JPS59225264A - Device in which engine and absorption refrigerator are combined - Google Patents

Device in which engine and absorption refrigerator are combined

Info

Publication number
JPS59225264A
JPS59225264A JP58098652A JP9865283A JPS59225264A JP S59225264 A JPS59225264 A JP S59225264A JP 58098652 A JP58098652 A JP 58098652A JP 9865283 A JP9865283 A JP 9865283A JP S59225264 A JPS59225264 A JP S59225264A
Authority
JP
Japan
Prior art keywords
cooling water
engine cooling
engine
heater
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58098652A
Other languages
Japanese (ja)
Inventor
彰 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58098652A priority Critical patent/JPS59225264A/en
Publication of JPS59225264A publication Critical patent/JPS59225264A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、エンジンと吸収冷凍機とを組み合せた装置す
なわちエンジンのジャケットから流出する温水(以下、
エンジン冷却水という)の熱を回収して吸収冷凍機を駆
動し、かつ、エンジンへ戻すエンジン冷却水を放熱器で
設定温度に調節するようにした装置(以下、此種装置と
いう)K関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is directed to a device that combines an engine and an absorption chiller, that is, hot water flowing out from the engine jacket (hereinafter referred to as
This invention relates to a device (hereinafter referred to as this type of device) that recovers heat from engine cooling water to drive an absorption refrigerator, and adjusts the temperature of the engine cooling water returned to the engine to a set temperature using a radiator.

(ロ)従来技術 従来、此種装置においては、例えば実開昭57−567
7号公報に説明されているように、エンジンのジャケッ
トと吸収冷凍機とを結ぶ熱回収回路にバイパス路を設け
、このバイパス路に流れる温水(エンジン冷却水)の流
量を冷房負荷に応じて調節して吸収冷凍機の発生器の加
熱量を制御し、かつ、前記熱回収回路罠は熱反換器を設
けてこの熱交換器罠冷却水を流し、この冷却水の流量を
調節してエンジンのジャケットへ戻る温水(エンジン冷
却水)を設定温度に保つ手段が知られている。
(b) Prior art Conventionally, in this type of device, for example,
As explained in Publication No. 7, a bypass path is provided in the heat recovery circuit that connects the engine jacket and the absorption refrigerator, and the flow rate of hot water (engine cooling water) flowing through this bypass path is adjusted according to the cooling load. The heat recovery circuit trap is provided with a heat exchanger to flow cooling water into the heat exchanger trap, and the flow rate of this cooling water is adjusted to control the heating amount of the generator of the absorption chiller. A known method is to maintain the warm water (engine cooling water) that returns to the engine jacket at a set temperature.

すなわち、この従来手段においては、冷房負荷が小さく
なると吸収冷凍機の発生器に備えた加熱器の伝熱管内へ
流れるエンジン冷却水の流量を減らし、発生器での吸収
液とエンジン冷却水との熱交換量を減じて吸収冷凍機の
冷凍能力を低下させている。しかし、エンジン冷却水の
流量を減らし過ぎると伝熱管内のエンジン冷却水が層流
状態となって伝熱抵抗が増大し、加熱器の伝熱性能が悪
くなり、エンジン冷却水と吸収液との熱交換が良好に行
われガくなって吸収冷凍機の能力が低下し過ぎる欠点が
ある。特に、複数台並設されたエンジンの各ジャケット
から得られるエンジン冷却水の熱を回収して吸収冷凍機
を駆動するようにし、かつ、エンジンとエンジン冷却水
のポンプを発停するようにした此種装置にあっては、停
止されるエンジンとポンプの台数が増すと吸収冷凍機の
発生器に供給されるエンジン冷却水の流量が減るために
、吸収冷凍機の能力の過低下を生じやすい。
In other words, in this conventional means, when the cooling load becomes small, the flow rate of the engine cooling water flowing into the heat transfer tube of the heater provided in the generator of the absorption refrigerator is reduced, and the exchange between the absorption liquid in the generator and the engine cooling water is reduced. The amount of heat exchange is reduced to reduce the refrigerating capacity of the absorption refrigerator. However, if the flow rate of the engine cooling water is reduced too much, the engine cooling water in the heat transfer tube becomes laminar, increasing the heat transfer resistance and deteriorating the heat transfer performance of the heater. There is a drawback that heat exchange is not carried out well and the capacity of the absorption refrigerator is reduced too much. In particular, this system recovers the heat of the engine cooling water obtained from each jacket of multiple engines installed in parallel to drive the absorption refrigerator, and also starts and stops the engine and engine cooling water pump. In this type of equipment, as the number of engines and pumps that are stopped increases, the flow rate of engine cooling water supplied to the generator of the absorption refrigerating machine decreases, which tends to cause excessive reduction in the capacity of the absorption refrigerating machine.

(ハ) 発明の目的 本発明は、低負荷時やエンジン稼動台数の減少時など吸
収冷凍機の発生器へ供給されるエンジン冷却水の流量が
減少した時に生じやすい吸収冷凍機の能力の過低下を防
ぎ、かつ、設定温度以下に保たれたエンジン冷却水をエ
ンジンへ戻すことのできる装置の提供を目的とする。
(c) Purpose of the Invention The present invention addresses excessive reduction in the capacity of an absorption chiller that tends to occur when the flow rate of engine cooling water supplied to the generator of the absorption chiller decreases, such as when the load is low or the number of engines in operation decreases. The purpose of the present invention is to provide a device capable of preventing engine cooling water from occurring and returning engine cooling water maintained below a set temperature to the engine.

に) 発明の構成 本発明は、此種装置において、吸収冷凍機の発生器に複
数の加熱器を備え、かつ、発生器に供給されるエンジン
冷却水の流量が減少するとエンジン冷却水の流通する加
熱器の個数を減じ、エンジンへ戻る冷却水の温度を放熱
器で調整する制御機構を備えることにより、エンジン冷
却水が通過する加熱器の伝熱管の長さあるいは伝熱管の
数(伝熱管群の断面積)をエンジン冷却水の流量の減少
に対応させて減じ得るようにし、伝熱管内の流速が低下
し過ぎるのを防いで乱流を発生させ、加熱器の伝熱性能
が悪くなるのを防いで吸収冷凍機の能力の過低下を防止
し、かつ、設定温度以下のエンジン冷却水をエンジンへ
戻し得るようにしたものである。
2) Structure of the Invention The present invention provides an apparatus of this kind in which a generator of an absorption refrigerator is provided with a plurality of heaters, and when the flow rate of engine cooling water supplied to the generator decreases, the engine cooling water is stopped flowing. By reducing the number of heaters and providing a control mechanism that uses a radiator to adjust the temperature of the cooling water that returns to the engine, the length or number of heat exchanger tubes (heat exchanger tube group) of the heater through which engine cooling water passes can be The cross-sectional area of This prevents excessive reduction in the capacity of the absorption refrigerating machine, and allows engine cooling water below a set temperature to be returned to the engine.

(ホ)実施例 第1図は本発明装置の一実施例を示した概略構成図で、
(1)、(I)は並設されているエンジン、(2)は吸
収冷凍機、(3)は放熱器、(4)はエンジン(1)、
(1)の各ジャケットと放熱器(3)とを並列接続l−
だエンジン冷却水回路、(5)、筒はエンジン冷却水の
ポンプである。また、(6)は発生器、(力は凝縮器、
(8)は蒸発器、(9)は吸収器、oo)は溶液熱交換
器で、これらを冷媒液流下管aυ、冷媒ポンプα2を有
する冷媒還流管(131、溶液ポンプ04)を有する稀
液管(1飄濃液管(161で一気密罠接続して吸収冷凍
機(2)が構成されている。
(E) Embodiment FIG. 1 is a schematic diagram showing an embodiment of the device of the present invention.
(1), (I) are engines installed in parallel, (2) is an absorption refrigerator, (3) is a radiator, (4) is an engine (1),
(1) and the heat sink (3) are connected in parallel l-
The engine cooling water circuit (5) is the engine cooling water pump. Also, (6) is a generator, (force is a condenser,
(8) is an evaporator, (9) is an absorber, and oo) is a solution heat exchanger. The absorption refrigerator (2) is constructed by connecting the pipes (1 concentrated liquid pipe) in an airtight trap (161).

aηは発生器(6)用加熱器、a唱ま凝縮器(7)用冷
却器、a鐸は蒸発器(8)用冷水器、(4)は吸収器(
9)用冷却器及び(21)は放熱器(3)用冷却器で、
冷水器(LLICは冷水管(2りを接続して冷水が負荷
側熱交換器(図示せず)へ供給され、冷却器(l飄(イ
)、(21)には冷却水管(ハ)を接続して海水その他
の冷却水が吸収器(9)、凝縮器(力、放熱器(3)を
順次流通するようになっている。
aη is the heater for the generator (6), a is the cooler for the condenser (7), a is the water cooler for the evaporator (8), and (4) is the absorber (
9) cooler and (21) is a cooler for radiator (3),
The water cooler (LLIC) connects two cold water pipes (2) to supply cold water to the load-side heat exchanger (not shown), and the cooler (21) has a cooling water pipe (c) connected to it. Seawater or other cooling water is connected to the absorber (9), the condenser (power supply), and the radiator (3) so that it flows in sequence.

(24))ま第1三方弁(■1)を介してエンジン冷却
水回路(4)ニ設けたエンジン冷却水の熱回収回路で、
この熱回収回路の上流側と加熱器aηを構成している伝
熱管群の入口側ヘッダーと接続し、熱回収回路αηの下
流側と伝熱管群の出口側ヘッダーと接続してエンジンジ
ャケットからの高温冷却水が発生器(6)罠供給される
ようになっている。また、加熱器(17)の伝熱管群中
間部にもヘラグーが形成されていて、加熱器0ηは第1
加熱器aηと第2加熱器aηとに縦割りで分割されてお
り、かつ、中間部ヘラグーには第1加熱器αηを側路す
る熱回収バイパス路(財)が接続されている。(ト)、
(ト)は上流側の熱回収回路(財)、熱回収バイパス路
(財)に夫々備えた弁である。そして弁(ト)を開き弁
(ト)を閉じるとエンジン冷却水は第中間部へラグ−に
は孔その他の流路が形成されている。
(24)) Also, the engine cooling water heat recovery circuit provided in the engine cooling water circuit (4) via the first three-way valve (■1),
The upstream side of this heat recovery circuit is connected to the inlet header of the heat exchanger tube group constituting the heater aη, and the downstream side of the heat recovery circuit αη is connected to the outlet side header of the heat exchanger tube group to remove the heat from the engine jacket. High temperature cooling water is supplied to the generator (6) trap. In addition, a heat exchanger is formed in the middle part of the heat exchanger tube group of the heater (17), and the heater 0η is the first
It is vertically divided into a heater aη and a second heater aη, and a heat recovery bypass path bypassing the first heater αη is connected to the intermediate heater. (to),
(G) is a valve provided in the upstream heat recovery circuit (goods) and the heat recovery bypass path (goods). When the valve (G) is opened and the valve (G) is closed, the engine cooling water flows to the intermediate portion where holes and other flow paths are formed in the lug.

また、(25)は第2三方弁(V、)を介してエンジン
冷却水回路(4)K設けたエンジン冷却水の放熱器(3
)バイパス路である。
In addition, (25) is an engine cooling water radiator (3) provided with an engine cooling water circuit (4)K via a second three-way valve (V,).
) It is a bypass road.

(S、)は冷水負荷検出器、(Sρはエンジン冷却水の
エンジンジャケット入口側温度を感知する検出器、(C
)は、冷水負荷検出器(S、)及び/または検出器(S
2)の信号を受け、あるいは、エンジン冷却水ポンプ(
5)、(5)の発停信号を受け、第1、第2三方弁(V
、)、(V、)弁(V) 、(め を制御する制御器で
ある。
(S,) is a cold water load detector, (Sρ is a detector that senses the engine jacket inlet side temperature of engine cooling water, (C
) is the chilled water load detector (S, ) and/or the detector (S
2), or the engine cooling water pump (
5), upon receiving the start/stop signals of (5), the first and second three-way valves (V
, ), (V,) This is a controller that controls the valves (V) and (me.

次に、このように構成された本発明装置の動作例を説明
する。
Next, an example of the operation of the apparatus of the present invention configured as described above will be explained.

(A)  エンジンが2台稼動されている場合冷水負荷
が100%から0%へ減少するとき、制御器(C)は、
冷水負荷検出器(S、)の信号を受けて、第1三方弁(
V、)の熱回収回路(24)側流路を全開から全開へ比
例制御すると共にエンジン冷却水回路(4)側流、路を
全開から全開へ比例101」御し、冷水負荷が増大する
ときは、減少するときとは逆に制御することにより、′
冷水負荷に応じて発生器(6)へのエンジン冷却水の流
量を調節する。また、制御器(C)は、冷水負荷が50
%を越えているときは弁(V)を全開圧すると共に弁(
V)を全開圧してエンジン冷却水が第1加熱器(171
,第2加熱器(1石を順次流通するようにし、冷水負荷
が50%以下になると弁(V)を全開にすると共忙弁(
V)を全開にしてエンジン冷却水が第1加熱器側をバイ
パスして第2加熱器θηのみを流通するように制御する
。エンジン冷却水が第1加熱器Q力をバイパスするよう
に制御することにより、第2加熱器(I71の伝熱管内
を流れるエンジン冷却水の流動抵抗は、エンジン冷却水
が第1、第2加熱器(171,a:0を順次流れる場合
と(らべて略半減するので、例えば冷水負荷が100%
から50%へ減少して発生器(6)へのエンジン冷却水
の流量が半減するように調節されても、伝熱管内の流速
は同程度に保たれ、伝熱管の伝熱抵抗が同程度に維持さ
れる。このように、50%負荷時には発生器(6)での
エンジン冷却水と吸収液との熱交換面積が100%負荷
時の半分に調整され、かつ、伝熱管の伝熱抵抗は同程度
に維持されるので、吸収冷凍機(2)は50%負荷に見
合う冷凍能力を発揮することができ、能力不足を防止で
きる。
(A) When two engines are in operation and the chilled water load decreases from 100% to 0%, the controller (C)
In response to the signal from the chilled water load detector (S,), the first three-way valve (
When the chilled water load increases, the heat recovery circuit (24) side flow of the engine cooling water circuit (24) is proportionally controlled from fully open to fully open, and the engine cooling water circuit (4) side flow is proportionally controlled from fully open to fully open. By controlling in the opposite direction when decreasing, ′
The flow rate of engine cooling water to the generator (6) is adjusted according to the cold water load. In addition, the controller (C) has a chilled water load of 50
%, fully open the valve (V) and close the valve (
V) is fully opened and the engine cooling water flows to the first heater (171
, 2nd heater (one stone is made to flow sequentially, and when the cold water load is less than 50%, the valve (V) is fully opened, and the co-busy valve (
V) is fully opened to control the engine cooling water so that it bypasses the first heater side and flows only through the second heater θη. By controlling the engine cooling water to bypass the first heater Q force, the flow resistance of the engine cooling water flowing through the heat exchanger tube of the second heater (I71) is reduced so that the engine cooling water is (171, a: 0) is approximately halved compared to (171, a: 0), so for example, if the cold water load is 100%
Even if the flow rate of engine cooling water to the generator (6) is halved by decreasing from will be maintained. In this way, at 50% load, the heat exchange area between engine cooling water and absorption liquid in the generator (6) is adjusted to half that of 100% load, and the heat transfer resistance of the heat transfer tubes is maintained at the same level. Therefore, the absorption refrigerating machine (2) can exhibit a refrigerating capacity corresponding to the 50% load, and can prevent insufficient capacity.

また、制御器(C)は、検出器(Sρの信号を受け、こ
の検出器の感知温度が制御器(C)の設定温度より高く
なると第2三方弁(V、)を制御して放熱器(3)側へ
のエンジン冷却水の流量を増し、逆に感知温度が設定温
度より低(なると放熱器(3)側へのエンジン冷却水の
流量を減じ、エンジン(11(1’lのジャケットへ戻
るエンジン冷却水が設定温度に復帰するよう制御する。
The controller (C) receives a signal from the detector (Sρ), and when the temperature sensed by this detector becomes higher than the set temperature of the controller (C), the controller (C) controls the second three-way valve (V,) to turn off the heat radiator. Increase the flow rate of engine cooling water to the radiator (3) side, and conversely reduce the flow rate of engine coolant to the radiator (3) side when the sensed temperature is lower than the set temperature. Controls the engine cooling water so that it returns to the set temperature.

(B)  エンジン1台が稼動されている場合例えば、
エンジン(1)が停止され、制御器(C)に細氷が第1
力鳴器(17)をバイパスして第2加熱器(1Bのみを
流通するように制御する。このように制御することによ
り、吸収冷凍機の冷凍能力は2台のエンジン稼動時の略
半分に低下するにとどまり、エンジン稼動台数の減少に
伴なう能力の過低下を防止できる。なお、この場合には
冷水負荷が50%を越えている際第1三方弁(VDの熱
回収回路(24)側流路は全開されており、冷水負荷が
50%がら0%へと減少すると全開から全開へと比例制
御されるようになっている。また、エンジン(LL (
1’)のジャケットへ戻すエンジン冷却水を設定温度に
保つ制御はエンジン2台を稼動している場合と同様に行
なわれる。
(B) When one engine is in operation, for example,
The engine (1) is stopped and the controller (C) is filled with thin ice.
The power generator (17) is bypassed and only the second heater (1B) is controlled to flow. By controlling in this way, the refrigerating capacity of the absorption chiller is approximately half that of when two engines are operating. It is possible to prevent the capacity from decreasing excessively due to a decrease in the number of engines in operation.In this case, when the chilled water load exceeds 50%, the first three-way valve (VD heat recovery circuit (24 ) side flow path is fully opened, and when the chilled water load decreases from 50% to 0%, it is proportionally controlled from fully open to fully open.
Control to maintain the engine cooling water returned to the jacket at the set temperature in 1') is performed in the same way as when two engines are operating.

第2図は本発明装置の他の実施例における一部拡大概略
図で、加熱器を横割りで分割した場合の実施例を示した
ものである。なお、第2図において第1図と同様の構成
機器には同一の図番を付している。
FIG. 2 is a partially enlarged schematic view of another embodiment of the device of the present invention, showing an embodiment in which the heater is divided horizontally. In FIG. 2, the same numbers are given to the same components as in FIG. 1.

第2図においては第1加熱器a7vc第1熱回収回路(
24)が接続され、第2加熱器(16に第i熱回収回路
C2(イ)が接続されており、冷水負荷が100%から
50%へ減少したときゃエンジン稼動台数が2台から1
台になったとき等発生器(6)へのエンジン冷却水の供
給量が半減したとき、弁(V)を全開から全閉へ切換え
てエンジン冷却水が第2加熱器a6のみを流通するよう
にし、エンジン冷却水が通過する伝熱管群の断面積を半
減させて伝熱管内の流速が低下し過ぎるのを防止する。
In Figure 2, the first heater a7vc and the first heat recovery circuit (
24) is connected, and the i-th heat recovery circuit C2 (a) is connected to the second heater (16), and when the chilled water load decreases from 100% to 50%, the number of engines in operation decreases from 2 to 1.
When the amount of engine cooling water supplied to the generator (6) is reduced by half, the valve (V) is switched from fully open to fully closed so that the engine cooling water only flows through the second heater a6. The cross-sectional area of the heat transfer tube group through which engine cooling water passes is halved to prevent the flow velocity within the heat transfer tubes from decreasing too much.

なお、図示していないが、エンジンが多数並設されてい
る場合には、加熱器をエンジン台数と同数に分割してエ
ンジン冷却水が流通する加熱器の個数をエンジンの停止
台数と同数域じるようにし、エンジン稼動台数の減少に
伴なう吸収冷凍機の能力過低下を防ぐのが好ましい。ま
た、エンジンが1台である場合にも、加熱器を多数分割
してエンジン冷却水が流通する加熱器の個数を冷水負荷
が減少するに伴なって段階的に減じるようにすることが
望ましい。このようにすることによって、負荷に見合う
吸収冷凍機の能力制御をより一層精度高く行なうことが
可能となる。
Although not shown in the figure, if many engines are installed in parallel, divide the heater into the same number as the number of engines, and set the number of heaters through which engine cooling water flows to the same number as the number of stopped engines. It is preferable to prevent the capacity of the absorption chiller from decreasing excessively due to a decrease in the number of operating engines. Furthermore, even when there is only one engine, it is desirable to divide the heater into multiple parts so that the number of heaters through which engine cooling water flows is gradually reduced as the cold water load decreases. By doing so, it becomes possible to control the capacity of the absorption refrigerator in accordance with the load with even higher accuracy.

なおまた、弁(V)、(V)の開閉切換えを負荷検出器
(S、)からの信号あるいはエンジン冷却水ポンプ(5
)、(5)の発停信号で行なう代りに、例えば熱回収回
路(24)に備えた流量検出器(図示せず)からの信号
で行なっても良い。
Furthermore, the valves (V) and (V) can be switched on and off using a signal from the load detector (S,) or the engine cooling water pump (5).
), (5), instead of using the start/stop signals, for example, a signal from a flow rate detector (not shown) provided in the heat recovery circuit (24) may be used.

なお、放熱用熱交換器でエンジンシャケ−/ )へ戻す
エンジン冷却水を吸収冷凍機に戻す冷却水と熱交換させ
て設定温度に調節している従来手段にあっては、冷房負
荷が小さく・なるとジャケットからの高温冷却水の発生
器バイパス量が増大調節されて放熱用熱交換器での熱交
換量が増えるために、吸収冷凍機へ戻る冷却水の温度が
高くなって吸収冷凍機の能力低下が一層助長される欠点
も有している。それ故、本発明装#においては、放熱器
には吸収冷凍機の冷却水とは別系路の冷却水を用いる方
法あるいは吸収冷凍機から放熱器へ流通した冷却水を吸
収冷凍機に戻さず例えば海に廃棄する方法等を採用する
のが望ましい。
In addition, with the conventional means in which the temperature is adjusted to the set temperature by exchanging heat between the engine cooling water returned to the engine cage (2018) and the cooling water returned to the absorption refrigerator using a heat radiation heat exchanger, the cooling load is small. In this case, the generator bypass amount of high-temperature cooling water from the jacket is adjusted to increase, and the amount of heat exchanged in the heat radiation heat exchanger increases, so the temperature of the cooling water that returns to the absorption chiller becomes higher and the capacity of the absorption chiller increases. It also has the disadvantage of further accelerating the decline. Therefore, in the system of the present invention, there is a method in which cooling water is used in the radiator in a separate route from that of the absorption chiller, or the cooling water that has flowed from the absorption chiller to the radiator is not returned to the absorption chiller. For example, it is desirable to adopt a method such as disposing of waste in the sea.

(へ) 発明の効果 以上のように、本発明装置は、エンジン冷却水が通過す
る加熱器の伝熱管の長さあるいはエンジン冷却水が通過
する加熱器の伝熱管の数(エンジン冷却水が通過する伝
熱管群の断面積)を吸収冷凍機の発生器に供給されるエ
ンジン冷却水の流量に応じて調整できるようにしたもの
であるから、例えば冷房負荷が小さくなったり、エンジ
ンの稼動台数が減ったりすることによって吸収冷凍機の
発生器に供給されるエンジン冷却水の流量が減らされた
場合にも、加熱器の伝熱管内の流速が低下し過ぎるのを
防いで伝熱管内に乱流を発生させることができ、吸収冷
凍機の発生器に備えた加熱器の伝熱性能の悪化を防止し
、吸収冷凍機の能力が低下し過ぎるのを防ぎ得るもので
ある。また、本発明装置はエンジン冷却水の温度を放熱
器で調整できるようKしたものであるから、設定温度以
下に保たれたエンジン冷却水をエンジンへ戻すことがで
きるものである。
(F) Effects of the Invention As described above, the device of the present invention has the advantage that the length of the heat exchanger tubes of the heater through which the engine cooling water passes or the number of heat exchanger tubes of the heater through which the engine cooling water passes (the length of the heat exchanger tubes of the heater through which the engine cooling water passes) This allows the cross-sectional area of the heat transfer tube group to be adjusted according to the flow rate of engine cooling water supplied to the generator of the absorption chiller. Even if the flow rate of engine cooling water supplied to the generator of the absorption chiller is reduced due to a decrease in the flow rate of the engine cooling water, the flow velocity in the heat exchanger tube of the heater is prevented from decreasing too much, and turbulent flow inside the heat exchanger tube is prevented. This can prevent the heat transfer performance of the heater provided in the generator of the absorption refrigerator from deteriorating, and prevent the capacity of the absorption refrigerator from decreasing too much. Furthermore, since the device of the present invention is designed so that the temperature of the engine cooling water can be adjusted using a radiator, the engine cooling water maintained at a set temperature or lower can be returned to the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す概略構成図、第2
図は本発明装置の他の実施例における一部拡大概略説明
図である。 (1)、(1)・・・エンジン、 (2)・・・吸収冷
凍機、 (3)・・・、放熱器、 (4)・・・エンジ
ン冷却水回路、 (5)、(5′)・・・エンジン冷却
水ポンプ、 (6)・・・発生器、 (17)・・・加
熱器、 a’n、 (lrr・・・第1、第2加熱器、
 (2枦・・熱回収回路、 (財)・・・熱回収バイパ
ス路、 Q(イ)、(2か・・第1、第2熱回収回路、
 (25)・・・バイパス路、(C)・・・制御器、 
(S、)・・・負荷検出器、 (S、)・・・検出器、
 (V、)、(V、)・・・第1、第2三方弁、(V)
、(V)・・・弁。 第1図 第2図
FIG. 1 is a schematic configuration diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a partially enlarged schematic explanatory diagram of another embodiment of the device of the present invention. (1), (1)...engine, (2)...absorption refrigerator, (3)..., radiator, (4)...engine cooling water circuit, (5), (5' )...engine cooling water pump, (6)...generator, (17)...heater, a'n, (lrr...first and second heaters,
(2)...Heat recovery circuit, (Foundation)...Heat recovery bypass path, (2)...First and second heat recovery circuit,
(25)...Bypass path, (C)...Controller,
(S,)...load detector, (S,)...detector,
(V,), (V,)...first, second three-way valve, (V)
, (V)...Valve. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンと放熱器とを接続したエンジン冷却水回
路の放熱器上流側に第1三方弁を介してエンジン冷却水
の熱回収回路を複数設けると共にこれら熱回収回路と同
数の発生器用加熱器を備えた吸収冷凍機の加熱器と熱回
収回路とをそれぞれ開閉弁を介して接続し、かつ、エン
ジン冷却水回路の第1三方弁下流側に第2三方升を介し
てエンジン冷却水の放熱器バイパス路を設けて成り、か
つ、発生器へのエンジン冷却水供給量が減少するとエン
ジン冷却水が流通する加熱器の個数を減じるように前記
開閉弁の開閉切換を行ない、エンジンへ戻るエンジン冷
却水の温度が設定温度より高(なると放熱器へのエンジ
ン冷却水流量を増すように第2三方弁を制御する制御器
を備えて成るエンジンと吸収冷凍機とを組み合せた装置
(1) A plurality of engine cooling water heat recovery circuits are provided upstream of the radiator in the engine cooling water circuit that connects the engine and the radiator via the first three-way valve, and the same number of generator heaters as these heat recovery circuits are provided. The heater of the absorption chiller equipped with the heat recovery circuit is connected through an on-off valve, respectively, and the engine cooling water is radiated via a second three-way valve downstream of the first three-way valve of the engine cooling water circuit. When the amount of engine cooling water supplied to the generator decreases, the opening/closing valve is switched to reduce the number of heaters through which the engine cooling water flows, and engine cooling returns to the engine. A device that combines an engine and an absorption refrigerator, and includes a controller that controls a second three-way valve to increase the flow rate of engine cooling water to the radiator when the water temperature is higher than a set temperature.
JP58098652A 1983-06-01 1983-06-01 Device in which engine and absorption refrigerator are combined Pending JPS59225264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098652A JPS59225264A (en) 1983-06-01 1983-06-01 Device in which engine and absorption refrigerator are combined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098652A JPS59225264A (en) 1983-06-01 1983-06-01 Device in which engine and absorption refrigerator are combined

Publications (1)

Publication Number Publication Date
JPS59225264A true JPS59225264A (en) 1984-12-18

Family

ID=14225433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098652A Pending JPS59225264A (en) 1983-06-01 1983-06-01 Device in which engine and absorption refrigerator are combined

Country Status (1)

Country Link
JP (1) JPS59225264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112718A (en) * 1989-09-27 1991-05-14 Honda Motor Co Ltd Cooling device for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112718A (en) * 1989-09-27 1991-05-14 Honda Motor Co Ltd Cooling device for automobile

Similar Documents

Publication Publication Date Title
JPH05231148A (en) Cooling system controller for engine
JP2004084882A (en) Oil temperature controller of transmission
CN109140878A (en) A kind of cooling system
JPS59225264A (en) Device in which engine and absorption refrigerator are combined
JPH11108486A (en) Double effect absorption water cooler/heater
JPS62186178A (en) Absorption refrigerator
JPH0621736B2 (en) Absorption refrigerator
JPH0473062B2 (en)
JP3319662B2 (en) Heat storage type cooling / heating device and control method thereof
JP3359495B2 (en) Thermal storage air conditioning system
JP3831924B2 (en) Capsule type latent heat storage system
JPS58127066A (en) Controller for engine waste-heat recovery absorption type refrigerator
JPH0157269B2 (en)
JPS6361849A (en) Cold and hot changeover type absorption refrigerator
JP3205409B2 (en) Thermal storage air conditioning system
JPS6383557A (en) Cold and warm changeover type absorption water heater and chiller
JPH0424374Y2 (en)
JPS59225265A (en) Controller for absorption refrigerator
JPS6149972A (en) Controller for absorption refrigerator
JP2003214255A (en) Engine exhaust heat recovery device
JPH0744917Y2 (en) Absorption chiller / heater device
JP2654009B2 (en) Absorption refrigerator
JPH0577948B2 (en)
JPS6023786A (en) Separate type heat pipe system heat exchanger
JP3252209B2 (en) Ice storage type cooling equipment