JPS5922797B2 - Anode parts for aluminum anodizing electrolytic treatment - Google Patents

Anode parts for aluminum anodizing electrolytic treatment

Info

Publication number
JPS5922797B2
JPS5922797B2 JP3716178A JP3716178A JPS5922797B2 JP S5922797 B2 JPS5922797 B2 JP S5922797B2 JP 3716178 A JP3716178 A JP 3716178A JP 3716178 A JP3716178 A JP 3716178A JP S5922797 B2 JPS5922797 B2 JP S5922797B2
Authority
JP
Japan
Prior art keywords
aluminum
anode member
treatment
anode
electrolytic coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3716178A
Other languages
Japanese (ja)
Other versions
JPS54128446A (en
Inventor
一夫 戸田
数義 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP3716178A priority Critical patent/JPS5922797B2/en
Publication of JPS54128446A publication Critical patent/JPS54128446A/en
Publication of JPS5922797B2 publication Critical patent/JPS5922797B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、主としてアルミニウムまたはアルミニウム
合金材にアルマイト処理ならびに二次電解着色からなる
アルミニウム陽極酸化電解処理を施す際において、アル
マイト処理および電解着色すべきアルミニウム系材料の
製品を支持しかつこれに通電せしめるための電気接点と
なるラックまたはクリップ等の陽極部材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for applying aluminum anodic oxidation electrolytic treatment, which mainly consists of alumite treatment and secondary electrolytic coloring, to aluminum or aluminum alloy materials. The present invention relates to an anode member such as a rack or clip that serves as an electrical contact for supporting and energizing the anode member.

周知の如くアルミニウムの二次電解着色法は、いわゆる
アルマイト処理によつてアルミニウム製品の表面に陽極
酸化皮膜を生成した後、金属塩含有溶液中において交流
または交流に準する電流で電解処理し、陽極酸化皮膜を
金属塩特有の色に着色する方法であり、従来はアルマイ
ト処理とこれに引続く二次電解着色処理との一連の処理
工程(アルミニウム陽極酸化電解処理工程)においてア
ルミニウム製品を支持しかつ製品に通電させるための陽
極部材として専らアルミニウムまたはアルミニウム合金
が使用されている。このようにアルミニウムまたはアル
ミニウム合金製の陽極部材を使用してアルミニウム製品
のアルマイト処理と二次電解着色処理との一連の処理を
行つた場合、アルマイト処理時に陽極部材表面にも製品
表面と同様に陽極酸化皮膜が生成されるから、二次電解
着色処理時に陽極部材表面から流出する電流は製品表面
と同程度であり、したがつて電流流出が局部的に陽極部
材に集中することがないから製品に対する着色も均一に
行なえる。
As is well known, the secondary electrolytic coloring method for aluminum involves forming an anodic oxide film on the surface of an aluminum product through so-called alumite treatment, and then electrolytically treating it with an alternating current or an electric current similar to an alternating current in a metal salt-containing solution. This is a method of coloring the oxide film in a color unique to metal salts. Conventionally, aluminum products are supported and Aluminum or aluminum alloys are exclusively used as anode members for energizing products. In this way, when an anode member made of aluminum or aluminum alloy is used to perform a series of alumite treatment and secondary electrolytic coloring treatment on an aluminum product, the anode member surface is coated with the anode as well as the product surface during the alumite treatment. Since an oxide film is generated, the current flowing out from the anode member surface during the secondary electrolytic coloring treatment is of the same level as the product surface, and therefore the current flow is not locally concentrated on the anode member, so there is no effect on the product. Coloring can also be done uniformly.

ところで、二次電解着色処理に先立つアルマイト処理に
おいては、アルミニウムまたはアルミニウム合金製の陽
極部材は、その特性上次のよ5な各種の問題がある。す
なわちアルマイト処理では前述のように電解液に浸漬さ
れた陽極部材が製品と共に陽極酸化され、表面に陽極酸
化皮膜が生成されるが、この時陽極部材の表面からも製
品表面と同程度の電流が流出するから、電力ロスが極め
て大きい問題がある。また前述のように陽極部材表面に
生成された陽極酸化皮膜は非導電性であるから、この陽
極部材を再使用する際には、電気接点を得るために前記
皮膜を溶解除去する必要がある。実際の操業においては
、アルカリ液で陽極酸J 化皮膜を溶解除去するか、ま
たは製品に対する前処理として行うアルカリ脱脂または
化学研磨等を兼ねてこれらの処理液で陽極部材表面の皮
膜を除去する。このようにアルミニウム材製の陽極部材
では、製品を処理するたび毎に陽極酸化皮膜の生; 成
とその除去が繰返されて次第に消耗するから、製品を支
持するに充分な強度が失なわれない内に新しいものと交
換する必要があり、したがつてアルミニウム製の陽極部
材は消耗材であつて操業コスト中に占める陽極部材の費
用が無視できない。また前述のように陽極酸化皮膜除去
のために相当量の薬剤が使用されるから、それに要する
費用も無視できない。このようにアルミニウム材製の陽
極部材は、二次電解着色工程自体では特に問題ないが、
その前工程のアルマイト処理工程で問題があり、したが
つてこれらの一連の工程すなわち、アルミニウム陽極酸
化電解処理工程で使用する陽極部材としては本来好まし
いものではない。
By the way, in the alumite treatment prior to the secondary electrolytic coloring treatment, anode members made of aluminum or aluminum alloy have the following various problems due to their characteristics. In other words, in alumite treatment, as mentioned above, the anode member immersed in the electrolyte is anodized together with the product, and an anodic oxide film is generated on the surface, but at this time, the same amount of current flows from the surface of the anode member as the product surface. Because of the leakage, there is a problem of extremely large power loss. Further, as described above, the anodic oxide film formed on the surface of the anode member is non-conductive, so when the anode member is reused, it is necessary to dissolve and remove the film in order to obtain an electrical contact. In actual operation, the anodic acid J2 coating is dissolved and removed with an alkaline solution, or the coating on the surface of the anode member is removed with these treatment solutions, which also serves as alkali degreasing or chemical polishing, etc., performed as pretreatment for the product. In this way, with anode members made of aluminum, an anodic oxide film is repeatedly formed and removed each time the product is processed, and it gradually wears out, so it does not lose sufficient strength to support the product. Therefore, the aluminum anode member is a consumable material, and the cost of the anode member, which accounts for the operating cost, cannot be ignored. Further, as mentioned above, since a considerable amount of chemicals are used to remove the anodic oxide film, the cost required cannot be ignored. In this way, the anode member made of aluminum material poses no particular problem in the secondary electrolytic coloring process itself, but
There is a problem in the alumite treatment step, which is the preceding step, and therefore it is not inherently preferable as an anode member used in a series of these steps, that is, the aluminum anodizing electrolytic treatment step.

一方、チタン製の陽極部材はアルマイト処理用として前
述のような欠点が少なく、このため高価であるにも拘ら
ず一部で使用されているが、二次電解着色処理には使用
できない問題がある。
On the other hand, titanium anode members do not have the above-mentioned drawbacks when used for alumite treatment, and are therefore used in some areas despite being expensive, but there is a problem that they cannot be used for secondary electrolytic coloring treatment. .

すなわち、チタンは通常のアルマイト処理における直流
電解時には表面に緻密な陽極酸化皮膜を生じ、この陽極
酸化皮膜によつてチタン製陽極部材表面からの電流流出
が抑制され、このため電力ロスが少なく、また前記陽極
酸化皮膜は通常極めて薄質(数100λ程度)であるか
ら製品のラツキングの圧力により容易に破壊され、した
がつて電気接点を得るために陽極酸化皮膜を溶解除去す
る必要がなく、このため長期間繰返し使用でき、しかも
アルミニウムに比較して格段に高強度である等、アルマ
イト処理用としては各種の利点を持つ。しかしながら二
次電解着色処理で通常採用されている交流電解時には、
陽極酸化皮膜が存在するにも拘らず、相当に大きな電流
がチタン製陽極部材表面から流出する。例えばこの発明
の発明者等が、アルミニウム材およびチタン材について
アルマイト処理条件による前処理によつて、陽極酸化皮
膜を生成した後、二次電解着色条件で処理したところ、
二次電解着色条件による処理時には次の第1表に示すよ
うな電流が流出した。ここで前処理は15%H2SO4
を電解液として用いて20V定電圧法により20分間直
流電解し、二次電解着色条件の処理はPH4、20℃の
Ni塩浴中において交流10Vで電解した。第1表から
明らかなように、二次電解着色条件による処理時におい
ては、陽極酸化皮膜を生成したチタン材の表面から、同
様に陽極酸化皮膜を生成したアルミニウム材の20倍程
度の大きな電流が流出する。
In other words, titanium forms a dense anodic oxide film on its surface during direct current electrolysis during normal alumite treatment, and this anodic oxide film suppresses current flow from the surface of the titanium anode member, resulting in less power loss and Since the anodic oxide film is usually extremely thin (about several hundred λ), it is easily destroyed by the pressure of racking the product, so there is no need to dissolve and remove the anodic oxide film to obtain an electrical contact. It has various advantages for alumite processing, such as being able to be used repeatedly for a long period of time and having much higher strength than aluminum. However, during AC electrolysis, which is usually adopted in secondary electrolytic coloring treatment,
Despite the presence of the anodized film, a significant amount of current flows from the surface of the titanium anode member. For example, when the inventors of the present invention generated an anodic oxide film on aluminum and titanium materials by pretreatment under alumite treatment conditions, and then treated them under secondary electrolytic coloring conditions,
During the treatment under the secondary electrolytic coloring conditions, a current as shown in Table 1 below flowed out. Here, the pretreatment is 15% H2SO4
DC electrolysis was carried out for 20 minutes using the 20V constant voltage method as an electrolytic solution, and the secondary electrolytic coloring conditions were electrolyzed at AC 10V in a Ni salt bath at 20° C. with a pH of 4. As is clear from Table 1, when treated under secondary electrolytic coloring conditions, a current that is about 20 times larger is generated from the surface of the titanium material on which the anodic oxide film has been formed than on the aluminum material on which the anodized film has also been formed. leak.

このような現象によつて、二次電解着色時にアルミニウ
ムの被処理製品をチタン製の陽極部材にラツキングした
場合、チタン製陽極部材から集中的に電流が流出し、こ
のためアルミニウム製の被処理製品は陽極部材との接点
附近では全く着色せず、また接点を中心として50〜6
0nの範囲は電流密度が不均一となつて着色むらが生じ
る。したがつて二次電解着色処理には実際上チタン製の
陽極部材を使用することはできない。なお前述のような
試験において、電解着色条件による処理時の電流流出量
(A/DTrl)がアルマイト処理されたアルミニウム
材の電流流出量と比較して同様かもしくは少ないと仮定
すれば、この場合には陽極部材に電流が集中することが
ないから着色むらが生じないことは明らかであり、した
がつて電流流出量を比較することによつて着色むらの発
生の有無を判定する目安となる。前述のような事情から
、アルミニウム製品の陽極酸化電解処理、すなわちアル
マイト処理およびこれに続く二次電解着色処理に共通に
使用でき、しかもアルマイト処理におけるアルミニウム
製陽極部材の欠点を解消することができる陽極部材の材
質の開発が強く要望されている。
Due to this phenomenon, when an aluminum product to be treated is latched onto a titanium anode member during secondary electrolytic coloring, current flows intensively from the titanium anode member, which causes the aluminum product to be treated to is not colored at all near the contact point with the anode member, and is 50 to 6
In the 0n range, the current density becomes non-uniform and uneven coloring occurs. Therefore, it is practically impossible to use a titanium anode member for the secondary electrolytic coloring treatment. In addition, in the above-mentioned test, assuming that the amount of current flowing out (A/DTrl) during treatment under electrolytic coloring conditions is the same or smaller than the amount of current flowing out of anodized aluminum material, in this case, It is clear that uneven coloring does not occur because the current does not concentrate on the anode member, and therefore, comparing the amount of current flow can be used as a guide for determining whether uneven coloring occurs. Due to the above-mentioned circumstances, an anode that can be commonly used for anodizing electrolytic treatment of aluminum products, that is, alumite treatment and subsequent secondary electrolytic coloring treatment, and that can eliminate the drawbacks of aluminum anode members in alumite treatment. There is a strong demand for the development of materials for parts.

しかるにこの発明の発明者等は、既に特願昭52−89
637号および特願昭52一123171号で提案した
ように、アルマイト処理用の陽極部材としては原子燃料
被覆管材料として使用されているジルカロイ合金が最適
であつて、チタン材の陽極部材と同等以上の特性を有す
ることを見出し、また特願昭53−8701号で提案し
たように、ジルコニウムもアルマイト処理用の陽極部材
としてジルカロイ合金に近い良好な特性を有することを
見出した。
However, the inventors of this invention have already filed a patent application in 1989-89.
As proposed in No. 637 and Japanese Patent Application No. 52-123171, Zircaloy alloy, which is used as a nuclear fuel cladding material, is optimal as an anode member for alumite treatment, and is equivalent to or better than titanium anode members. Furthermore, as proposed in Japanese Patent Application No. 53-8701, zirconium has also been found to have good properties close to those of Zircaloy alloys as an anode member for alumite treatment.

すなわち、ジルカロイ合金やジルコニウム製の陽極部材
は、アルマイト処理時においてアルミニウム製陽極部材
と比較し格段に電力ロスが少なくしかも消耗が少なくて
長期間使用でき、かつチタンと比較してもこれらの点で
優れ、なおかつチタンにおいて生じ易い材質脆化による
折損事故も生じないことを見出したのである。そしてそ
の後更に研究を重ねたところ、ジルカロィで代表される
ジルコニウム合金やジルコニウムは、二次電解着色用の
陽極部材としてもチタン材より格段に優れた特性を有し
、かつまた通常のアルマイト処理で生成した皮膜では効
果は少ない 之が、予め適当な処理を施して緻密な酸化
皮膜を形成しておくことにより、二次電解着色用の陽極
部材としてアルミニウム製のものと遜色なく使用できる
こと、すなわち二次電解着色に使用した場合、製品のラ
ツキング接点部で発生し易い着色むらが 1肉眼で感知
できない程度となることを見出し、この発明をなすに至
つたのである。
In other words, anode members made of zircaloy alloy or zirconium have significantly less power loss during alumite treatment than aluminum anode members, and can be used for a long period of time with less wear and tear, and they are also superior in these respects compared to titanium. They found that the material is excellent and does not suffer from breakage accidents due to material embrittlement that tends to occur with titanium. After further research, we found that zirconium alloys and zirconium, represented by zircaloy, have much better properties than titanium materials as anode materials for secondary electrolytic coloring, and that they can also be produced by normal alumite treatment. However, by applying appropriate treatment in advance to form a dense oxide film, it can be used as an anode member for secondary electrolytic coloring on a par with aluminum. They discovered that when used for electrolytic coloring, the uneven coloring that tends to occur at the rucking contact portions of products becomes imperceptible to the naked eye, leading to the creation of this invention.

すなわちこの発明の陽極部材は、ジルカロイで代表され
るジルコニウム合金もしくはジルコニウムで構成された
ものであつて、予め酸化性雰囲気 1において200〜
850℃の温度で加熱処理して表面に緻密な酸化皮膜を
生成してなるものであり、このような緻密な酸化皮膜の
存在によつて、チタン製陽極部材の場合と異なり二次電
解着色時の電流流出を抑制して製品に着色むらが生じな
いよう 3にしたものである。
That is, the anode member of the present invention is made of a zirconium alloy represented by Zircaloy or zirconium, and is preliminarily heated in an oxidizing atmosphere of 1 to 200%.
It is made by heating at a temperature of 850°C to form a dense oxide film on the surface, and due to the presence of such a dense oxide film, unlike the case of titanium anode members, it is difficult to color during secondary electrolytic coloring. 3 to suppress the current outflow and prevent uneven coloring of the product.

以下この発明の陽極部材をより詳細に説明する。The anode member of the present invention will be explained in more detail below.

この発明の陽極部材の素材は前述のようにジルカロイ等
のジルコニウム合金もしくは金属ジルコニウムであるが
、これらの内でもジルカロイが最 一も適当である。ま
たジルカロイはその組成範囲によつて1種から4種まで
に分類されるが、この発明の陽極部材としてはいずれの
ものも使用できることは勿論である。さらにこの発明の
陽極部材の具体的形状は任意であつて、被処理製品を引
掛け・るためのラツキング枠状に作つても良く、また被
処理製品を挟持するクリツプ状に作つても良い。このよ
うな陽極部材には、前述のように予め酸化性雰囲気、例
えば空気中または酸素気流中において200℃〜850
℃の温度で加熱処理を施し、゜表面に緻密な酸化皮膜を
生成しておく。この加熱温度が200℃未満では処理時
間に長時間を要し、好ましくない。また加熱温度が85
0℃を越える場合、材料の焼鈍軟化が進んで陽極部材と
して必要な機械的強度やバネ性を低下させるおそれがあ
″り、かつまた材料の組織に析出物が生じて耐食性が劣
化する等の現象が生じるおそれがあり、また処理に要す
る経済的コストが高くなる問題がある。加熱処理時間は
、例えば500℃においては30第2表に示す試験結果
から明らかなように、加熱処理を施したジルカロイ合金
材およびジルコニウム材は、いずれも交流電解による二
次電解着色において0.5〜0.3A/dイ程度以下に
電流しか流出しない。すなわち同じ加熱処理を施したチ
タン材の二次電解着色における電流流出量よりも格段に
少なく、しかもアルマイト処理を施したアルミニウム材
の二次電解着色における電流流出量と比較しても同等以
下である。したがつて予め加熱処理を施したジルカロイ
合金製もしくはジルコニウム製の陽極部材にアルミニウ
ム製品をラツキングしてアルマイト処理並びに二次電解
着色処理を行つた場合、二次電解着色時の電流が陽極部
材に集中することがないから、チタン製陽極部材を用い
た場合の如き発色むらが生じないことが明らかである。
なおこのように予め加熱処理を施して緻密な酸化皮膜を
生成したジルカロイ合金またはジルコニウム製の陽極部
材は、アルミニウム製品に対するアルマイト処理および
二次電解着色に使用してこれを複数回繰返してもその効
果が持続することが認められた。
As mentioned above, the material of the anode member of the present invention is a zirconium alloy such as Zircaloy or metallic zirconium, and among these, Zircaloy is the most suitable. Further, Zircaloy is classified into 1 to 4 types depending on its composition range, and it goes without saying that any of the Zircaloys can be used as the anode member of the present invention. Further, the specific shape of the anode member of the present invention is arbitrary, and it may be made in the shape of a racking frame for hooking and holding the product to be treated, or it may be made in the shape of a clip for holding the product to be treated. As mentioned above, such an anode member is heated in an oxidizing atmosphere, for example, in air or in an oxygen stream, at temperatures of 200°C to 850°C.
Heat treatment is performed at a temperature of °C to form a dense oxide film on the surface. If the heating temperature is less than 200°C, the processing time will take a long time, which is not preferable. Also, the heating temperature is 85
If the temperature exceeds 0°C, there is a risk that the material will undergo annealing and softening, reducing the mechanical strength and springiness necessary for an anode member, and also precipitates will form in the material structure, causing deterioration of corrosion resistance. In addition, there is a problem that the economic cost required for the treatment increases.The heat treatment time is, for example, 30 at 500°C.As is clear from the test results shown in Table 2, In both Zircaloy alloy materials and zirconium materials, only a current of about 0.5 to 0.3 A/d flows out during secondary electrolytic coloring by alternating current electrolysis.In other words, secondary electrolytic coloring of titanium materials subjected to the same heat treatment It is much smaller than the amount of current flowing out in the secondary electrolytic coloring of anodized aluminum material. When an aluminum product is lathed onto a zirconium anode member and subjected to alumite treatment and secondary electrolytic coloring, the current during secondary electrolytic coloring will not be concentrated on the anode member, so titanium anode members are used. It is clear that uneven coloring does not occur as in the case.
Zircaloy alloy or zirconium anode members that have been heat-treated in advance to form a dense oxide film will not be as effective even if they are used for alumite treatment and secondary electrolytic coloring of aluminum products and this process is repeated multiple times. was found to persist.

以上の説明で明らかなように、この発明の陽極部材はア
ルミニウム製品の陽極酸化電解処理、特にその二次電解
着色処理においてアルミニウム製陽極部材と同等以上の
良好な特性が得られるものである。
As is clear from the above description, the anode member of the present invention can obtain properties equivalent to or better than those of an aluminum anode member in the anodizing electrolytic treatment of aluminum products, particularly in the secondary electrolytic coloring treatment thereof.

またこの発明の陽極部材は二次電解着色処理に先立つて
通常行なわれるアルマイト処理においてもチタン製陽極
部材に遜色ない特性が得られ、しかも機械的強度もチタ
ン製陽極部材と同等以上のものである。したがつてこの
発明の陽極部材は、アルミニウム製品の陽極酸化電解処
理工程、すなわちアルマイト処理と二次電解着色処理と
の一連の工程に使用する陽極部材として極めて有用なも
のである。なお、この発明の陽極部材は、アルミニウム
製品のアルマイト処理に単独に使用しても良いことは勿
論である。
Furthermore, the anode member of the present invention has properties comparable to those of titanium anode members even in the alumite treatment that is normally performed prior to secondary electrolytic coloring treatment, and has mechanical strength that is equal to or higher than titanium anode members. . Therefore, the anode member of the present invention is extremely useful as an anode member used in the anodizing electrolytic treatment process of aluminum products, that is, the series of steps of alumite treatment and secondary electrolytic coloring treatment. It goes without saying that the anode member of the present invention may be used alone for alumite treatment of aluminum products.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニウムもしくはその合金からなる素材で構成
し、かつ予め酸化性雰囲気において200℃〜850℃
の温度で加熱処理して表面に緻密な酸化皮膜を生成して
なるアルミニウム陽極酸化電解処理用陽極部材。
1 Constructed from a material made of zirconium or its alloy, and heated in advance to 200°C to 850°C in an oxidizing atmosphere.
An anode member for aluminum anodic oxidation electrolytic treatment that is heat-treated at a temperature of 100 to produce a dense oxide film on the surface.
JP3716178A 1978-03-30 1978-03-30 Anode parts for aluminum anodizing electrolytic treatment Expired JPS5922797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3716178A JPS5922797B2 (en) 1978-03-30 1978-03-30 Anode parts for aluminum anodizing electrolytic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3716178A JPS5922797B2 (en) 1978-03-30 1978-03-30 Anode parts for aluminum anodizing electrolytic treatment

Publications (2)

Publication Number Publication Date
JPS54128446A JPS54128446A (en) 1979-10-05
JPS5922797B2 true JPS5922797B2 (en) 1984-05-29

Family

ID=12489865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3716178A Expired JPS5922797B2 (en) 1978-03-30 1978-03-30 Anode parts for aluminum anodizing electrolytic treatment

Country Status (1)

Country Link
JP (1) JPS5922797B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114698U (en) * 1984-07-02 1986-01-28 三菱重工業株式会社 filling equipment
JPS6114697U (en) * 1984-07-02 1986-01-28 三菱重工業株式会社 filling equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106970U (en) * 1985-12-25 1987-07-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114698U (en) * 1984-07-02 1986-01-28 三菱重工業株式会社 filling equipment
JPS6114697U (en) * 1984-07-02 1986-01-28 三菱重工業株式会社 filling equipment

Also Published As

Publication number Publication date
JPS54128446A (en) 1979-10-05

Similar Documents

Publication Publication Date Title
US5028304A (en) Method of electrochemical machining of articles made of conducting materials
JPS6156320B2 (en)
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
US1971761A (en) Protection of metals
SE444585B (en) MATERIALS FOR SELECTIVE ABSORPTION OF SOLAR ENERGY AS WELL AS MANUFACTURING THE MATERIAL
US1923539A (en) Production of anticorrosive protective coatings on light metals
US3247086A (en) Method for enhancing corrosion resistance of stainless steels and products thereof
JPS5922797B2 (en) Anode parts for aluminum anodizing electrolytic treatment
US2197653A (en) Method of electrically pickling and cleaning stainless steel and other metals
US3030286A (en) Descaling titanium and titanium base alloy articles
US3632490A (en) Method of electrolytic descaling and pickling
JPS6031919B2 (en) Anode parts for aluminum anodizing treatment
US3726772A (en) Method for removing iron impurities contained in a salt bath for nitrogenation
JPS6324098A (en) Method for removing scale formed by welding of alloy steel
JPH0285394A (en) Method for electroplating stainless steel sheet
JPH02240292A (en) Anodic oxidation of aluminum material with superior corrosion resistance
JPS6312159B2 (en)
JPH01165800A (en) High-speed electrolytic pickling and polishing method
JPS607039B2 (en) Electrodeposition coating method for aluminum or aluminum alloys
KR102487889B1 (en) Anodizing method comprising electrolytic treatment step for residual liquid
JPH03229895A (en) Aluminum alloy sheet to be coated for can lid and its production
JPS5922795B2 (en) Surface treatment method for aluminum or its alloy
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPS616298A (en) Chemical formation of colored anodically oxidized film consisting of aluminum and aluminum alloy
JPH04193998A (en) High-speed anodization method by repeated instantaneous current application