JPS6312159B2 - - Google Patents

Info

Publication number
JPS6312159B2
JPS6312159B2 JP1413984A JP1413984A JPS6312159B2 JP S6312159 B2 JPS6312159 B2 JP S6312159B2 JP 1413984 A JP1413984 A JP 1413984A JP 1413984 A JP1413984 A JP 1413984A JP S6312159 B2 JPS6312159 B2 JP S6312159B2
Authority
JP
Japan
Prior art keywords
polishing
electrolysis
metal
reversal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1413984A
Other languages
Japanese (ja)
Other versions
JPS60159200A (en
Inventor
Keigo Ookubo
Akira Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP1413984A priority Critical patent/JPS60159200A/en
Publication of JPS60159200A publication Critical patent/JPS60159200A/en
Publication of JPS6312159B2 publication Critical patent/JPS6312159B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は金属表面の研摩に関するものであり、
金属素材と対極としての不溶性電極を電解研摩液
中に浸漬し、金属素材と対極との間に正及び負の
電圧を交互に印加する周波数及び正の電圧の印加
に対する負の電圧の印加の割合を変えることによ
り効率よく多種類の金属の表面研摩を行なう方法
に関する。 (従来技術) 金属製品は一般に機械加工後、めつき、アルマ
イト等の表面処理を行なうが金属素材には凹凸が
あつたり、機械加工で傷がついたりするため、そ
のままでは満足な仕上りが得られないため表面を
平滑にし、艶出しするのが普通である。 そのために、各種の研摩方法を用いて研摩する
が、研摩に多くの労力を要したり、鏡面光沢が得
られない、コストが高いなどの問題がある。現在
利用されている主な研摩方法には、バフ研摩、バ
レル研摩、電解研摩、化学研摩等があり、最も広
く利用されているバフ研摩は鏡面光沢まで仕上げ
るには手数がかかりコスト高になる、ステンレ
ス、アルミニウム等の素材を鏡面光沢まで仕上げ
るのはむづかしい、小物、特殊な形状、線、箔等
の研摩が困難である、量産がむづかしく熟練を要
する等の問題点がある。これらの欠点を補うため
に電気化学的又は化学的に研摩する電解研摩及び
化学研摩が利用されている。化学研摩は化学的に
溶解するため通電しなくてもよいが、化学薬品で
溶解するため薬品の消耗が激しく、浴の寿命も短
かいためコスト高となる。また浴組成の変化も激
しいため浴管理がむづかしく、研摩できる材質も
アルミニウム、銅合金等に限られるなどの難点が
ある。 電解研摩は研摩液中で直流電流により素材を陽
極にして数10秒乃至数分間電解することにより容
易に平滑鏡面が得られる。しかも機械的研摩では
困難な複雑な形状、変形しやすい薄板、箔等も容
易に研摩でき、量産も可能である特長をもつてい
る。しかし、この電解研摩も研摩の容易な素材は
限られるし、高濃度の電解液を使用しなければな
らないためコスト高となるし、排水処理への負荷
も大きくなる。また高濃度の電解液を使用するた
めに研摩時に発生したガスが被研摩物の表面に付
着し離脱がむづかしく、ガスピツト又は条痕が発
生しやすい。さらに70℃以上の高温で研摩しなけ
ればならない等の欠点がある。 本発明においては、金属表面の研摩において従
来の直流電解に代えて、正及び負の電圧を交互に
印加する電流反転で、かつ反転比率を変えること
により、低濃度の研摩液、低浴温度でガスピツト
のない平滑鏡面の得られることを発見した。 (発明の目的) すなわち、本発明の目的は従来の直流電解の代
りに正及び負の電圧を交互に印加し、かつ反転比
率を変えることにより直流法では得られない金属
素材の表面を研摩する方法を提供するものであ
る。 (発明の構成) 本発明はアルミニウム、ステンレス鋼、鉄鋼、
銅合金等の被処理金属と不溶性電極を対極として
酸性又はアルカリ性電解液中に浸漬し、被処理金
属と対極との間に正及び負の電圧を交互に印加す
る電流反転電解で被処理金属の研摩に適した周波
数及び反転比率を選定することにより、被処理金
属を電気化学的に溶解して、光沢のある平滑鏡面
を得るものである。 第1図は従来の陽極直流電解法による電圧の印
加方法を示し、第2図は本発明による電圧の印加
方法を示すものである。図において時間T1の間
は被処理金属に正の電圧を印加して金属表面を溶
解させ、時間T2の間は被処理金属に負の電圧を
印加して多量の水素ガスを間けつ的に発生させ金
属表面に付着しているガスを離脱させながら電解
研摩を行なうものである。さらにこの反転周期と
正の印加電圧時間T1と反転する負の印加電圧時
間T2の比率、すなわち反転比率によつて研摩効
果が異なるので、これらを変化させて平滑鏡面を
得るものである。 本発明の大きな特徴は1周期的に極性変換を行
ない負電流により間けつ的に多量の水素ガスが発
生するために、直流電解で発生するガスピツトが
なくなる。2間けつ的に流れる負電流により不働
態化が防止され、溶解が促進されるために低濃度
の研摩液及び低浴温度でも平滑鏡面が得られ、大
幅に研摩コストを低減することができる。3液組
成、浴温度、電流密度等の電解条件の許容範囲が
広いために、製品が均一に仕上るとともに管理が
容易である。4研摩液濃度が薄くてもよいため
に、汲出される電解液の量が少なくなり排水処理
への負荷が軽減される。又被処理金属の種類によ
つては炭酸ナトリウム、水酸化ナトリウム等の安
価な浴での研摩が可能で、公害防止対策のむづか
しいリン、窒素の問題も解決できる等の効果を有
するもので、画期的な発明である。 次に本発明を実施例により、さらに詳細に説明
する。 (実施例 1) 電解液 リン酸 700ml 硫酸 200ml 水 100ml 浴温度 50℃ 電流密度 20A/dm2 反転比率 5% 処理時間 5分 素材 1080Al 上記の条件で、炭素板を対極とし、反転比率を 負の電流が流れる時間(T1)/1周期の時間(T1+T2
)×100 =反転比率(%) としてこの反転比率を5%とし、周波数を変化さ
せたときの光沢度は第1表のとおりであつた。
(Industrial Application Field) The present invention relates to polishing of metal surfaces,
The frequency at which a metal material and an insoluble electrode as a counter electrode are immersed in an electrolytic polishing solution, and positive and negative voltages are applied alternately between the metal material and the counter electrode, and the ratio of negative voltage application to positive voltage application. This paper relates to a method for efficiently polishing the surfaces of many types of metals by changing the . (Prior art) After machining, metal products are generally subjected to surface treatments such as plating and alumite, but since metal materials can have unevenness and get scratches from machining, a satisfactory finish cannot be obtained with this method. Because of this, the surface is usually smoothed and polished. For this purpose, polishing is performed using various polishing methods, but there are problems such as the polishing requires a lot of labor, the mirror gloss cannot be obtained, and the cost is high. The main polishing methods currently used include buff polishing, barrel polishing, electrolytic polishing, and chemical polishing.The most widely used polishing method is buffing, which is laborious and expensive to achieve a mirror-like finish. There are problems such as it is difficult to finish materials such as stainless steel and aluminum to a mirror shine, it is difficult to polish small items, special shapes, wires, foils, etc., and mass production is difficult and requires skill. In order to compensate for these drawbacks, electrolytic polishing and chemical polishing, which polish electrochemically or chemically, are used. Chemical polishing does not require electricity because it dissolves chemically, but because it uses chemicals to dissolve, the chemicals are consumed rapidly and the life of the bath is short, resulting in high costs. Furthermore, the bath composition changes drastically, making bath management difficult, and the materials that can be polished are limited to aluminum, copper alloys, etc. In electrolytic polishing, a smooth mirror surface can be easily obtained by electrolyzing the material in a polishing solution using a direct current as an anode for several tens of seconds to several minutes. Moreover, it can easily polish complex shapes, easily deformed thin plates, foils, etc. that are difficult to polish by mechanical polishing, and it has the advantage of being mass-produced. However, with this electrolytic polishing, there are only a limited number of materials that can be easily polished, and a highly concentrated electrolytic solution must be used, resulting in high costs and a heavy burden on wastewater treatment. Furthermore, since a highly concentrated electrolytic solution is used, gas generated during polishing adheres to the surface of the polished object and is difficult to remove, resulting in gas pits or streaks being likely to occur. Furthermore, there are drawbacks such as the need to polish at a high temperature of 70°C or higher. In the present invention, in place of conventional DC electrolysis for polishing metal surfaces, by applying current reversal in which positive and negative voltages are applied alternately and by changing the reversal ratio, low concentration polishing liquid and low bath temperature can be used. It was discovered that a smooth mirror surface without gas pits can be obtained. (Objective of the Invention) That is, the object of the present invention is to polish the surface of a metal material that cannot be obtained with the direct current method by alternately applying positive and negative voltages instead of conventional DC electrolysis and changing the reversal ratio. The present invention provides a method. (Structure of the Invention) The present invention includes aluminum, stainless steel, steel,
The metal to be treated, such as copper alloy, and an insoluble electrode are immersed in an acidic or alkaline electrolyte as a counter electrode, and the metal to be treated is heated by current reversal electrolysis, in which positive and negative voltages are alternately applied between the metal to be treated and the counter electrode. By selecting an appropriate frequency and inversion ratio for polishing, the metal to be treated is electrochemically dissolved to obtain a glossy, smooth mirror surface. FIG. 1 shows a voltage application method using the conventional anodic direct current electrolysis method, and FIG. 2 shows a voltage application method according to the present invention. In the figure, during time T 1 , a positive voltage is applied to the metal to be treated to melt the metal surface, and during time T 2 , a negative voltage is applied to the metal to be treated to intermittently inject a large amount of hydrogen gas. Electrolytic polishing is performed while removing the gas that is generated and adhered to the metal surface. Furthermore, since the polishing effect differs depending on the reversal period and the ratio of the positive applied voltage time T1 to the negative applied voltage time T2 , that is, the reversal ratio, a smooth mirror surface is obtained by changing these. A major feature of the present invention is that the polarity is changed in one period and a large amount of hydrogen gas is generated intermittently by the negative current, thereby eliminating gas pits generated by DC electrolysis. Passivation is prevented and dissolution is promoted by the negative current flowing intermittently, so that a smooth mirror surface can be obtained even with a low concentration polishing liquid and a low bath temperature, and polishing costs can be significantly reduced. Since there is a wide allowable range of electrolytic conditions such as three-liquid composition, bath temperature, and current density, products can be finished uniformly and can be easily managed. 4. Since the concentration of the polishing solution may be low, the amount of electrolyte pumped out is reduced, and the load on wastewater treatment is reduced. Also, depending on the type of metal to be treated, it is possible to polish with an inexpensive bath such as sodium carbonate or sodium hydroxide, and it has the effect of solving the problem of phosphorus and nitrogen, which are difficult measures to prevent pollution. This is a revolutionary invention. Next, the present invention will be explained in more detail with reference to Examples. (Example 1) Electrolyte Phosphoric acid 700ml Sulfuric acid 200ml Water 100ml Bath temperature 50℃ Current density 20A/dm 2 Reversal ratio 5% Processing time 5 minutes Material 1080Al Under the above conditions, a carbon plate was used as the counter electrode, and the reversal ratio was set to negative Time for current to flow (T 1 )/time for one cycle (T 1 + T 2
) x 100 = reversal ratio (%) This reversal ratio was set as 5%, and the glossiness when changing the frequency was as shown in Table 1.

【表】 第1表において周波数0は極性変換のない直流
陽極電解の光沢度を示したものであるが、周期的
に極性変換を行ない負電流を間けつ的に流す電流
反転電解に比較して光沢度が劣り、しかも電解に
ともなつて発生するガスの付着によるピツトが多
数発生した。それに対して、反転電解による電解
研摩では全周波数域で直流電解による研摩よりも
光沢度がすぐれている。又負電流を間けつ的に流
すことにより水素ガスが多量に発生するため、電
解研摩で大きな問題となるガスピツトが全くなく
なるとともに、直流電解よりも低い電圧で研摩が
できる。 (実施例 2) 電解液 リン酸 500ml 水 500ml 電流密度 20A/dm2 反転比率 5% 処理時間 5分 素材 5052Al 上記の条件で炭素板を対極とし、30℃及び50℃
の浴温度で周波数を変化させたときの光沢度は第
2表のとおりであつた。 第2表から明らかなように電流反転電解による
研摩では比較的低温の方が光沢度が大きく、良好
な研摩面が得られる。この傾向はほぼすべての被
処理金属に共通しており、例えば5052Al
[Table] In Table 1, frequency 0 indicates the brightness of DC anodic electrolysis without polarity change, but compared to current reversal electrolysis in which polarity is changed periodically and negative current is passed intermittently. The gloss was poor, and many pits were formed due to adhesion of gases generated during electrolysis. On the other hand, electrolytic polishing using reverse electrolysis has a higher gloss level than polishing using direct current electrolysis in all frequency ranges. Furthermore, since a large amount of hydrogen gas is generated by passing a negative current intermittently, gas pits, which are a major problem in electrolytic polishing, are completely eliminated, and polishing can be performed at a lower voltage than in direct current electrolysis. (Example 2) Electrolyte phosphoric acid 500ml Water 500ml Current density 20A/dm 2 Reversal ratio 5% Processing time 5 minutes Material 5052Al Under the above conditions, using a carbon plate as a counter electrode, 30℃ and 50℃
Table 2 shows the glossiness when changing the frequency at a bath temperature of . As is clear from Table 2, in polishing by current reversal electrolysis, the gloss is higher at a relatively lower temperature, and a better polished surface can be obtained. This tendency is common to almost all metals to be processed; for example, 5052Al

【表】 の場合には常温に近い30℃で研摩が可能である。
従来から使用されている直流電解では低浴温度に
なるほどガスピツトが増加し、溶解力が劣るため
光沢面が得られず、一般には70℃以上の高浴温度
を必要とする。このように本発明の方法によれ
ば、著しく低い浴温度で研摩ができるためにエネ
ルギー節減によるコストの低減ができる。 (実施例 3) 電解液 リン酸 700ml 硫酸 200ml 水 100ml クロム酸 50g/l 浴温度 50℃ 周波数 13.3Hz 電流密度 20A/dm2(鉄鋼) 30A/dm2(ステンレス鋼) 処理時間 5分 素材 鉄鋼、ステンレス鋼 上記の条件でステンレス板を対極とし、反転比
率を変化させたときの光沢度は第3表のとおりで
あつた。
In the case of [Table], polishing is possible at 30℃, which is close to room temperature.
In conventionally used DC electrolysis, the lower the bath temperature, the more gas pits there are, and the lower the melting power, making it impossible to obtain a glossy surface, and generally requires a high bath temperature of 70°C or higher. As described above, according to the method of the present invention, polishing can be performed at a significantly lower bath temperature, thereby reducing costs due to energy savings. (Example 3) Electrolyte Phosphoric acid 700ml Sulfuric acid 200ml Water 100ml Chromic acid 50g/l Bath temperature 50℃ Frequency 13.3Hz Current density 20A/dm 2 (Steel) 30A/dm 2 (Stainless steel) Processing time 5 minutes Material Steel, Stainless steel Table 3 shows the glossiness when the reversal ratio was changed using a stainless steel plate as a counter electrode under the above conditions.

【表】 この結果より、鉄鋼については反転比率が大き
くなるほど、すなわち、負電流が大きいほど光沢
が増す。それに対してステンレス鋼では5%と反
転比率の小さい条件で光沢がすぐれており、反転
比率が増すと光沢は劣るようになる。このように
電流反転電解の周波数と同様に負電流を流す反転
比率も研摩効果に大きく関与しており、被処理金
属の種類、研摩液の種類によつて周波数、反転比
率は当然異なるものである。 (実施例 4) 電解液 No.1リン酸 900ml 水 100ml No.2リン酸 500ml 水 500ml 浴温度 50℃ 周波数 13.3Hz 反転比率 5% 処理時間 5分 素材 ステンレス鋼 上記の条件でステンレス板を対極とし、研摩液
濃度及び電流密度を変化させたときの光沢度は第
4表のとおりであつた。 第4表に比較のため直流陽極電解の結果も示し
た。直流電解では高濃度のリン酸浴の方が光沢が
よく低濃度になると劣る。しかし、高濃度浴では
液の粘性が大きいためにガスピツトが生じやす
い。それに対して反転電解では低濃度浴
[Table] From this result, for steel, the greater the inversion ratio, that is, the greater the negative current, the greater the luster. On the other hand, stainless steel has excellent gloss when the reversal ratio is as low as 5%, and becomes inferior as the reversal ratio increases. In this way, just as the frequency of current reversal electrolysis, the reversal ratio at which a negative current flows is also greatly involved in the polishing effect, and the frequency and reversal ratio naturally vary depending on the type of metal to be treated and the type of polishing liquid. . (Example 4) Electrolyte No.1 Phosphoric acid 900ml Water 100ml No.2 Phosphoric acid 500ml Water 500ml Bath temperature 50℃ Frequency 13.3Hz Reversal ratio 5% Processing time 5 minutes Material Stainless steel Under the above conditions, a stainless steel plate was used as the counter electrode. Table 4 shows the glossiness when the polishing solution concentration and current density were changed. Table 4 also shows the results of DC anodic electrolysis for comparison. In direct current electrolysis, high-concentration phosphoric acid baths produce better gloss, while lower concentrations are inferior. However, in high concentration baths, gas pits are likely to occur due to the high viscosity of the liquid. On the other hand, in reverse electrolysis, a low concentration bath

【表】 の方が光沢度が大きく、かつ条痕のない鏡面が得
られる。この例でもわかるように電流反転電解に
よる研摩では直流電解よりも低濃度浴による研摩
が可能で、研摩コストの低減、排水処理への負荷
の軽減がはかれる。 (実施例 5) 電解液 リン酸ナトリウム 100g/l 水酸化ナトリウム 5g/l 浴温度 50℃ 周波数 13.3Hz 反転比率 5% 処理時間 5分 素材 1080Al 上記の条件でステンレス板を対極とし、アルカ
リ浴で研摩したときの光沢度は第5表のとおりで
あつた。 第5表に比較のため直流陽極電解の結果も示し
た。直流電解では全く光沢面は得られず、無光沢
でしかもピツトが生じる。それに対して反転電解
ではピツトが生ずることもなく、広い電流密度範
囲において極めて良好な鏡面光沢が得
[Table] has higher gloss and provides a mirror surface without streaks. As can be seen in this example, polishing using current reversal electrolysis allows polishing using a bath with a lower concentration than direct current electrolysis, reducing polishing costs and reducing the burden on wastewater treatment. (Example 5) Electrolyte Sodium phosphate 100g/l Sodium hydroxide 5g/l Bath temperature 50°C Frequency 13.3Hz Reversal ratio 5% Processing time 5 minutes Material 1080Al Polished in an alkaline bath with a stainless steel plate as the counter electrode under the above conditions The glossiness at that time was as shown in Table 5. Table 5 also shows the results of DC anodic electrolysis for comparison. Direct current electrolysis does not give a glossy surface at all, and it is matte and has pits. In contrast, reverse electrolysis does not produce pits and provides extremely good specular gloss over a wide current density range.

【表】 られる。この実施例以外に炭酸ナトリウムと水酸
化ナトリウムの研摩液でも鏡面光沢が得られ、安
価な研摩浴であるとともに、公害防止のむづかし
いリン、窒素の問題も解決できる等の従来の研摩
方法には見られなかつた大きな利点がある。 (発明の効果) 本発明は叙上のように (1) 周期的に極性変換を行ない負電流により間け
つ的に多量の水素ガスが発生するために、直流
電解で発生するガスピツトがなくなる。 (2) 間けつ的に流れる負電流により不働態化が防
止され、溶解が促進されるために低濃度の研摩
液及び低浴温度でも平滑鏡面が得られ、大幅に
研摩コストを低減することができる。 (3) 液組成、浴温度、電流密度等の電解条件の許
容範囲が広いために、製品が均一に仕上るとと
もに管理が容易である。 (4) 研摩液濃度が薄くてもよいために、汲出され
る電解液の量が少なくなり排水処理への負荷が
軽減される。又被処理金属の種類によつては炭
酸ナトリウム、水酸化ナトリウム等の安価な浴
での研摩が可能で、公害防止対策のむづかしい
リン、窒素の問題も解決できる。 等の効果を有するものである。
[Table] Can be done. In addition to this example, a polishing solution of sodium carbonate and sodium hydroxide can also be used to obtain a specular gloss, which is not only an inexpensive polishing bath, but also solves the problems of phosphorus and nitrogen, which are difficult to prevent pollution, and is not found in conventional polishing methods. There are major advantages that could not be avoided. (Effects of the Invention) As stated above, the present invention (1) periodically changes polarity and generates a large amount of hydrogen gas intermittently due to negative current, thereby eliminating gas pits generated by DC electrolysis. (2) Intermittently flowing negative current prevents passivation and promotes dissolution, making it possible to obtain a smooth mirror surface even with low concentration polishing liquid and low bath temperature, significantly reducing polishing costs. can. (3) Since there is a wide allowable range of electrolytic conditions such as liquid composition, bath temperature, and current density, the product can be finished uniformly and is easy to manage. (4) Since the concentration of the polishing solution may be low, the amount of electrolyte pumped out is reduced and the load on wastewater treatment is reduced. Depending on the type of metal to be treated, it is possible to polish with an inexpensive bath such as sodium carbonate or sodium hydroxide, and the problem of phosphorus and nitrogen, which are difficult to prevent pollution, can be solved. It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の陽極電解法、第2図は電流反転
電解法の電圧波形を示す。
FIG. 1 shows the voltage waveform of the conventional anodic electrolysis method, and FIG. 2 shows the voltage waveform of the current reversal electrolysis method.

Claims (1)

【特許請求の範囲】 1 被研摩金属及び不溶性対極をそれぞれ電解研
摩液中に浸漬し、被処理金属と対極との間に正及
び負の電圧を交互に印加するとともに、その周波
数を変化させることにより金属の表面研摩を行な
うことを特徴とする電流反転電解による電解研摩
方法。 2 電圧を交互に印加する電流反転電解におい
て、正の電圧を印加した被研摩金属に対して負の
電圧を印加する反転比率を変化させて、金属の種
類を問わず金属の表面研摩を行なうことを特徴と
する特許請求の範囲第1項記載の電流反転電解に
よる電解研摩方法。
[Claims] 1. The metal to be polished and the insoluble counter electrode are each immersed in an electrolytic polishing solution, and positive and negative voltages are alternately applied between the metal to be polished and the counter electrode, and the frequency thereof is varied. An electrolytic polishing method using current reversal electrolysis, which is characterized by polishing the surface of metal. 2. In current reversal electrolysis in which voltage is applied alternately, the surface of any metal is polished by changing the reversal ratio in which a negative voltage is applied to the metal to be polished to which a positive voltage is applied. An electrolytic polishing method using current reversal electrolysis according to claim 1, characterized in that:
JP1413984A 1984-01-27 1984-01-27 Electropolishing method by current inverting electrolysis Granted JPS60159200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1413984A JPS60159200A (en) 1984-01-27 1984-01-27 Electropolishing method by current inverting electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1413984A JPS60159200A (en) 1984-01-27 1984-01-27 Electropolishing method by current inverting electrolysis

Publications (2)

Publication Number Publication Date
JPS60159200A JPS60159200A (en) 1985-08-20
JPS6312159B2 true JPS6312159B2 (en) 1988-03-17

Family

ID=11852812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1413984A Granted JPS60159200A (en) 1984-01-27 1984-01-27 Electropolishing method by current inverting electrolysis

Country Status (1)

Country Link
JP (1) JPS60159200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453444A (en) * 2010-10-26 2012-05-16 比亚迪股份有限公司 Polishing solution used for amorphous alloy and polishing method of amorphous alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324098A (en) * 1986-02-28 1988-02-01 Chem Yamamoto:Kk Method for removing scale formed by welding of alloy steel
JP2929239B2 (en) * 1989-12-19 1999-08-03 株式会社クボタ Smoke reduction device during rapid acceleration of diesel engine
JP4665502B2 (en) * 2004-05-20 2011-04-06 横河電機株式会社 Electromagnetic flow meter and method for manufacturing electromagnetic flow meter
EP3953503A4 (en) 2019-04-09 2023-01-11 3DM Biomedical Pty Ltd Electropolishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453444A (en) * 2010-10-26 2012-05-16 比亚迪股份有限公司 Polishing solution used for amorphous alloy and polishing method of amorphous alloy

Also Published As

Publication number Publication date
JPS60159200A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
CN101161866B (en) Method for preparing magnesium and magnesium alloy surface coating
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
Raj et al. Pulse anodizing—an overview
US4127450A (en) Method for pretreating surfaces of steel parts for electroplating with organic or inorganic coatings
CN101698955A (en) Stainless steel, titanium and titanium alloy electromechanical blackening method
JPS6312159B2 (en)
US3207679A (en) Method for electroplating on titanium
JPS60116800A (en) Degreasing and activating method by high speed current inversion electrolysis
US4050996A (en) Electochemically exchanging a steel surface with a pure iron surface
US3515650A (en) Method of electroplating nickel on an aluminum article
JPH0240751B2 (en)
JPH01165800A (en) High-speed electrolytic pickling and polishing method
JPH02197591A (en) Method for electroforming copper
JPS585796B2 (en) Manufacturing method of rough aluminum plate for offset printing
JPS6345398A (en) Method for electrolytically coloring aluminum or aluminum alloy
JP3633308B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JPH03229895A (en) Aluminum alloy sheet to be coated for can lid and its production
JPH03173800A (en) Production of substrate for printing plate
JPH04193998A (en) High-speed anodization method by repeated instantaneous current application
JPH0356320B2 (en)
Laban Mass-Production Methods in Depositing Nickel at High Current Density
JPH03191100A (en) Production of support for printing plate
JPS58161795A (en) Method for coloring anodic oxide film of aluminum or aluminum alloy
JPS6396300A (en) Method for pickling cold-rolled and annealed band stainless steel
JPH021391A (en) Production of aluminum support for printing plate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term