JPS59227095A - Screening method of semiconductor storage element - Google Patents

Screening method of semiconductor storage element

Info

Publication number
JPS59227095A
JPS59227095A JP58100288A JP10028883A JPS59227095A JP S59227095 A JPS59227095 A JP S59227095A JP 58100288 A JP58100288 A JP 58100288A JP 10028883 A JP10028883 A JP 10028883A JP S59227095 A JPS59227095 A JP S59227095A
Authority
JP
Japan
Prior art keywords
erased
bits
erasing
bit
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58100288A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsui
清 松井
Toru Yoshida
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58100288A priority Critical patent/JPS59227095A/en
Publication of JPS59227095A publication Critical patent/JPS59227095A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing

Landscapes

  • Non-Volatile Memory (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To discriminate a non-defective element from a defective element by using two different kinds of erasing conditions, and checking an erasing state of a bit after each erasion. CONSTITUTION:In a step S1, a data is written in all bits. Subsequently, in a step S2, all the bits are erased by erasing voltage VPPE which is weaker than rating, and an erasing pulse width tpw2. Next, in an erasing bit comparing process S3, whether a bit which is above 1-bit was erased or not is checked. At this stage, a chip (characteristic C4 and C5) containing a bit which can be erased by a short time tpw2 can be detected. Subsequently, in a step S4, the bit is erased by a rating erasing condition, and thereafter, a data is written in all bits. In a step S5, all the bits are erased by the erasing voltage VPPE which is weaker than rating, and an erasing pulse width tpw2+2.DELTAtpw, and next, in an erasing bit comparing process S6, whether all the bits was erased or not is checked. In this way, the chip (characteristic C4) in which the distribution of an erasion rate is greatly varied can be detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電荷蓄積型半導体記憶素子のスクリーニング
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for screening charge storage type semiconductor memory elements.

〔発明の背景〕[Background of the invention]

電荷蓄積型半導体記憶素子(電気的に書込み。 Charge storage type semiconductor memory element (electrically written.

消去可能な読出し専用メモリで以下EEP−ROMと略
す)の記憶部の構成は、一般的Vこ電界効果トランジス
タ(以下FITと略す)のチャネル上部に電荷蓄積部を
設け、これに電荷を蓄積することにより、スレッシュホ
ールド電圧を変化させて行う。
The structure of the storage section of an erasable read-only memory (hereinafter abbreviated as EEP-ROM) is that a charge storage section is provided above the channel of a general V field effect transistor (hereinafter abbreviated as FIT), and charges are accumulated in this. This is done by changing the threshold voltage.

これを実現する代表的なFETには、普通のFETの基
板とダート電極間に電気的に他回路から絶縁された70
−テインググートと呼ばれる電荷蓄積部を設けたものと
、同様の場所が酸化シリコ/層と窒化シリコン層で形成
され、その界面もしくは、窒化シリコ/内部のトラップ
準位を電荷蓄積(捕獲)部位とするものがある。
A typical FET that achieves this includes a 70mm wire that is electrically isolated from other circuits between the ordinary FET's substrate and the dart electrode.
- A similar place is formed with a silicon oxide layer and a silicon nitride layer, and the interface or the trap level inside the silicon nitride is used as a charge accumulation (capture) site. There is something to do.

両者の構造はかなり異なるが、基本的な記憶メカニズム
、消去メカニズムは同じであるので、以下の説明では主
に後者について述べる。
Although the structures of the two are quite different, the basic memory and erasure mechanisms are the same, so the following explanation will mainly focus on the latter.

第1図は、EEP・ROMの記憶素子の断面図であり、
酸化シリコン層1と窒化シリコン層2.多結晶ポリシリ
コア層3から形成され、多結晶ポリシリコン層3.窒化
シリコン層2は酸化シリコン層1によって覆われている
。そして基板のN層はソースSとドV−ンDと接続され
、P層は酸化シリコン層lを介して窒化シリコン層2と
対向配置しである。酸化シリコン層1と窒化シリコン層
2の界面もしくは窒化シリコン層内部のトラップ準位に
電荷が捕獲されていない状態では情報が書かれていない
ことに対応する。このとき、第2図のダート電圧(Va
B)−ドレーン電流(In5)特性図では、vos  
IDS特性が曲線4の状態にあり、スレッシュホールド
電圧Vthlは負となる。
FIG. 1 is a cross-sectional view of a memory element of an EEP ROM,
Silicon oxide layer 1 and silicon nitride layer 2. Formed from a polycrystalline polysilicon layer 3, a polycrystalline polysilicon layer 3. Silicon nitride layer 2 is covered by silicon oxide layer 1 . The N layer of the substrate is connected to the source S and the drain D, and the P layer is placed opposite to the silicon nitride layer 2 with the silicon oxide layer 1 interposed therebetween. This corresponds to the fact that no information is written in a state where charges are not captured at the interface between the silicon oxide layer 1 and the silicon nitride layer 2 or at the trap level inside the silicon nitride layer. At this time, the dart voltage (Va
B) - drain current (In5) characteristic diagram, vos
The IDS characteristic is in the state of curve 4, and the threshold voltage Vthl is negative.

情報の書込みは何らかの手段で酸化シリコン層1と窒化
シリコン層2の界面もしくは窒化シリコン内部のトラッ
プ準位に電荷(エレクトロン)を捕獲させることによっ
て行なう。たとえば、ゲートGに高電圧を印加し、基板
、ソースS、ドレーンDを接地し、薄い酸化シリコン層
1中を電子がトンネル遷移し、トラップ準位に電荷を捕
獲させる。捕獲嘔れた電荷の影響によって、書込み後の
vas  ID8特性は第2図の曲線5の状態に推移し
、スレッシュホールド電圧Vtbzは大きくなる。
Information is written by capturing charges (electrons) at the interface between the silicon oxide layer 1 and the silicon nitride layer 2 or at a trap level inside the silicon nitride by some means. For example, a high voltage is applied to the gate G, the substrate, the source S, and the drain D are grounded, and electrons tunnel through the thin silicon oxide layer 1 to trap charges in the trap level. Due to the influence of the trapped charges, the vas ID8 characteristic after writing changes to the state shown by curve 5 in FIG. 2, and the threshold voltage Vtbz increases.

記憶情報の読み出しはダートGを接地しく第2図の読み
出しダート電圧VR)、トレー/電流ID8の有無をセ
ンスアンプで判定することで行う。たとえば、情報が書
かれてない記憶素子では読み出しダート電圧vRはスレ
ッシュホールド電圧Vthtより大きいためトレー/電
流IDI+は流れ、情報が書かれている記憶素子では読
み出しダート電圧VRはスレッシュホールド電圧Vth
2より小きくトレー7電流ID8は流れない。
Reading of stored information is performed by grounding the dart G and determining the presence or absence of the tray/current ID8 using the read dart voltage VR in FIG. 2 using a sense amplifier. For example, in a memory element where no information is written, the read dirt voltage vR is greater than the threshold voltage Vtht, so the tray/current IDI+ flows, and in a memory element where information is written, the read dirt voltage VR is equal to the threshold voltage Vth.
2, the tray 7 current ID8 does not flow.

また、記憶情報の消去は、トラップ準位に捕獲されてい
る電荷を無くせばよく、書込み時とは逆に、基板に高電
圧を印加し、r−トGを接地することにより、薄い酸化
シリコン層1中を電子がトンネルし、消去が行える。
In addition, to erase stored information, all that is needed is to eliminate the charge trapped in the trap level.Contrary to the writing process, by applying a high voltage to the substrate and grounding r-to-G, thin oxide silicon Electrons tunnel through layer 1, allowing erasure.

ところで、捕獲電荷がリークした場合、第2図のvos
  IDII特性は曲線6の状態にな9、スレッシュホ
ールド電圧vth3は読み出しダート電圧vRよりも小
さくなる。そして、トレー/電流ID8が流れはじめ、
これがセンスアンプで検出できる程度になれば書込まれ
た情報が失われたことになる。
By the way, if the captured charge leaks, vos in Figure 2
The IDII characteristic is in the state of curve 69, and the threshold voltage vth3 is smaller than the read dirt voltage vR. Then, tray/current ID8 begins to flow,
If this reaches a level that can be detected by the sense amplifier, it means that the written information has been lost.

この時点が記憶素子の寿命である。普面この寿命は10
年以上に設計されている。
This point is the end of the life of the memory element. Normally this lifespan is 10
Designed for over 20 years.

ところが、薄い酸化シリコン層lに欠陥がある場合とか
、それに不純物が含まれている場合とか、さらに酸化7
リコン層lが極端に薄すぎる場合には通常のリークより
も早く捕獲電荷がリークし記憶寿命は短くなる。また、
同一製造プロセスであっても電荷を捕獲するためのトラ
ップ準位量が異なり、これが正常のものに比べ少いと、
捕獲電荷量も少なくなり、それだけ記憶寿命は短くなる
However, if there are defects in the thin silicon oxide layer l, or if it contains impurities, further oxidation
If the silicon layer 1 is extremely thin, the captured charges will leak faster than normal leakage and the memory life will be shortened. Also,
Even if the manufacturing process is the same, the amount of trap levels for trapping charges is different, and if this is smaller than the normal one,
The amount of captured charge also decreases, and the memory life becomes shorter accordingly.

このような記憶寿命を短くする要因を持った半導体記憶
素子を抜粋すべくスクリーニング方法が本出願人等によ
り開発されているが、これまでのものは、予め記憶され
ているEEP −ROMを用い、消去条件を定格よりも
充分に弱い領域から、EEP・ROMの全てのbttが
消去される領域まで変化させ消去し、gEP−ROMの
消去ビットより求めた消去率の分布形状を求めることに
より、良品、不良品の区別を行っていた。
A screening method has been developed by the applicant and others to select semiconductor memory elements that have such factors that shorten the memory life. By changing the erasing conditions from a region that is sufficiently weaker than the rated value to a region where all btts of the EEP-ROM are erased, and determining the distribution shape of the erasure rate obtained from the erasure bits of the gEP-ROM, a good product can be detected. , to distinguish between defective products.

第3図は、その−例を示し、消去率(消去されたビット
数/消去しようとしたビット数:以下Eと略す)と消去
・やラメータの1つである消去1?ルス幅t、Wの関係
(消去特性)を表わしたものである。第3図中、C1,
、C2,C3は3つのチップより求めた消去率の分布形
状を示しており、clはその分布形状が正常なもの(バ
ラツキが少ない)を示し、C2,C3はその分布形状か
らEl(%)のピット分だけ外れるビット(他のビット
に比べ短い時間で消えたビット)が存在していることを
示し、この様なもの(C2,C3)を不良品として取り
除くことができる。
FIG. 3 shows an example of this, and shows the erasure rate (number of erased bits/number of bits attempted to be erased: hereinafter abbreviated as E) and erasure rate, which is one of the erase parameters. This figure shows the relationship between the pulse width t and W (erasing characteristics). In Figure 3, C1,
, C2 and C3 indicate the distribution shape of the erasure rate obtained from the three chips, cl indicates that the distribution shape is normal (less variation), and C2 and C3 indicate El (%) from the distribution shape. This shows that there are bits that are removed by the amount of pits (bits that disappear in a shorter time than other bits), and such bits (C2, C3) can be removed as defective products.

ところで、これまでのスクリーニング方法では次のよう
な問題が残っていた。
By the way, the following problems remain with conventional screening methods.

(1)  消去条件と消去率の関係を求める場合、1回
のチップ消去を行う前に必ず書込み操作が必要であり5
通常この書込みに要する時間は数十秒かかる。よって、
1チツプの消去特性を調べるには士数分の時間が必要で
ある。そして、求めた結果を作図し、その分布形状を求
め評価するまでにはかなりの時間を要していた。
(1) When determining the relationship between erase conditions and erase rate, a write operation is always required before performing one chip erase.
Normally, this writing takes several tens of seconds. Therefore,
It takes several hours to investigate the erasure characteristics of one chip. It takes a considerable amount of time to plot the obtained results, find and evaluate the distribution shape.

(2)  分布形状から外れるビットがあっても、その
ビットが消え始める時間が大きければ(第3図C3のt
pwl)、寿命に差し支えなく、この様なものまで取り
除くと、過剰なスクリーニングとなる。
(2) Even if there is a bit that deviates from the distribution shape, if the time it takes for that bit to start disappearing is long (t in C3 in Figure 3)
pwl), there is no problem with the lifespan, and if such things are removed, it will be excessive screening.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題点に鑑みなされたものでおって、
記憶寿命を短くする要因を持った半導体記憶素子を予め
非破壊で咲出できるスクリーニング方法を提供するにあ
る。
The present invention has been made in view of the above-mentioned problems.
An object of the present invention is to provide a screening method capable of non-destructively identifying semiconductor memory elements having factors that shorten memory life.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、初期の段階で消
去率の分布形状を求め、加速寿命試験を行ない、実際に
電荷がリークし、不良となった半導体記憶素子の分布形
状を求めるというものであって、2種類の消去条件で消
去ビットをチェックするようにしたものである。これに
よって良品。
In order to achieve the above object, the present invention determines the distribution shape of the erase rate at an early stage, performs an accelerated life test, and determines the distribution shape of semiconductor memory elements that have actually leaked charge and become defective. The erase bit is checked under two types of erase conditions. This makes it a good product.

不良品の区別を行なうものである。This is to distinguish between defective products.

すなわち本発明の特徴は、予めデータが書込まれた電荷
蓄積型半導体記憶素子を用い、定格よりも充分に弱い消
去条件で消去し、半導体記憶素子の1ビット以上が消去
できたがをチェックする検出手段と、前記消去条件とは
異なる消去条件で消去し、半導体記憶素子の全てのビッ
トが消去できたかをチェックする検出手段を用い、両者
の検出比較結果から良品、不良品を区別するようにした
点である。
In other words, the feature of the present invention is to use a charge storage type semiconductor memory element in which data has been written in advance, perform erasing under sufficiently weaker erase conditions than the rated value, and check whether one or more bits of the semiconductor memory element have been erased. A detecting means and a detecting means for erasing under erasing conditions different from the above-mentioned erasing conditions and checking whether all bits of the semiconductor memory element have been erased are used to distinguish between good products and defective products based on the detection comparison result between the two. This is the point.

〔発明の実施例〕[Embodiments of the invention]

以下、第4図、第5図に従って本発明の一実施例を説明
する。第4図は加速寿命試験を行なった半導体記憶素子
の代表的な消去率の分布形状を示したもので、第5図は
本発明のスクリーニング方法を説明するためのフローチ
ャートである。
An embodiment of the present invention will be described below with reference to FIGS. 4 and 5. FIG. 4 shows a typical distribution shape of the erasure rate of semiconductor memory elements subjected to an accelerated life test, and FIG. 5 is a flowchart for explaining the screening method of the present invention.

第4図においては、4個の半導体記憶素子(以下チップ
と略す)の消去率の分布形状を示してあり、特性C4が
電荷リークにより不良になったチップの消去特性である
。なお、この時性C4のチップはt1w□〜t1w3の
間に81%だけ消去できる欠陥ビットがあることから仁
のような特性を示している。特性C4のチップと他のチ
ップとを比較し、大きく異なる点は、(1)特性C4,
C5のチップは他のチップと比べ一番短い時間tpw(
tpwz)で消去したこと。(2)特性c5〜c7の消
去率の分布にはばらつきが少なく、最初の1ビツト目が
消えた時間tpvrから全てのビットが消去されるまで
の時間tpw’の差Δtp7は数msであるが、特性c
4のチップは約2倍の時間(2Δtpw)を要している
ことが確認できる。
FIG. 4 shows the distribution shape of the erase rate of four semiconductor memory elements (hereinafter abbreviated as chips), and characteristic C4 is the erase characteristic of a chip that has become defective due to charge leakage. Note that the chip with temporality C4 has defective bits that can be erased by 81% between t1w□ and t1w3, so it exhibits a characteristic similar to that of a chip. Comparing the chip with characteristic C4 with other chips, the major differences are (1) characteristic C4,
The C5 chip has the shortest time tpw (
tpwz). (2) There is little variation in the distribution of erasure rates for characteristics c5 to c7, and the difference Δtp7 between the time tpvr when the first bit disappears and the time tpw' until all bits are erased is several ms. , characteristic c
It can be confirmed that the No. 4 chip requires about twice as much time (2Δtpw).

本発明は前記第4図の特性結果から第5図のフローチャ
ートで説明の如きのスクリーニング方法を開発したもの
である。すなわち、ステップs1テ全ヒツトにデータを
書込む。そして、ステップS2で定格より弱い消去電圧
(Vppz )、消去・ぐルス幅tpW2で全ビットを
消去する。さらに、消去ピット比較プロ七スS3で、1
ビット以上のビットが消去したか否かをチェックする。
The present invention has developed a screening method as explained in the flowchart of FIG. 5 based on the characteristic results of FIG. 4. That is, in step s1, data is written to all hits. Then, in step S2, all bits are erased using an erase voltage (Vppz) weaker than the rated value and an erase/write width tpW2. Furthermore, in the erase pit comparison Pro 7S S3, 1
Check whether more than one bit has been erased.

この段階で短い時間t pW 2で消去できるビットを
含んだチップ(特性C4とc5)を検出することができ
る。次にステラ7’S4で定格消去条件で消去した後、
全てのビットにデータを書込む。そして、ステップS5
で定格より弱い消去電圧(Vppg)、消去パルス幅t
pwz+2・Δtpwで全ビットを消去し、次に消去ビ
ット比較プロ七スS6で全ビットが消去できたが否かを
チェックする。これによって、消去率の分布が大きくば
らついているチツf(特性c4 )を検出することがで
きる。
At this stage it is possible to detect chips containing bits that can be erased in a short time t pW 2 (characteristics C4 and c5). Next, after erasing with Stella 7'S4 under the rated erasing conditions,
Write data to all bits. And step S5
Erase voltage (Vppg) weaker than the rating, erase pulse width t
All bits are erased with pwz+2·Δtpw, and then it is checked in erased bit comparison process S6 whether all bits have been erased. As a result, it is possible to detect chips f (characteristic c4) in which the distribution of erasure rates varies widely.

なお、ステラfs5における消去・臂ルス幅は、サンプ
ルロット、品種により異なる故に、適宜設定するもので
ある。
It should be noted that the erasure/arm width in Stella fs5 varies depending on the sample lot and product type, and is therefore set appropriately.

上述の説明からも明らかなように、初期特性として異な
る2種類の消去条件を用い、各消去後のビットの消去状
態をチェックすることにょ9、チップの良品、不良品の
区別ができ、有効なスクリーニング方法である。
As is clear from the above explanation, by using two different types of erase conditions as initial characteristics and checking the erased state of the bit after each erase9, it is possible to distinguish between good and defective chips, and to effectively This is a screening method.

〔発明の効果〕〔Effect of the invention〕

上述の実施例からも明らかなように本発明の半導体記憶
素子のスクリーニング方法は、異なる2種類の消去条件
を用い、各消去後のビットの消去状態をチェックするこ
とにより半導体記憶素子の良品、不良品の判別を行なう
ものであるから、従来のスクリーニング方法に比して、
スクリーニングに要した時間を大幅に削減でき、しかも
過剰なスクリーニングを防止できる等の利点がある。
As is clear from the above embodiments, the semiconductor memory element screening method of the present invention uses two different types of erase conditions and checks the erased state of the bit after each erase, thereby determining whether the semiconductor memory element is good or defective. Since it is used to determine good products, compared to conventional screening methods,
This method has advantages such as being able to significantly reduce the time required for screening and preventing excessive screening.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の対象となる半導体記憶素子の断面構造
図、第2図はその電圧−電流特性図、第3図は消去され
たビット数/消去しようとしたビット数と消去ノやラメ
ータの1つである消去ハルス幅の関係を示す消去特性図
、第4図は本発明の加速寿命試験を行なった半導体素子
の代表的な消去率の分布状態を示した消去特性図、第5
図は本発明によるスクリーニング方法の一実施例を説明
するためのフローチャ・−トである。 S2・・・チップ消去テストl、83・・・消去ビット
比較フロセス1、S5・・・チップ消去テスト2、S6
・・・消去ビット比較プロセス2゜ 代理人 弁理士 秋 本 正 実 第1囚 第2図 GS 第3図 −560− 第5A NG         G。
FIG. 1 is a cross-sectional structural diagram of a semiconductor memory element to which the present invention is applied, FIG. 2 is a voltage-current characteristic diagram thereof, and FIG. 3 is a diagram showing the number of erased bits/the number of bits attempted to be erased and the erasure parameters. FIG. 4 is an erasure characteristic diagram showing the relationship between the erasure Hals width, which is one of the characteristics of the erasure characteristics, and FIG.
The figure is a flowchart for explaining one embodiment of the screening method according to the present invention. S2...Chip erase test 1, 83...Erase bit comparison process 1, S5...Chip erase test 2, S6
... Erased bit comparison process 2゜ Agent Patent attorney Tadashi Akimoto Real 1st prisoner Figure 2 GS Figure 3 -560- 5A NG G.

Claims (1)

【特許請求の範囲】[Claims] 予めデータが書込まれた電荷蓄積型の半導体記憶素子の
スクリーニング方法において、該半導体記憶素子を定格
よりも充分に弱い消去条件で記憶データを消去した際、
該半導体記憶素子の1ビット以上が消去できたか否かを
チェックする第1のチェック検出工程と、前記消去条件
とは異なる消去条件で記憶データを消去した際、半導体
記憶素子の全ビットが消去できたか否かをチェックする
第2のチェック検出工程とからなり、両チェック検出結
果から半導体記憶素子の良品、不良品を判別することを
特徴とする半導体記憶素子のスクリーニング方法。
In a method for screening a charge storage type semiconductor memory element in which data has been written in advance, when data is erased from the semiconductor memory element under erase conditions that are sufficiently weaker than the rated value,
a first check detection step for checking whether one or more bits of the semiconductor memory element can be erased; and a first check detection step for checking whether one or more bits of the semiconductor memory element can be erased; 1. A method for screening a semiconductor memory element, comprising: a second check detection step of checking whether the semiconductor memory element is good or defective based on the results of both checks.
JP58100288A 1983-06-07 1983-06-07 Screening method of semiconductor storage element Pending JPS59227095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100288A JPS59227095A (en) 1983-06-07 1983-06-07 Screening method of semiconductor storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100288A JPS59227095A (en) 1983-06-07 1983-06-07 Screening method of semiconductor storage element

Publications (1)

Publication Number Publication Date
JPS59227095A true JPS59227095A (en) 1984-12-20

Family

ID=14269994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100288A Pending JPS59227095A (en) 1983-06-07 1983-06-07 Screening method of semiconductor storage element

Country Status (1)

Country Link
JP (1) JPS59227095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244498A (en) * 1987-03-31 1988-10-11 Toshiba Corp Nonvolatile semiconductor memory device
JPS6417299A (en) * 1987-07-09 1989-01-20 Nippon Electric Ic Microcomput Semiconductor storage device
JPS6462900A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Method for evaluating nonvolatile storage element and data processor using it
JPH0855499A (en) * 1994-06-07 1996-02-27 Sgs Thomson Microelettronica Spa Factory test method of flash eeprom device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244498A (en) * 1987-03-31 1988-10-11 Toshiba Corp Nonvolatile semiconductor memory device
JPS6417299A (en) * 1987-07-09 1989-01-20 Nippon Electric Ic Microcomput Semiconductor storage device
JPS6462900A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Method for evaluating nonvolatile storage element and data processor using it
JPH0855499A (en) * 1994-06-07 1996-02-27 Sgs Thomson Microelettronica Spa Factory test method of flash eeprom device

Similar Documents

Publication Publication Date Title
US6684173B2 (en) System and method of testing non-volatile memory cells
US7050344B1 (en) Failure test method for split gate flash memory
US6331951B1 (en) Method and system for embedded chip erase verification
US6091652A (en) Testing semiconductor devices for data retention
US5793675A (en) Method of evaluating the gate oxide of non-volatile EPROM, EEPROM and flash-EEPROM memories
US20070025167A1 (en) Method for testing a memory device, test unit for testing a memory device and memory device
JPH076599A (en) Evaluating method of dielectric layer of cell of nonvolatile memory array and testing device of nonvolatile memory array
US20050237783A1 (en) Electrically erasable charge trap nonvolatile memory cells having erase threshold voltage that is higher than an initial threshold voltage
US6563752B2 (en) Qualification test method and circuit for a non-volatile memory
US4963825A (en) Method of screening EPROM-related devices for endurance failure
JPS59227095A (en) Screening method of semiconductor storage element
JP3613072B2 (en) Method for evaluating charge retention life of nonvolatile semiconductor memory
JPH0935500A (en) Screening method for nonvolatile semiconductor memory
US6815231B2 (en) Method of testing and manufacturing nonvolatile semiconductor memory
JPH11354601A (en) Test and manufacture of semiconductor device
JP2006127582A (en) Manufacturing method of semiconductor apparatus
JPS5856366A (en) Screening method for semiconductor memory storage
JP3984109B2 (en) Manufacturing method of semiconductor device
US6822259B1 (en) Method of detecting and distinguishing stack gate edge defects at the source or drain junction
JPH08130262A (en) Nonvolatile semiconductor memory and reliability ensuring method therefor
JPS60130861A (en) Screening method of charge storage type semiconductor memory storage
US6808945B1 (en) Method and system for testing tunnel oxide on a memory-related structure
KR20010061404A (en) Method of erasing a flash memory cell
JPH0997500A (en) Non-volatile semiconductor storage device
JPH1084025A (en) Method of evaluating tunnel insulating film quality and method of screening semiconductor device