットしておけば、SWRがS以下の状態
ではQ点はR方向に移動するから、スライダ端子の電位
はE2と同極性であり8時に零電位、S以上ではEBと
同極性に変化するから、ERの極性でのみ動作するAL
C電圧電圧発生回路膜けることにより、所定のS以上で
自動的にALCが掛か、6、swRが大きくなるほどA
LCが効いて出力を低下させる動作をするものである。
As can be seen from the above, the Q point where the potential is zero exists only on the R side from the midpoint P of the resistor FR, so the load resistance is divided into two equal parts, FQ on the traveling wave output side is a fixed resistor, and the reflected wave output is If the side RQ is a potentiometer, it is possible to directly know the SWR from the position where the potential of the slider terminal of the potentiometer becomes zero. Therefore, if the slider is set in advance at the position of SWR = 8, the Q point will move in the R direction when the SWR is less than S, so the potential of the slider terminal will have the same polarity as E2 and will be zero potential at 8 o'clock, S In the above, since the polarity changes to the same as EB, AL operates only with the polarity of ER.
By removing the C voltage voltage generation circuit membrane, ALC is automatically applied above a predetermined S, and as the swR increases, the A
The LC works to lower the output.

第3図の場合でいえば、Sは零電位のQ点であり、ER
は負電位であるがら、ALC電圧電圧発生回路膜力Aに
加わる電圧aが(−)のときのみ出力GにALC電圧電
圧用生させる構成とするものである。その方法としては
ダイオードを(9) 利用した各種クランプ回路や逆電圧防止回路、トランジ
スタ、FETの極性と増幅作用を組合わせた構成が可能
であるから、本発明においては特定の回路に限定するも
のではない。
In the case of Figure 3, S is the Q point of zero potential, and ER
is a negative potential, but the configuration is such that the ALC voltage is generated at the output G only when the voltage a applied to the ALC voltage generation circuit membrane force A is (-). As a method for this, configurations that combine various clamp circuits and reverse voltage prevention circuits using diodes (9), transistors, and FET polarity and amplification functions are possible; therefore, the present invention is limited to specific circuits. isn't it.

零点検出方式の問題点としては無人力時にはR2上のす
べての位置が零電位となることである。そこで本発明で
は、これによる誤動作を避けるために進行波側出力電圧
E、が設定値以上のときにのみ電圧すを出力するかbの
極性を逆転するように動作する制御しきい値設定回路Y
の出力電圧bfcxの制御端子Bに加えて、EFが設定
しきい値以下ではXはALC電圧電圧用力しないように
している。
The problem with the zero point detection method is that all positions on R2 have zero potential when there is no human power. Therefore, in the present invention, in order to avoid malfunctions caused by this, a control threshold setting circuit Y is provided that operates to output the voltage S or reverse the polarity of the output voltage E only when the output voltage E on the traveling wave side is equal to or higher than the set value.
In addition to the control terminal B of the output voltage bfcx of , when EF is below a set threshold value, X is made not to output the ALC voltage.

これによ、6 SWRが大きくても送信機に実害を生じ
ない小出力状態では無用のALC電圧を発生することも
無く、一度S値と出力しきい値を設定しておけば、以後
は全く手を触れる必要なしに送信機の保安ができて、そ
の効用は大きいものである。
As a result, even if the SWR is large, unnecessary ALC voltage will not be generated in a small output state that does not cause actual damage to the transmitter, and once the S value and output threshold are set, no need to worry It is possible to secure the transmitter without having to touch it with your hands, and its effectiveness is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は送信機のALC電圧発生回路の従来例、第2図
は本発明のALC電圧発生回路例、第3図は(10) 第2図回路の動作の説明図である。 C・・・結合容量、M・・・カーレントトランス、Dl
、D2・・・ダイオード、P、・・・進行波電力、PR
・・・反射波電力、y、 、EF I EF・・・進行
波側電圧、VR+ #IL HER・・・反射波側電圧
、R1・・・固定抵抗、R2・・・ポテンショメータ、
X・・・ALC電圧発生回路、Y・・・制御しきい値設
定回路。 特許出願人  八重洲無線株式会社 (11) 話 1 1ffi
FIG. 1 is a conventional example of an ALC voltage generation circuit for a transmitter, FIG. 2 is an example of an ALC voltage generation circuit of the present invention, and FIG. 3 is an explanatory diagram of the operation of the (10) circuit shown in FIG. C...Coupling capacitance, M...Current transformer, Dl
, D2...diode, P,... traveling wave power, PR
... Reflected wave power, y, , EF I EF... Traveling wave side voltage, VR+ #IL HER... Reflected wave side voltage, R1... Fixed resistance, R2... Potentiometer,
X: ALC voltage generation circuit, Y: control threshold setting circuit. Patent applicant Yaesu Musen Co., Ltd. (11) Story 1 1ffi

Claims (1)

【特許請求の範囲】[Claims] 1次側に送信電力を通過し、2次側の一出力端には進行
波電力の平方根に比例する高周波電圧を、また2次側の
他の出力端には反射波電力の平方根に比例する高周波電
圧を発生するCM形方向性結合器の両出力端にそれぞれ
整流ダイオードを互に逆極性出力を得るように接続し、
該ダイオードの出力間に接続する負荷抵抗を2等分して
進行波出力側は固定抵抗とし、反射波出力側はポテンシ
、メータまたはポテンショメータと固定抵抗を直列に接
続した抵抗網とし、該ポテンショメータのスライダ端子
に送信出力回路のSWR値と正比例的に発生する直流電
圧を送信出力を制御するALC電圧に変換するALC電
圧発生回路に加えると共に、前記整流ダイオードの進行
波側出力電圧を制御しきい値設定回路を通して前記AL
C電圧発生回路の動作制御入力とすることにより、送信
出力回路のSWR値の増大に伴い送信出力を低下せしめ
、また設定出力以下においてはALC電圧を発生しない
構成であることを特徴とする送信機のALC回路。
Transmission power is passed through the primary side, and one output terminal on the secondary side receives a high frequency voltage proportional to the square root of the traveling wave power, and the other output terminal on the secondary side receives a high frequency voltage proportional to the square root of the reflected wave power. Rectifier diodes are connected to both output ends of a CM type directional coupler that generates a high frequency voltage so as to obtain outputs with opposite polarities,
The load resistance connected between the outputs of the diode is divided into two, and the traveling wave output side is a fixed resistance, and the reflected wave output side is a resistance network in which a potentiometer, a meter, or a potentiometer and a fixed resistance are connected in series. The DC voltage generated in direct proportion to the SWR value of the transmission output circuit is applied to the slider terminal to an ALC voltage generation circuit that converts it into an ALC voltage that controls the transmission output, and the output voltage on the traveling wave side of the rectifier diode is applied to the control threshold. the AL through the setting circuit.
A transmitter characterized by having a configuration in which the transmission output is reduced as the SWR value of the transmission output circuit increases by using the operation control input of the C voltage generation circuit, and the ALC voltage is not generated below the set output. ALC circuit.
JP10376583A 1983-06-10 1983-06-10 Alc circuit of transmitter Granted JPS59228432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10376583A JPS59228432A (en) 1983-06-10 1983-06-10 Alc circuit of transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10376583A JPS59228432A (en) 1983-06-10 1983-06-10 Alc circuit of transmitter

Publications (2)

Publication Number Publication Date
JPS59228432A true JPS59228432A (en) 1984-12-21
JPH0125451B2 JPH0125451B2 (en) 1989-05-17

Family

ID=14362580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10376583A Granted JPS59228432A (en) 1983-06-10 1983-06-10 Alc circuit of transmitter

Country Status (1)

Country Link
JP (1) JPS59228432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120131A (en) * 1987-11-02 1989-05-12 Kokusai Electric Co Ltd Control circuit for stabilizing transmission load

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146888U (en) * 1974-10-04 1976-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146888U (en) * 1974-10-04 1976-04-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120131A (en) * 1987-11-02 1989-05-12 Kokusai Electric Co Ltd Control circuit for stabilizing transmission load

Also Published As

Publication number Publication date
JPH0125451B2 (en) 1989-05-17

Similar Documents

Publication Publication Date Title
US5490055A (en) Multiloop feedback control apparatus for DC/DC converters with frequency-shaping band pass current control
DE60234004D1 (en) System and method for coupling a load with a communication arrangement
US6166605A (en) Integrated audio amplifier
US6707650B2 (en) Self-synchronized synchronous rectifier
JPS59228432A (en) Alc circuit of transmitter
EP0061484B1 (en) Circuit for converting a non-live zero, current signal to a live zero dc output
JPH0263301A (en) Diode limiter
US6665399B1 (en) High-efficiency line driver
US6617710B2 (en) Control circuit for use with switch power converter
JPH0413855Y2 (en)
JPH06782Y2 (en) Disconnection detection circuit for differential transformer
US5097143A (en) Bipolar to unipolar converter with automatic gain control
JPH031818Y2 (en)
JPH04299632A (en) Waveform shaping circuit
JPH0311582B2 (en)
JPS6224539U (en)
JPS5852740Y2 (en) Amplifier control device
SU1390663A1 (en) Timed microwave limiter
JP2567151Y2 (en) Mixer
JPS6143301Y2 (en)
JPH02189001A (en) Pin diode switch
JPH0416604Y2 (en)
JPH06318960A (en) Phase modulator
JPH021939Y2 (en)
JPH04114213U (en) Wideband signal output circuit