JPS59224931A - Temperature control circuit - Google Patents
Temperature control circuitInfo
- Publication number
- JPS59224931A JPS59224931A JP58097786A JP9778683A JPS59224931A JP S59224931 A JPS59224931 A JP S59224931A JP 58097786 A JP58097786 A JP 58097786A JP 9778683 A JP9778683 A JP 9778683A JP S59224931 A JPS59224931 A JP S59224931A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- temperature
- current
- trs
- temperature control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/24—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1919—Control of temperature characterised by the use of electric means characterised by the type of controller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体デバイスの温度制御回路に係り、特に
、半導体レーザの温度安定化に好適な温度制御回路に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a temperature control circuit for semiconductor devices, and particularly to a temperature control circuit suitable for stabilizing the temperature of a semiconductor laser.
近年、CATVなどのように画像を半導体レーザや光フ
ァイバを用いて伝送する方式の開発が盛んに行なわれて
いる。ところが、半導体レーザは特定の温度において発
振スペクトルが変化し、雑音が急激に増大する性質があ
る。更に、このような半導体レーザの出力光を光ファイ
バで伝送する場合、光ファイバが長距離になればなる程
、雑音は増々増太し、画質劣化を招来する因となるため
、画像伝送上重要な問題となっている。このような問題
を解決するには、半導体レーザの温度を精度よく制御す
ることが必要となるが、従来温度制御を行なう方式とし
て第1図に示すような実願昭55−4567号が提案さ
れている。この方式は半導体レーザ1を加熱又は冷却す
るための電熱変換素子2にNPN)ランジスタ4及びP
NP)ランジスタ5で構成される電圧−電流変換回路6
より電流を流入あるいは流出させることによシ半導体レ
ーザ1を加熱あるいは冷却させるものである。2. Description of the Related Art In recent years, systems for transmitting images using semiconductor lasers or optical fibers, such as CATV, have been actively developed. However, a semiconductor laser has the property that its oscillation spectrum changes at a certain temperature, and noise increases rapidly. Furthermore, when transmitting the output light of such a semiconductor laser using an optical fiber, the longer the optical fiber is, the more noise increases, which causes image quality deterioration, which is important for image transmission. This has become a serious problem. In order to solve such problems, it is necessary to control the temperature of the semiconductor laser with high precision, and Utility Model Application No. 55-4567, as shown in Figure 1, has been proposed as a conventional temperature control method. ing. In this method, an electrothermal conversion element 2 for heating or cooling a semiconductor laser 1 is provided with an NPN) transistor 4 and a P
NP) Voltage-current conversion circuit 6 composed of transistor 5
The semiconductor laser 1 is heated or cooled by causing current to flow in or out.
半導体レーザ1の温度制御は温度により抵抗値が変化す
るサーミスタなどの感熱素子3により、電熱変換素子2
の温度変化を電気信号に変換して取出し、この変化を所
要温度に設定するための基準信号vrと比較することに
よって、電圧−電流変換回路6の電流を制御することに
よシ行なわれる。The temperature of the semiconductor laser 1 is controlled by an electrothermal conversion element 2 using a thermosensitive element 3 such as a thermistor whose resistance value changes depending on the temperature.
This is done by controlling the current of the voltage-current conversion circuit 6 by converting and extracting the temperature change into an electrical signal and comparing this change with a reference signal vr for setting the desired temperature.
なお第1図において51及び52は、特性のそろった緩
衝用トランジスタであり、53及び54はこれらのトラ
ンジスタに電流を供給するための抵抗である。第1図に
おいて所要の温度は演算増幅器7の十端子に基準電位V
rによって設定される。In FIG. 1, 51 and 52 are buffer transistors having the same characteristics, and 53 and 54 are resistors for supplying current to these transistors. In FIG. 1, the required temperature is set at the reference potential V
Set by r.
電圧−電流変換回路6の入力電流Vlが正電位の時、N
PN トランジスタ4から電−熱変換素子2に電流が供
給され、加熱される。又逆に、入力電圧y+が負電位の
時、PNPトランジスタ5へ電熱変換素子2から電流を
流入するので、冷却される。この従来例においては1.
NPN トランジスタ4及びPNPトランジスタ5はベ
ース・エミッタ間電圧が約0.7v以上では殆んど電流
が流れないため電圧−電流変換回路の入力電位Vlが±
0.7■の範囲においては、どちらのトランジスタも遮
断域となって、電・熱変換素子2には電流が両方向とも
流れず、従って温度制御が不可能となる欠点があった。When the input current Vl of the voltage-current conversion circuit 6 is at a positive potential, N
A current is supplied from the PN transistor 4 to the electrothermal conversion element 2, and the element is heated. Conversely, when the input voltage y+ is at a negative potential, current flows from the electrothermal conversion element 2 into the PNP transistor 5, so that it is cooled. In this conventional example, 1.
Since almost no current flows in the NPN transistor 4 and the PNP transistor 5 when the base-emitter voltage is approximately 0.7 V or more, the input potential Vl of the voltage-current conversion circuit is ±
In the range of 0.7 square centimeters, both transistors are in the cutoff region, and current does not flow in both directions in the electrothermal conversion element 2, which has the disadvantage that temperature control is impossible.
それ故、この領域においては基準電位vrを変化させて
も半導体レーザ1を所要の温度に設定できないため、半
導体レーザ1は周囲温度に大きく依存することになり、
雑音抑圧の面から非常に大きな問題であった。第2図は
電圧−電流変換回路6の入力室iV+とそれに対応する
電・熱変換素子2の温度を測定した結果を示したグラフ
で、上記の温度設定不可能な領域、即ち不感帯が存在す
ることを示している。Therefore, in this region, the semiconductor laser 1 cannot be set to the required temperature even if the reference potential vr is changed, so the semiconductor laser 1 is largely dependent on the ambient temperature.
This was a very big problem in terms of noise suppression. FIG. 2 is a graph showing the results of measuring the temperature of the input chamber iV+ of the voltage-current conversion circuit 6 and the corresponding electrothermal conversion element 2, and there is a region where the temperature cannot be set, that is, a dead zone. It is shown that.
本発明の目的は、従来技術の欠点を解決するため、半導
体デバイス、特に、半導体レーザを加熱、あるいは冷却
するための電熱変換素子を駆動する電圧−電流変換回路
の不感帯をなくし、半導体レーザを所要の全温度範囲に
亘り、精度よく設定できる温度制御回路を提供すること
にある。An object of the present invention is to eliminate the dead zone of a voltage-to-current conversion circuit that drives an electrothermal conversion element for heating or cooling a semiconductor device, and in particular, to heat or cool a semiconductor laser, in order to solve the drawbacks of the prior art. An object of the present invention is to provide a temperature control circuit that can be set accurately over the entire temperature range.
本発明は上記目的を達成するため、電・熱変換素子2を
駆動するトランジスタ4及び5のベース・エミッタ間電
圧にほぼ等しい雪1圧を電圧−電流変換回路60入力と
トランジスタ4及び50ペ一ス間に挿入することにより
、トランジスタ4及び5を常に導通状態にして、温度設
定不可能な領域、即ち不感帯を除去するようにしたもの
である。In order to achieve the above-mentioned object, the present invention connects the snow 1 voltage, which is approximately equal to the base-emitter voltage of the transistors 4 and 5 that drive the electrothermal conversion element 2, to the input of the voltage-current conversion circuit 60 and the transistors 4 and 50. By inserting the transistors 4 and 5 between the spacers, the transistors 4 and 5 are always in a conductive state, thereby eliminating a region where temperature cannot be set, that is, a dead zone.
第3図(a)は、本発明による電圧−電流変換回路6の
不感帯を零にする条件を求めるための原理図である。同
図で12.13はそれぞれ正・負電源端子、14は電圧
−電流変換回路6の入力端子101.102はそれぞれ
電圧レベルシフト回路である。同図より、入力電圧をV
l、出力電圧をVo、電圧レベルシフト回路のレベルシ
フト電圧をvLl、vL2、トランジスタ4.5のベー
ス・エミッタ間電圧をVBN、VBPとすれば、次式が
成立つ。即ち、
V Ll +V L2 =V BN+V IIP ・
・・・・・ ■に等しくなるには、
V Lt −V Lz = V BN −V BP −
−−−−・−■でなければならない。従って、■及び0
式より、yt、t、VLIをVLI==:■BN、 ■
L2=vBPとなるように選べば、
va=Vs ・・・・・・・・・・・・■となり、出
力電圧は入力電圧に等しく変化し、不感帯を除去するこ
とができる。FIG. 3(a) is a principle diagram for determining conditions for zeroing out the dead zone of the voltage-current conversion circuit 6 according to the present invention. In the figure, 12 and 13 are positive and negative power supply terminals, respectively, and input terminals 101 and 102 of the voltage-current conversion circuit 6 are voltage level shift circuits, respectively. From the same figure, the input voltage is V
1, the output voltage is Vo, the level shift voltages of the voltage level shift circuit are vLl, vL2, and the base-emitter voltages of the transistor 4.5 are VBN, VBP, then the following equation holds true. That is, V Ll +V L2 =V BN+V IIP ・
・・・・・・ To be equal to ■, V Lt −V Lz = V BN −V BP −
It must be −−−−・−■. Therefore, ■ and 0
From the formula, yt, t, VLI are VLI==:■BN, ■
If L2=vBP is selected, va=Vs .
第3図(b)は、本発明による電圧−電流変換回路の基
本的な実施例を示すもので、電圧レベルシフト回路10
1,102をトランジスタ3:L、32、抵抗33〜3
6により構成している。レベルシフト電圧は、トランジ
スタ31.32のベースエミッタ間電圧を利用しており
、これらの電圧をトランジスタ4.5のベースエミッタ
間電圧に等しく選べばよい。但し実際には、ペースエミ
ッタ間電圧を全て揃えることは難しいので、抵抗34゜
35の電圧効果を利用し、ペース・エミッタ間電圧の差
異を補正することができる。この方法は、出力電圧Vo
が零電位の時に、トランジスタ4及び5に流れる電流を
数mAに設定でき、又低消費電力でトランジスタ4.5
を常に導通させておくことが可能となる。尚、電・熱変
換素子を加熱あるいは冷却する動作は第1図の場合と同
様である。FIG. 3(b) shows a basic embodiment of the voltage-current conversion circuit according to the present invention, in which the voltage level shift circuit 10
1,102 as transistor 3: L, 32, resistor 33~3
It consists of 6. The level shift voltage utilizes the base-emitter voltages of transistors 31 and 32, and these voltages may be selected to be equal to the base-emitter voltage of transistor 4.5. However, in reality, it is difficult to make all the voltages between the pace emitters the same, so the voltage effect of the resistors 34 and 35 can be used to correct the difference in voltage between the pace emitters. In this method, the output voltage Vo
When is at zero potential, the current flowing through transistors 4 and 5 can be set to several mA, and transistors 4.
It becomes possible to keep the conduction constant. Note that the operation of heating or cooling the electrothermal conversion element is the same as in the case of FIG.
即ち、電圧−電流変換回路の入力電圧Vlが正の場合に
はトランジスタ4より電熱変換素子2に電流が供給され
て加熱され、入力電位Vlが負の場合にはトランジスタ
5に電熱変換素子2から電流が流入して冷却される。That is, when the input voltage Vl of the voltage-current conversion circuit is positive, a current is supplied from the transistor 4 to the electrothermal conversion element 2 to heat it, and when the input potential Vl is negative, a current is supplied from the electrothermal conversion element 2 to the transistor 5. Current flows in and cools down.
第4図に本発明によるI@度制御回路の一実施例を示す
。先ず、%電熱変換素子2の温度に対応して、感熱素子
2の抵抗値が決まり、抵抗23との比に従って正及び負
電源端子12.13よシ供給される電圧は分圧され、電
気信号に変換される。FIG. 4 shows an embodiment of the I@ degree control circuit according to the present invention. First, the resistance value of the thermosensitive element 2 is determined according to the temperature of the electrothermal conversion element 2, and the voltage supplied from the positive and negative power supply terminals 12, 13 is divided according to the ratio with the resistor 23, and an electric signal is generated. is converted to
この電気信号は、演算増幅器7及び抵抗21゜22から
成る増幅器8に入力され、増幅される。This electrical signal is input to an amplifier 8 consisting of an operational amplifier 7 and resistors 21 and 22, and is amplified.
次にこの増幅された信号は、電圧−電流変換回路6で電
流に変換され、上記の温度変動の方向により電熱変換素
子2の加熱あるいは冷却を行なう。Next, this amplified signal is converted into a current by a voltage-current conversion circuit 6, and the electrothermal conversion element 2 is heated or cooled depending on the direction of the temperature fluctuation.
例えば最初に周囲温度が変化して、電熱変換素子2の温
度が所要の設定温度より上昇したとすると、感熱索子2
の抵抗値は減少するので、増幅器8の入力電圧は上昇す
る。この入力電圧の上昇は基準温度設定端子vrとの差
電圧が減少する方向に働 。For example, if the ambient temperature first changes and the temperature of the electrothermal conversion element 2 rises above the required set temperature, then the heat-sensitive cord 2
Since the resistance value of the amplifier 8 decreases, the input voltage of the amplifier 8 increases. This increase in input voltage works in the direction of decreasing the differential voltage with respect to the reference temperature setting terminal vr.
らき、演算増幅器7で増幅され、電圧−電流変換回路6
内のトランジスタ4のエミッタ電流を初期状態よりも減
少させる方向に働らく。これは電熱変換素子2に流入す
る電流が初期状態よりも減少することを意味し、その結
果、温度を安定化させることができる。同様に、電熱変
換素子2の温度が低下した場合には、逆の動作により偏
差温度の安定化が図られる。尚、電熱変換素子2の温度
は、抵抗21.22の値をR21、R22とすれば、基
準電圧Vrと電圧−電流変換回路6の入力電圧v童との
間には
V I =(1+ R22/ R21) V r ”
・・−・ ■という関係があるから、出力電圧■oは■
式よシ、V6 = (1+ R22/ Rgt) V
rとなり、基準電圧によって一義的に設定可能となる。is amplified by the operational amplifier 7, and the voltage-current conversion circuit 6
The emitter current of the transistor 4 in the transistor 4 is reduced compared to the initial state. This means that the current flowing into the electrothermal conversion element 2 is reduced compared to the initial state, and as a result, the temperature can be stabilized. Similarly, when the temperature of the electrothermal conversion element 2 decreases, the temperature deviation is stabilized by the reverse operation. Note that the temperature of the electrothermal conversion element 2 is determined by the relationship between the reference voltage Vr and the input voltage v of the voltage-current conversion circuit 6, if the values of the resistors 21.22 are R21 and R22. / R21) V r”
・・・−・ Because of the relationship ■, the output voltage ■o is ■
According to the formula, V6 = (1+ R22/ Rgt) V
r, and can be uniquely set by the reference voltage.
又設定温度の偏差はループ利得を太きくすることにより
士。Also, the deviation of the set temperature can be reduced by increasing the loop gain.
0、IC以下にすることが可能であり、不感帯のない極
めて高精度の温度制御回路を実施できる。第5図は本発
明による温度制御回路の実施例を示したもので、基準電
圧に対し線形的に温度が変化しておシ、不感帯は見られ
ず、本発明の有効性は明らかであることがわかる。0.0, IC or less, and an extremely high-precision temperature control circuit without a dead zone can be implemented. Figure 5 shows an embodiment of the temperature control circuit according to the present invention, in which the temperature changes linearly with respect to the reference voltage, and no dead zone is observed, which clearly shows the effectiveness of the present invention. I understand.
以上述べた如く本発明によれば、電熱変換素子の加熱・
冷却を制御する電圧−電流変換回路において、電流駆動
用のNPN)ランジスタ、PNPトランジスタのペース
エミッタ間立上り電圧にほぼ等しい電圧を有する電圧レ
ベルシフト回路をそれぞれ上記NPN)ランジスタ、P
NP)ランジスタのベースと電圧−電流変換回路との間
に挿入して、両トランジスタを常に導通状態にすること
により、温度制御の不感帯を零にすることができ、且つ
、基準電圧により任意の温度を精度よく設定(9)
可能となる。本発明は、半導体レーザ、光ファイバを用
いて画像等の広帯域アナログ信号を伝送する際に、半導
体レーザのモードホップによって惹起される雑音を抑制
し、画質劣化を防止する非常に有効な手段を提供する。As described above, according to the present invention, heating and
In a voltage-current conversion circuit for controlling cooling, a voltage level shift circuit having a voltage approximately equal to the rise voltage between the pace emitters of a current driving NPN) transistor and a PNP transistor is connected to the NPN) transistor and PNP transistor, respectively.
NP) By inserting the transistor between the base of the transistor and the voltage-to-current conversion circuit to keep both transistors in a conductive state, the dead zone for temperature control can be reduced to zero, and the temperature can be adjusted to any temperature using the reference voltage. can be set accurately (9). The present invention provides a very effective means for suppressing noise caused by semiconductor laser mode hops and preventing image quality deterioration when transmitting broadband analog signals such as images using semiconductor lasers and optical fibers. do.
第1図は従来の温度制御回路の接続図、第2図は、電熱
変換素子制御温度の測定結果、第3図は本発明による温
度制御回路の基本となる電圧−電流変換回路の基本接続
図及び実施例、第4図は本発明による温度制御回路の一
実施例の構成を示す接続図、第5図は本発明による実施
例における電・熱変換素子制御温度及びその時電熱変換
素子に流れる電流の測定結果を示す図である。
1・・・半導体レーザ、2・・・電流変換素子、3・・
・感熱素子、4,5・・・電熱変換素子駆動トランジス
タ、7・・・演算増幅器、31.32・・・レベルシフ
ト用トランジスタ、34.35・・・レベルシフト用抵
抗、6・・・電圧−電流変換回路、8・・・増幅器、1
01゜102・・・レベルシフト回路。
(10)
第 1 図
!fJ Z 図
へ力電反Th(TI)
舅 3 口
(α)
V“
一
(b)
VすFig. 1 is a connection diagram of a conventional temperature control circuit, Fig. 2 is a measurement result of electrothermal conversion element control temperature, and Fig. 3 is a basic connection diagram of a voltage-current conversion circuit which is the basis of the temperature control circuit according to the present invention. FIG. 4 is a connection diagram showing the configuration of an embodiment of the temperature control circuit according to the present invention, and FIG. 5 shows the electrothermal conversion element control temperature and the current flowing through the electrothermal conversion element at that time in the embodiment according to the present invention. FIG. 3 is a diagram showing measurement results. 1... Semiconductor laser, 2... Current conversion element, 3...
- Heat sensitive element, 4, 5... Electrothermal conversion element drive transistor, 7... Operational amplifier, 31.32... Level shift transistor, 34.35... Level shift resistor, 6... Voltage -Current conversion circuit, 8...Amplifier, 1
01゜102...Level shift circuit. (10) Figure 1! fJ Z To figure Force electric reaction Th (TI) 3 mouth (α) V“ 1 (b) Vsu
Claims (1)
−熱変換素子と、該電気変換回路の温度を検出し電気信
号に変換する温度−電気変換回路と、該電気信号を基準
信号と比較する比較回路と、該比較回路の出力端子に入
力端子が接続され、NPN及びPNP )ランジスタを
含み、該電熱変換素子を電流駆動する電圧−電流変換回
路とから成る温度制御回路において、該電圧−電流変換
回路の該入力端子と該NPN及びPNP)ランジスタの
ペース端子との間にそれぞれ別個の電圧レベルシフト回
路を挿入して成る電圧−電流変換回路を具備することを
特徴とする温度制御回路。1. An electrothermal conversion element capable of both heating and cooling depending on the polarity of the injected current, a temperature-electrical conversion circuit that detects the temperature of the electrical conversion circuit and converts it into an electrical signal, and converts the electrical signal into a reference signal. In a temperature control circuit comprising a comparator circuit for comparison, and a voltage-to-current conversion circuit whose input terminal is connected to the output terminal of the comparator circuit, includes NPN and PNP transistors, and drives the electrothermal conversion element with current, - A temperature control circuit characterized by comprising a voltage-to-current conversion circuit comprising separate voltage level shift circuits inserted between the input terminal of the current conversion circuit and the pace terminal of the NPN and PNP transistors. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097786A JPS59224931A (en) | 1983-06-03 | 1983-06-03 | Temperature control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097786A JPS59224931A (en) | 1983-06-03 | 1983-06-03 | Temperature control circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59224931A true JPS59224931A (en) | 1984-12-17 |
Family
ID=14201493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58097786A Pending JPS59224931A (en) | 1983-06-03 | 1983-06-03 | Temperature control circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59224931A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4631728A (en) * | 1985-07-22 | 1986-12-23 | The United States Of America As Represented By The Secretary Of The Navy | Thermoelectric cooler control circuit |
US7124592B2 (en) | 2003-08-05 | 2006-10-24 | Sumitomo Electric Industries, Ltd. | Temperature controlling circuit for a semiconductor light-emitting device |
-
1983
- 1983-06-03 JP JP58097786A patent/JPS59224931A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4631728A (en) * | 1985-07-22 | 1986-12-23 | The United States Of America As Represented By The Secretary Of The Navy | Thermoelectric cooler control circuit |
US7124592B2 (en) | 2003-08-05 | 2006-10-24 | Sumitomo Electric Industries, Ltd. | Temperature controlling circuit for a semiconductor light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2704133B2 (en) | Laser diode drive circuit | |
US3992622A (en) | Logarithmic amplifier with temperature compensation means | |
US4243952A (en) | Temperature compensated bias circuit for semiconductor lasers | |
JPS6278886A (en) | Bias circuit for avalanche photodiode | |
JPS6149616A (en) | Circuit device for protecting temperature | |
JPH07321392A (en) | Automatic temperature control circuit for laser diode and electro-optical signal conversion unit | |
JPS59224931A (en) | Temperature control circuit | |
JPH05129706A (en) | Semiconductor laser driving control circuit | |
JPS6018982A (en) | Driving system for semiconductor laser | |
JPS6218068Y2 (en) | ||
US4509020A (en) | Push-pull amplifier | |
JPH01152807A (en) | Current supply circuit | |
JPH0530185Y2 (en) | ||
JPS63184408A (en) | Transistor bias circuit | |
JPS6139880A (en) | Speed controller of dc motor | |
KR0155339B1 (en) | Thermal shut-down circuit with hysteresis | |
JP3398907B2 (en) | Bias current control device | |
JPS5816206B2 (en) | constant current circuit | |
JPH0643951A (en) | Current limiting circuit | |
JP2604671B2 (en) | Bias circuit | |
JPS5910008A (en) | Power amplifier | |
JP3226105B2 (en) | Arithmetic rectifier circuit | |
JPH0151207B2 (en) | ||
JPH0230047B2 (en) | KIKANZOFUKUKAIRO | |
SU1746506A1 (en) | Dc drive |