JPS6018982A - Driving system for semiconductor laser - Google Patents
Driving system for semiconductor laserInfo
- Publication number
- JPS6018982A JPS6018982A JP12732783A JP12732783A JPS6018982A JP S6018982 A JPS6018982 A JP S6018982A JP 12732783 A JP12732783 A JP 12732783A JP 12732783 A JP12732783 A JP 12732783A JP S6018982 A JPS6018982 A JP S6018982A
- Authority
- JP
- Japan
- Prior art keywords
- current
- bias
- bias current
- pulse
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/06804—Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0428—Electrical excitation ; Circuits therefor for applying pulses to the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
- H01S5/06216—Pulse modulation or generation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(al 発明の技術分野
本発明は1元出力の一部をモニタし、このモニタ出力レ
ベルにより半導体レーザ(以下LDと称す)のパルス電
流及び、バイアス電流を制御し温度がかわっても自動的
に光出力のヒ゛−り値が一定になるよう制御するLD強
度俊調回路に係り、回路規模が小さくかつ各温度におけ
る)くイアスミ流を最適値に制御出来るLD駆動方式に
関する0(b) 技術の背景
第1図は、温度が変化した場合のLDに流れる電流(I
)と光出力(P)との関係を示す特性図、第2図は各温
度に分ける最適バイアス電流(I n 、)とパルス電
流(Ip)との関係を示す特性図である。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention monitors a part of a single output, and controls the pulse current and bias current of a semiconductor laser (hereinafter referred to as LD) based on this monitor output level to control the temperature. This LD drive method is related to the LD intensity adjustment circuit that automatically controls the peak value of the light output to be constant even when the temperature changes, and the circuit size is small and the LD drive method can control the asymmetry flow to the optimum value at each temperature. 0(b) Technical Background Figure 1 shows the current flowing through the LD (I
) and the optical output (P), and FIG. 2 is a characteristic diagram showing the relationship between the optimum bias current (I n , ) and the pulse current (Ip) divided into each temperature.
温度が変化するとLDの閾値電流は第1図の如く変化す
るし又光出力(P)の微分量子化効率(LD印加電流の
変化に対する光出力の変化の割合)も第1図Qこ示す如
く変化する。この為L D強度変調回路ではA P C
(Automatic Power Control)
回路を用い温度が変化しても、ブ0出力のピーク値が第
1図のイに示す如く一定になるよう制御している。この
一定値にした時のLDの電流値は第1図の例に示す如く
、0℃の場合は26mA、25℃の場合は30mA、5
0℃の場合は48mAとなる。通常バイアス電流は最適
値として、閾値電流よジ一定値低い値又は閾値電流に対
し一定割合になるよう定められる。第1図では闇値電流
は0℃で11mA、25℃で16mA、50℃で29m
Aとなっている。そこで最適バイアス電流金例えば1m
A低い値とするとバイアス電流は0℃で10mA、25
℃で15mA、50℃で28mAとなる。従ってLDの
電流(I)よジバイアス電流(IB)’(r引いた値0
℃で16mA、25℃で15mA、50℃で20mAが
パルス電流(Ip)となる。このバイアス電流(I n
)とパルス電流(II))の関係を示したのが第2i
LfA)である。When the temperature changes, the threshold current of the LD changes as shown in Figure 1, and the differential quantization efficiency of optical output (P) (ratio of change in optical output to change in LD applied current) also changes as shown in Figure 1Q. Change. For this reason, in the LD intensity modulation circuit, APC
(Automatic Power Control)
A circuit is used to control the peak value of the BU0 output to be constant as shown in A of FIG. 1 even if the temperature changes. As shown in the example in Figure 1, the current value of the LD when this constant value is set is 26 mA at 0°C, 30 mA at 25°C, and 5 mA at 25°C.
At 0°C, it is 48mA. Normally, the bias current is set as an optimum value to be a certain value lower than the threshold current or a certain ratio to the threshold current. In Figure 1, the dark value current is 11mA at 0℃, 16mA at 25℃, and 29mA at 50℃.
It is A. Therefore, the optimum bias current is 1 m for example.
If the value of A is low, the bias current is 10 mA at 0°C, 25
It becomes 15mA at ℃ and 28mA at 50℃. Therefore, the LD current (I) and the bias current (IB)' (r minus the value 0
The pulse current (Ip) is 16 mA at °C, 15 mA at 25 °C, and 20 mA at 50 °C. This bias current (I n
) and pulse current (II)) is shown in the second i.
LfA).
第2m(A)ケ見れば判る如くこの関係は直線でなく温
度の低い方でパルス電流(Ip)は−F方に曲っている
。又LDの特性によってはバイアス電1(In)とパル
ス電流(Ip)の関係が第2図(B)1こ示す如く高温
で増加量の少ないものもある。従って温度が変化しても
光出力のピーク値を一定に制御する場合、バイアス電流
(In)を最適値にする【こはパルス電流を第2図(A
) (B )の特性をこ合うよう温度の変化をこ応じ
て変化せねばならない。これはバイアス電流を闇値電流
に対しくc) 従来技術と問題点
従来、上記の制御を行うために温度センサを用いて、パ
ルス電流及びバイアス電流を独立に最適値になるよう制
御する方式があるがこの方式では別に温IWセンサ及び
パルス電流及びバイアス電流を制御する回路が夫々れ必
要となり回路規模が大きくなる欠点がある。尚又以下説
明する方式もあるが、これも以下説明する欠点がある。As can be seen from the second m(A), this relationship is not a straight line, but the pulse current (Ip) curves in the -F direction at lower temperatures. Furthermore, depending on the characteristics of the LD, the relationship between the bias current 1 (In) and the pulse current (Ip) may increase only a small amount at high temperatures, as shown in FIG. 2(B). Therefore, when controlling the peak value of the optical output to be constant even when the temperature changes, the bias current (In) should be set to the optimum value [This is the pulse current shown in Figure 2 (A).
) The change in temperature must be changed accordingly to match the characteristics of (B). This is because the bias current is different from the dark value current c) Conventional technology and problems Conventionally, in order to perform the above control, a temperature sensor was used to control the pulse current and bias current independently to the optimum value. However, this method requires a separate temperature IW sensor and circuits for controlling the pulse current and bias current, which has the disadvantage of increasing the circuit scale. There is also a method which will be explained below, but this also has the drawbacks which will be explained below.
第3図は従来例のLD強度変両[91路の回路図、第4
図は第3図の回路のバイアス奄、流(In)とパルス電
流(Ip)との関係を示す特性図である。Figure 3 is a circuit diagram of a conventional example of LD intensity variation [Route 91, No. 4]
The figure is a characteristic diagram showing the relationship between the bias force, the current (In), and the pulse current (Ip) of the circuit of FIG. 3.
第3図中lはLD、R,〜■尤7は抵抗、Lはチョーク
、Tr、〜Trsはトランジスタ、V c 11一定電
圧、−■は負の直流電圧を示す。In FIG. 3, l is an LD, R, .about.7 are resistors, L is a choke, Tr, .about.Trs are transistors, Vc 11 is a constant voltage, and -■ is a negative DC voltage.
第3図の電圧Vaは、APC回路で光出力を一定とする
為に、LDIの出力をヴ:−t’を素子で受け、比較器
で基準電圧と比較した出力電圧であり、LDlの光出力
が低下すると電圧Vaは大きくなる。The voltage Va in Figure 3 is the output voltage obtained by receiving the LDI output V:-t' with an element and comparing it with a reference voltage using a comparator in order to keep the optical output constant in the APC circuit. As the output decreases, the voltage Va increases.
この電圧Vatこ比例して、トランジスタ1゛r4を流
れるLDIのバイアス電流Ie及びトランジスタTrs
を流れるパルス電流Ipは変化する。In proportion to this voltage Vat, the LDI bias current Ie flowing through the transistor 1r4 and the transistor Trs
The pulse current Ip flowing through changes.
APC回路で、光出力を第1図(イ)に示す一定値とす
ると、LDIを流れる電流(I)は温度が上る程前に説
明せる如く大きくなる。(50℃48mA、25℃30
mA、0℃26mA)この電流Iを、例えば50℃では
最適バイアス電流(In)28mAとパルス電流(Ip
+20/mAとなるよう分割し又温度が変化[7た時第
2図に示した特性的@iこ合うよう抵抗R8〜Rg 、
R7を調整したとすると、この第3図の回路では、バイ
アス電流(In)とパルス′亀流Ipは電圧Vaをこ比
例するので、バイアス電流(ITI)とパルス電流(I
p)の関係は第4図tこ示す如く比例関係となり、第2
図(A)に比し、低温度(例えば0℃)でパルス電流は
小さくなり、バイアス電流は最適値とはならず、また第
2図(R)に比し、高温でパルス電流は大きくなり最適
値とはならない。In the APC circuit, if the optical output is set to a constant value as shown in FIG. 1(a), the current (I) flowing through the LDI increases as the temperature rises, as explained earlier. (50℃48mA, 25℃30
mA, 26 mA at 0°C) This current I, for example, at 50°C, the optimum bias current (In) of 28 mA and the pulse current (Ip)
+20/mA, and when the temperature changes [7], resistors R8 to Rg are adjusted to match the characteristic @i shown in Figure 2.
Assuming that R7 is adjusted, in the circuit shown in Figure 3, the bias current (In) and the pulse current Ip are proportional to the voltage Va, so the bias current (ITI) and the pulse current (I
The relationship p) is a proportional relationship as shown in Figure 4 t, and the second
Compared to Figure (A), the pulse current becomes smaller at low temperatures (e.g. 0°C), and the bias current does not reach its optimal value, and compared to Figure 2 (R), the pulse current increases at high temperatures. It is not the optimal value.
第3図の回路の場合はこのような欠点がある。The circuit shown in FIG. 3 has such a drawback.
(dl 発明の目的
本発明の目的は上記の欠点なこ鑑み、回路規模が小さく
て、かつ各温度−こおけるバイアス電流を最適値に制御
可能なLD駆動方式の提供tこある。(dl) OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, it is an object of the present invention to provide an LD driving system which has a small circuit scale and is capable of controlling the bias current to an optimum value at each temperature.
(e) 発明の禍成
本発明は上記の目的を達成するために、光出力のピーク
値が一定になるよう制御するLD強度変調回路において
、パルス電流をバイアス電流に比例した成分と反比例し
た成分との合成’ItiN +こなるようにする手段を
設は温度の変化に対してバイアス電流を最適値lこ制御
出来るようにしたことを特徴とする。(e) Disadvantages of the Invention In order to achieve the above object, the present invention, in an LD intensity modulation circuit that controls the peak value of optical output to be constant, divides the pulse current into a component proportional to the bias current and a component inversely proportional to the bias current. The present invention is characterized in that the bias current can be controlled to an optimum value in response to temperature changes.
(f) 発明の実施例
以下本発明の一実施例につき図に従って説明する。第5
図は本発明の実施例のLD強度変調回路の回路図、第6
図は第5図の回路のバイアス電流(IB)とパルス電流
(工、)との関係を示′1−特性図である。(f) Embodiment of the Invention An embodiment of the invention will be described below with reference to the drawings. Fifth
Figure 6 is a circuit diagram of an LD intensity modulation circuit according to an embodiment of the present invention.
The figure is a characteristic diagram showing the relationship between the bias current (IB) and the pulse current (IB) of the circuit of FIG.
第5図中第3図と同一機能のものは同−記・号で示す。Items in FIG. 5 that have the same functions as those in FIG. 3 are indicated by the same symbol.
” rs + T r6はトランジス、Ra〜R+oは
抵抗でこれ等て差動増1コ器を構成している。ヌR3′
−4,’ 、R7’は抵抗、Vrefは参@ 電圧を示
す。"rs + T r6 is a transistor, and Ra to R+o are resistors, which together constitute a differential amplifier. Nu R3'
-4,', R7' is a resistance, and Vref is a reference voltage.
トランジスタTr4を流れるバイアス電流(I B)と
トランジスタT r sを流れる電流Ip1とは先Qこ
説明した電圧Vaと比例関係にあり、バイアス電流(I
n)と電流IP+ との関係は第6図(A)(B)のI
pl)こ示す如く比例関係となる。又トランジスタ’r
r 5を流れる電流Ip2と、電圧Vaより参照電圧
Vrefを差引いた電圧々の関係は差引いた電圧が小さ
い間は変化しないが其れ以上となると逆比例関係となる
。即ちバイアス電流−(In)とも上記と同じ関係とな
る。参照電位Vrefを変化さして第2図(A)(B)
の特性【こ合うようにした場合の関係を第6図(A)(
B)のIp。The bias current (I B) flowing through the transistor Tr4 and the current Ip1 flowing through the transistor Tr s are in a proportional relationship with the voltage Va explained earlier, and the bias current (I
The relationship between n) and current IP+ is shown in Figure 6 (A) and (B).
pl) As shown, there is a proportional relationship. Also transistor'r
The relationship between the current Ip2 flowing through r5 and the voltages obtained by subtracting the reference voltage Vref from the voltage Va does not change while the subtracted voltage is small, but becomes an inversely proportional relationship when it exceeds that value. That is, the bias current -(In) has the same relationship as above. Figure 2 (A) (B) by changing the reference potential Vref
Characteristics [The relationship when they are matched is shown in Figure 6 (A)
B) Ip.
に示している。パルス電流Ipは祐、流Ip+ と電流
IPyの和であるので、第6図(A)の場合はバイアス
電流が大きい間(温度が高い時)はパルス電流ITIは
バイアス電流【こ比例するが、電流IT’tが0のなる
付近でパルス電流ILIは傾きが変化しバイアス電流が
これ以下になると、パルス電流Ip+とIpt との和
となり、第2図(A)に示す最適バイアス電流とパルス
電流との関係tこ近似する。It is shown in Since the pulse current Ip is the sum of the current Ip+ and the current IPy, in the case of Fig. 6 (A), while the bias current is large (when the temperature is high), the pulse current ITI is proportional to the bias current. The slope of the pulse current ILI changes near where the current IT't becomes 0, and when the bias current becomes less than this, it becomes the sum of the pulse current Ip+ and Ipt, and the optimum bias current and pulse current shown in Fig. 2 (A) are obtained. The relationship t is approximated.
又第6図(B)の場合では、バイアス電流が小さい間は
パルス電流Ipはバイアス電流に比例するが、大きくな
ると増加量が減少し、第2図(B)に示す最適バイアス
電流とパルス電流の関係蔽こ近似する。従ってこの特性
を利用し、抵抗R3’〜R6′。In the case of Fig. 6(B), the pulse current Ip is proportional to the bias current while the bias current is small, but as it becomes large, the amount of increase decreases, and the optimum bias current and pulse current shown in Fig. 2(B) are obtained. Approximate the relationship. Therefore, using this characteristic, resistors R3' to R6' are set.
R7′及び抵抗R8〜■11o、参照電圧Vrefを第
2図(A)又は(B)の特性lこ合うようLD毎に決定
しておけは、光出力のピーク値を一定昏こ制御する場合
、温度が変化しても各温度におけるバイアス電流を最適
値に制御出来る。仁の第5図の回路は第3図の回路Gこ
差動増巾器を追加したのみであり温度上ン丈を用いる従
来の回路より回路規模は小さい。If R7', resistors R8 to 11o, and reference voltage Vref are determined for each LD so as to match the characteristics shown in FIG. Even if the temperature changes, the bias current at each temperature can be controlled to the optimum value. Jin's circuit shown in FIG. 5 only adds a differential amplifier to the circuit G shown in FIG. 3, and its circuit scale is smaller than the conventional circuit that uses temperature control.
(g) 発明の効果
以上詳細曇こ説明せる如く本発明昏こよれば、温度が変
化してもうt出力のピーク値を一定に制御する場合、回
路規模が小さくかつ各温度tこおけるバイアス電流を最
適値に制御出来る効果がある。(g) Effects of the Invention As explained in more detail, according to the present invention, when controlling the peak value of the output at a constant value even when the temperature changes, the circuit scale is small and the bias current at each temperature is reduced. This has the effect of being able to control it to an optimal value.
第1図は温度が変化した場合の半導体レーザーこ流れる
電流と光出力との関係を示す特性図、第2図は各温度に
おける最適バイアス電流とパルス電流との関係を示す特
性図、第3図は従来例の半導体レーザ強Jlll[変調
回路の回路図、第4図は第3図の回路のバイアス電流と
パルス電流との関係を示す特性図、第5図は本発明の実
施例の半導体レーザ強度変調回路の回路図、第6図は第
5図の回路のバイアス電流とパルス電流との関係を示す
特性図である。
図中1は半導体レーザ、R+ −Rho + Rs’
〜RB’+R7’は抵抗、Try−Tr6はトランジス
タ、Lはチョークを示す。
晃 1121
−1.。を七□2″4
ベイ7ス′6LげL(x穀−
/v47λ′電流=18
第3 図
44 困
ハ′イアスt5龜(18)
男 5図
第 6 図
ハ゛イアヌ′此3九〇a)−
0バイアス電jt(Ia)−Figure 1 is a characteristic diagram showing the relationship between the current flowing through a semiconductor laser and the optical output when the temperature changes, Figure 2 is a characteristic diagram showing the relationship between the optimum bias current and pulse current at each temperature, and Figure 3 is a characteristic diagram showing the relationship between the optimum bias current and pulse current at each temperature. is a circuit diagram of a conventional semiconductor laser modulation circuit, FIG. 4 is a characteristic diagram showing the relationship between bias current and pulse current of the circuit in FIG. 3, and FIG. 5 is a diagram of a semiconductor laser according to an embodiment of the present invention. FIG. 6, a circuit diagram of the intensity modulation circuit, is a characteristic diagram showing the relationship between bias current and pulse current of the circuit of FIG. In the figure, 1 is a semiconductor laser, R+ -Rho + Rs'
~RB'+R7' is a resistor, Try-Tr6 is a transistor, and L is a choke. Akira 1121-1. . 7□2''4 Bay 7th'6L geL (xgrain-/v47λ' current = 18 3rd figure - 0 bias voltage jt (Ia) -
Claims (1)
半導体レーザのノくパルス電流及びノ(イアスミ流を制
御し温度がかわっても自動的に光出力のピーク値が一定
Oこなるよう制御する半導体レーザ強度変調回路におい
て、該〕(ルス電流を、該)くイアス霜、流に比例した
成分と反比例した成分との合成電流になるようにする手
段を設け、各温度Gこおけるバイアス電流を最適値をこ
制御出来るようにしたことを特徴とする半導体レーザ駆
動方式。A part of the optical output is monitored, and this monitor output level controls the laser pulse current and current of the laser diode so that the peak value of the optical output remains constant even when the temperature changes. In the semiconductor laser intensity modulation circuit to be controlled, a means is provided to make the Luss current a composite current of a component proportional to the current and a component inversely proportional to the bias current at each temperature G. A semiconductor laser drive system characterized by the ability to control the current to an optimum value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12732783A JPS6018982A (en) | 1983-07-13 | 1983-07-13 | Driving system for semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12732783A JPS6018982A (en) | 1983-07-13 | 1983-07-13 | Driving system for semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6018982A true JPS6018982A (en) | 1985-01-31 |
Family
ID=14957184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12732783A Pending JPS6018982A (en) | 1983-07-13 | 1983-07-13 | Driving system for semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6018982A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412675A (en) * | 1991-12-26 | 1995-05-02 | Fujitsu Limited | Semiconductor optical source capable of compensating for temperature-induced variation of laser oscillation threshold |
US5732096A (en) * | 1995-11-16 | 1998-03-24 | Fujitsu Limited | Control circuit for supplying a driving current to a laser diode |
US5966395A (en) * | 1996-11-29 | 1999-10-12 | Fuji Xerox Co., Ltd. | Semiconductor laser drive device and image recording device |
US5987044A (en) * | 1992-01-10 | 1999-11-16 | Fujitsu Limited | Semiconductor light source system having an optimized setting for driving a laser diode |
-
1983
- 1983-07-13 JP JP12732783A patent/JPS6018982A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412675A (en) * | 1991-12-26 | 1995-05-02 | Fujitsu Limited | Semiconductor optical source capable of compensating for temperature-induced variation of laser oscillation threshold |
US5987044A (en) * | 1992-01-10 | 1999-11-16 | Fujitsu Limited | Semiconductor light source system having an optimized setting for driving a laser diode |
US5732096A (en) * | 1995-11-16 | 1998-03-24 | Fujitsu Limited | Control circuit for supplying a driving current to a laser diode |
US5966395A (en) * | 1996-11-29 | 1999-10-12 | Fuji Xerox Co., Ltd. | Semiconductor laser drive device and image recording device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0680853B2 (en) | Optical transmission device | |
US6977949B2 (en) | Control circuit for constantly setting optical output of semiconductor laser | |
JPH0821747B2 (en) | Optical transmission device | |
US4626676A (en) | Light detector having a photodiode with bias control | |
JPH01117385A (en) | Control method for semiconductor laser bias current | |
JPH07321392A (en) | Automatic temperature control circuit for laser diode and electro-optical signal conversion unit | |
JPS6018982A (en) | Driving system for semiconductor laser | |
US5262713A (en) | Current mirror for sensing current | |
JPH0142514B2 (en) | ||
JPH0158684B2 (en) | ||
JP2687465B2 (en) | Electro-optical conversion circuit using laser diode | |
JPS6151887A (en) | Driving device for semiconductor laser | |
JP2773447B2 (en) | Laser diode output control circuit | |
JPH05259563A (en) | Controlling circuit for optical output of semiconductor | |
JPS6218068Y2 (en) | ||
JP2527602B2 (en) | Semiconductor laser drive circuit | |
JPH1070329A (en) | Laser diode-driving device | |
JPH0837334A (en) | Laser wavelength controller | |
JP2740650B2 (en) | Constant current generation circuit | |
JPS6390876A (en) | Drive circuit for semiconductor laser | |
JPS62206893A (en) | Bias current source for semiconductor laser | |
WO1994003849A1 (en) | Arrangement for controlling the temperature of electronic components | |
SU964609A2 (en) | Dc voltage stabilizer | |
JPS58200445A (en) | Light output controlling circuit | |
JPH0244788A (en) | Temperature control circuit for ld |