JPS59224529A - Combustion gas thermometer for internal combustion engine - Google Patents

Combustion gas thermometer for internal combustion engine

Info

Publication number
JPS59224529A
JPS59224529A JP58098005A JP9800583A JPS59224529A JP S59224529 A JPS59224529 A JP S59224529A JP 58098005 A JP58098005 A JP 58098005A JP 9800583 A JP9800583 A JP 9800583A JP S59224529 A JPS59224529 A JP S59224529A
Authority
JP
Japan
Prior art keywords
temperature
light source
flame
light
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58098005A
Other languages
Japanese (ja)
Other versions
JPH0480331B2 (en
Inventor
Hideo Shoji
庄司 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMANO KOGYO GIJUTSU KENKYUSHO
Original Assignee
AMANO KOGYO GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMANO KOGYO GIJUTSU KENKYUSHO filed Critical AMANO KOGYO GIJUTSU KENKYUSHO
Priority to JP58098005A priority Critical patent/JPS59224529A/en
Publication of JPS59224529A publication Critical patent/JPS59224529A/en
Publication of JPH0480331B2 publication Critical patent/JPH0480331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements

Abstract

PURPOSE:To take a precise analysis by guiding light emitted by a tungsten lamp for a comparison light source into a temperature sensor fitted to the cylinder head of an internal-combustion engine through an optical fiber cord. CONSTITUTION:The light from the light source enters the photo-electron multiplier tube 15 in a light source and photodetection part 22 through an optical fiber 11, lens 2, right-angled prism 12, flame measurement gap 3 which is exposed in a combustion chamber and filled with a flame, and return optical fiber cord 13. The optical fibers 11 and 13 are flexible, so the temperature sensor which is screwed in at an optional position in the combustion chamber is coupled with the photodetection part 22 easily. Consequently, a precise analysis of the combustion process of a practical engine which is impossible convertionally is taken for the 1st time.

Description

【発明の詳細な説明】 高速回転するガソリン又はディーゼル機関等の燃焼室内
ガス温度の如く、周ル1的に且つ時間と共に著しく変動
する燃焼ガス温度を記録計側することは極めて困j)I
IIであり、特に燃焼室内のある一点に於けるガス温度
の時間的経過を画像記録し計測することは、現在まで殆
んど行なわれていない。
[Detailed Description of the Invention] It is extremely difficult to record the combustion gas temperature, which fluctuates significantly over time, such as the gas temperature in the combustion chamber of a gasoline or diesel engine that rotates at high speed, on the recorder side.
II, and in particular, image recording and measurement of the time course of gas temperature at one point in the combustion chamber has hardly been done to date.

本発明はこのような問題を解決するだめの新らしい装置
並にその温度目盛検定法を提供するものであり、これに
よって在来不可能であった実用機関の燃焼過程を精密解
析することが初めて可能となり、その効果は偽めて太き
い。
The present invention provides a new device to solve these problems as well as a method for verifying its temperature scale, making it possible for the first time to precisely analyze the combustion process of a practical engine, which was previously impossible. It has become possible, and the effect is deceptively strong.

第1図は本発明に用いた燃焼ガス温度検定法の原理を示
すものである。比較光源タングステン・ランプ1を出た
光はレンズ2により千行光紳となり、1+測しようとす
る火炎測定部空隙を通過した後、再びレンズ2′によっ
て収れんされ、分光器4のプリズム5によって分光され
てD 彩−スペクトル6を含むスペクトル・バンドを示
す。
FIG. 1 shows the principle of the combustion gas temperature assay method used in the present invention. The light emitted from the comparative light source tungsten lamp 1 is turned into a thousand lines of light by the lens 2, passes through the gap in the flame measurement section to be measured, is converged again by the lens 2', and is divided into spectra by the prism 5 of the spectrometer 4. D indicates the spectral band containing spectrum 6.

今もし比較光源を黒体と仮定すれば次の如きふく射エネ
ルギーの関係が成立する。
Now, if we assume that the comparison light source is a black body, the following radiant energy relationship holds true.

T1:光源の真温度   K TB:光源の黒体温度  K TF−火炎の温度    K λD;D線の波長 (λD −0,589μ)E(λn
、’l”l):λD、’l’1において火炎に入る黒体
光源のふく射エネルギー E’(λD、’l’I): λDl ’l’l K オ
イテ火炎を通過する光ぶのふく射エネルギー e(λn、’l’r):λD、’TFにおいて火炎の発
するふく射エネルギー 火炎に吸収されるエネルギは E(λo、TD)−E’(λD、TI)であり、この吸
収エネルギと火炎自身の発生するふく射エネルギの差を
几とすれば 几−(E(λo、TI)−E’(λD+”1))−e(
λn 、 Tr )  (1) 火炎のλD、TFにおける吸収率をα(λD。
T1: True temperature of the light source K TB: Black body temperature of the light source K TF - Flame temperature K λD; Wavelength of D line (λD -0,589μ)E(λn
, 'l'l): λD, radiant energy of the blackbody light source entering the flame at 'l'1 E' (λD, 'l'I): λDl 'l'l K Oite radiant energy of the light bulb passing through the flame e(λn,'l'r): λD,'The radiation energy emitted by the flame at TFThe energy absorbed by the flame is E(λo, TD)-E'(λD, TI), and this absorbed energy and the flame itself If the difference in radiant energy generated by
λn, Tr) (1) The absorption rate at λD and TF of the flame is α(λD.

1゛F)とすれば E’(λD、i’1)−E(λD、TI)(1−α(λ
D、TF))   (2) キルヒホッフの法則により e(λD、’1’F)−α(λD、TF)E(λD、’
l’F)(3)(2) (3)を(1)に入れて 几−α(λn、’l’r)(E(λD、 lit、 )
 。
1゛F), then E'(λD, i'1)-E(λD, TI)(1-α(λ
D, TF)) (2) According to Kirchhoff's law, e(λD, '1'F) - α(λD, TF) E(λD,'
l'F) (3) (2) Put (3) into (1) and get -α(λn,'l'r)(E(λD, lit, )
.

E(λD 、 T F ) 〕(4) したがって T、〉’i’pの時はR〉0すなわち吸収スペクトルと
なりD線は黒線となる。
E(λD, T F )] (4) Therefore, when T, >'i'p, R>0, that is, an absorption spectrum, and the D line becomes a black line.

’ < 0+ ’1’ H(T Fの時はD#jd輝線
となり、1(、=0でD線は黒線よシ輝IN&C反転す
る。この反転点において火炎温度Tvは光学の真温度1
゛1  に等しい。
'< 0+ '1' When H(T F, it becomes a D#jd emission line, and when 1(, = 0, the D line is reversed from the black line to the brightness IN&C. At this reversal point, the flame temperature Tv becomes the optical true temperature 1
Equal to ゛1.

もし光源が完全黒体でなく、タングステンランプの場合
のように灰色体である場合には、αW(λo、TI):
(λp、 l1ll)におけるタングステンの吸収率と
すれば )も−〔αW (λD、’1’、)E(λn、’l’l
) −α W(λo  、 ’、l’l )L(λDI
T+)(1−α(λD、’l’F))−α(λD。
If the light source is not a completely black body but a gray body as in the case of a tungsten lamp, αW(λo, TI):
(λp, l1ll) ) is also −[αW (λD, '1',)E(λn, 'l'l
) −α W(λo, ', l'l ) L(λDI
T+)(1-α(λD,'l'F))-α(λD.

Tp)E(λD、TF) 一α (λp、’l’ F )[αW (λo  、’
l’l  )H(λo、T重 )−E(λD、TF)]
   (6) 反転点では i輸0.αW(λn、T、)E(λD、TI)−JλD
Tp) E(λD, TF) - α (λp, 'l' F ) [αW (λo, '
l'l)H(λo, T weight)-E(λD, TF)]
(6) At the reversal point, i import is 0. αW(λn,T,)E(λD,TI)−JλD
.

TB)−E(λD、TF)        (7)TF
−’]’B−比較光源の黒体温度   (8)(6)I
s)両式は火炎で吸収される比較光源のふく射エネール
ギと火炎の発するふく射エネルギが相等しい時、火炎温
度TFは比較電源の黒体温度’l’Hに等しいことを示
している。
TB)-E(λD, TF) (7) TF
-']'B-Blackbody temperature of comparison light source (8) (6) I
s) Both equations show that when the radiant energy of the comparative light source absorbed by the flame and the radiant energy emitted by the flame are equal, the flame temperature TF is equal to the blackbody temperature 'l'H of the comparative power source.

光源の黒体温度TBと真温度′l゛1  との間には(
7)が成立する故W i e nの近似式を用いてCI
+02 は定数 今 λR−0.665μの赤色フィルタを用いた光高温
計によって光源ランプの黒体温度TRを得たとすれば、
その真温度TIとの間には(9)と同様に (8) (9) (→よシ −λD g n αW (λD、’l’、)]    
θ」O光嵩温計によって計測されたTRに(11)を用
いて補正することによりTBすなわちTpを求めること
ができる。光源ランプlの直流市、源8の電圧を可変抵
抗7で変化させ、その時ランプにかかる電圧■を電圧計
9によって読みとり、VとTB との関係を求め予め検
定曲線を作成しておき、後述の温度目盛の検定に利用す
る。
The relationship between the blackbody temperature TB of the light source and the true temperature 'l゛1 is (
7) holds, so using the approximate formula of W i e n, CI
+02 is a constant. If the blackbody temperature TR of the light source lamp is obtained by an optical pyrometer using a red filter of λR-0.665μ, then
Similar to (9), there is a difference between the true temperature TI and (8) (9) (→Yoshi-λD g n αW (λD, 'l',)]
TB, that is, Tp can be determined by correcting TR measured by the θ''O optical bulk thermometer using (11). The DC voltage of the light source lamp 1, the voltage of the source 8 is varied by the variable resistor 7, the voltage applied to the lamp at that time is read by the voltmeter 9, the relationship between V and TB is determined, and a verification curve is created in advance, which will be described later. Used to verify the temperature scale of

第2図において、比較光源用タングステン・ランプ1よ
り出た光はレンズ2 + l 1、直角反射鏡10、光
フアイバーコードll’ijて、レンズ2によシ平行光
線となり一組のjθ角プリズム又は直角反射炉12.1
2’ によって折返され、集光レンズ2′、光ファイバ
ー・コード13、D線用フィルター14を経て、光電子
増倍管15で受光される。
In Fig. 2, the light emitted from the tungsten lamp 1 for comparison light source is converted into a parallel beam by the lens 2, through the lens 2+l1, the right-angle reflector 10, and the optical fiber barcode ll'ij, and then passes through a set of jθ angle prisms. or right angle reverberatory furnace 12.1
2', passes through a condenser lens 2', an optical fiber cord 13, and a D-line filter 14, and is received by a photomultiplier tube 15.

直角プリズム12,12’の間には、温度を計測しよう
とする燃焼室内に露出した火炎測定空隙3が設けられ、
光はその空隙を満たす火炎層を通過する。
A flame measurement gap 3 exposed within the combustion chamber whose temperature is to be measured is provided between the right angle prisms 12, 12';
Light passes through a flame layer that fills the void.

光電子増倍管15の受光用に比例する電気出力は増rl
>器16によって増+iJされた後、データー・L/:
I−ター 17 及び/又はAフシロスコープ18上に
画イ象としてクランク角0に対して一己録表示される。
The electric output proportional to the light reception of the photomultiplier tube 15 is increased rl
>After being incremented by +iJ by device 16, data L/:
An image is displayed as an image on the I-tar 17 and/or the A-fuscilloscope 18 for a crank angle of 0.

機関の回転軸19に連結されたロータリー・エンコーダ
20によって、4サイクル機関の場合は吸入及び膨張行
程のみ受光させる。2サイクル機関ではロータリー・エ
ンコーダ20を設ける必要はなく、圧縮行程の比較光源
エネルギ全検定に利用する。
A rotary encoder 20 connected to the rotating shaft 19 of the engine allows light to be received only during the suction and expansion strokes in the case of a four-stroke engine. In a two-cycle engine, it is not necessary to provide the rotary encoder 20, and it is used for the comparison light source energy total verification of the compression stroke.

第3図(a)は第2図1で示す温度センサー21のガI
!造を示す縦断面図であり、第3図(I))は、 これ
と直角方向の縦断面図である。
FIG. 3(a) shows the temperature sensor 21 shown in FIG.
! Fig. 3 (I) is a longitudinal sectional view taken in a direction perpendicular to this.

光源よりの光は光ファイバー11を通りし/ズ2、直角
プリズム12、燃焼室内に露出し火炎で満たされる火炎
測定空隙3を経て、丹び直角プリズム12′、集光レン
ズ2′を経て決り用光ファイバー・コード13を通って
光源及び受光部22内の光電子増倍管15に入る。
The light from the light source passes through an optical fiber 11, a right-angle prism 12, a flame measurement gap 3 exposed inside the combustion chamber and filled with flame, and then a right-angle prism 12' and a condensing lens 2'. The light passes through the optical fiber cord 13 and enters the photomultiplier tube 15 in the light source and receiver 22 .

第3図(b)に示すように、光ファイバー11゜13は
水套23を通る冷却水によって冷却され、冷却水は冷却
水流入管24より入り冷却水流出管25より流出する。
As shown in FIG. 3(b), the optical fibers 11, 13 are cooled by cooling water passing through a water cannula 23, and the cooling water enters through a cooling water inlet pipe 24 and flows out through a cooling water outlet pipe 25.

光ファイバー11.1.lま可撓性があるので、燃焼室
の任意の位置にねじ込まれた温度センサー21と受光部
22を容易に連結することができる。光ファイバーに多
少のエネルギ損失があっても検定、受光を共に同じ光路
を1rll L、て比較するので誤差余興えることはな
い。
Optical fiber 11.1. Due to its flexibility, the temperature sensor 21 screwed into any position in the combustion chamber and the light receiving section 22 can be easily connected. Even if there is some energy loss in the optical fiber, there will be no errors because both the verification and light reception are compared using the same optical path 1rllL.

第4図は4サイクル機関の燃焼室内ガス温興を本装置に
よって記録するノ、情合の温度目?をの検定法を示す説
明図である。第41反i (a)は第2藺のオフシロス
コープ18上に画かれるふく射エネルギ・クランク角線
図を示し、比較光源を切り火炎ふく射のみの場合の膨張
行程を示す。
Figure 4 shows the temperature of the gas in the combustion chamber of a 4-stroke engine, which is recorded by this device. FIG. 2 is an explanatory diagram showing an assay method for The 41st graph (a) shows the radiation energy/crank angle diagram drawn on the second oscilloscope 18, and shows the expansion stroke when the comparison light source is cut off and only flame radiation is used.

第4図(b)(c)はそれぞれ、比較光源を伴う場合の
吸入行程(b)及び膨張行程(c)のふく射エネルギ・
クランク角線図を示し、吸入行程(b)では比較光源の
みの矩形波を示し、膨張行程(c)では比較光源の矩形
波に火炎ふく射エネルギの@なったものを示す。
Figures 4(b) and 4(c) show the radiant energy of the suction stroke (b) and expansion stroke (c) when using a comparative light source, respectively.
A crank angle diagram is shown, in which the suction stroke (b) shows a square wave of only the comparison light source, and the expansion stroke (c) shows the square wave of the comparison light source plus the flame radiant energy.

前述のように火炎ふく射エネルギと火、灸で吸収される
比較光源のふく射エネルギが相等しい反転点の火炎温度
TFは、吸入行程(1))の比較光源の黒体温度TBに
相等し7いから、膨張行程の(c)図で矩形波と山形波
の二つの交点に相当するクランク角θ1,02を求めれ
ば、第4図(a)に)?いて同じθ1 、θ2 におけ
る火炎温度1’pはTBに等しい。光源電圧ケ変えて比
較光7)虫の黒体温p〔J′B  を変えることKより
、(a)図出力杯1図に温度目盛を典えることができる
As mentioned above, the flame temperature TF at the reversal point where the flame radiant energy and the radiant energy of the comparison light source absorbed by fire and moxibustion are equal is equal to the blackbody temperature TB of the comparison light source in the suction stroke (1)). From this, if we find the crank angles θ1 and 02 corresponding to the two intersections of the rectangular wave and the chevron wave in diagram (c) of the expansion stroke, we can obtain the crank angles θ1 and 02 in Figure 4 (a). The flame temperature 1'p at the same θ1 and θ2 is equal to TB. Comparative light by changing the light source voltage 7) By changing the black body temperature p [J'B of the insect, it is possible to draw a temperature scale on (a) Figure output cup 1.

第5図(a) ld 2サイクル機関の火炎のみの出力
曲線を示し、(b)はその圧龜行程で比較光源のみを、
(C)は比較光源と火炎の亀なった膨張行程のふく射エ
ネルギ又は温度・クランク角緋図を示す。この場合も前
と同様にして、(c)図で比1改光源と火炎を含む出力
線で水平糾]と山形梓の交点のクランク角θ1 、θ2
を求め、又比較光源のみの圧縮行程でその黒体温度r1
+ Bを求めれば、(a)図におけるθ1 、θ2VC
おける火炎温度Ill FI、、ll1l B に等し
い。
Figure 5 (a) shows the flame-only output curve of the ld 2-cycle engine, and (b) shows the comparison light source only in the compression stroke.
(C) shows the radiant energy or temperature/crank angle diagram of the tortoise expansion stroke of a comparison light source and flame. In this case, in the same way as before, in figure (c), the crank angles θ1 and θ2 at the intersection of the output line containing the ratio 1 modified light source and the flame are
In addition, the black body temperature r1 is determined by the compression stroke of only the comparison light source.
+B, θ1 and θ2VC in figure (a)
is equal to the flame temperature Ill FI,, ll1l B at .

第4図(a)又は第5図(、)に示ず1.i1気出力は
火炎のふく射エネルキを示し、点似的&C’、1’ p
に比例するから、その温度目盛は等間隔とならず筒温部
はど広くなる。もし等1riJ隔目盛ケ興える必要があ
る時は、光′1b7子増倍管15の出力増巾器−16内
にに乗回路を組込与、”1’+・・に比例する出力を1
有示できるようにすれ番・ゴよい。
1. Not shown in FIG. 4(a) or FIG. 5(,). The i1 power indicates the radiant energy of the flame, and is approximately &C',1'p
Since the temperature scale is proportional to , the temperature scale is not evenly spaced and the cylinder temperature area is wide. If it is necessary to create a scale with equal 1riJ intervals, a multiplier circuit is built into the output amplifier 16 of the optical multiplier tube 15, and an output proportional to ``1'' + . 1
Please wait until the end of the day so that you can show the signs.

以上Vこ述べた新らしい縣取計4((・1装置1’、i
j)とその検定方法を用いることにより、これまで不可
能であった内燃機関の燃侶;績14度を記録Fit測す
ることがi=J能となり、NOxの冗生防1ト、等実用
上米するところが極めて大きい。
The new area measurement system 4 ((・1 device 1', i
By using j) and its verification method, it has become possible to record and measure the combustion temperature of internal combustion engines of 14 degrees, which was previously impossible. There is a huge amount to improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本装置fLの温す[検定に使用するD線反転法
を示す説明図、第21・4は本装置のシステム1況明図
、第3図(al kJ本装飢のうち温1片センザー21
の構造を示す縦断面図、253図(1))は(a)に対
し直角方向の6t iυ[面図、第4181は4サイク
ル機関における温度目盛検定方法の説明図であり、(a
) lj:入掛のみの場合のふく射エネルギ又は温度−
クランク角紳図、(1))は比り・y光て+li!、を
同11.jiに入れた場合の吸入行程、((ニ)ばi)
’+; ’i15行1〜!のふく射エネルギ又は温間−
クランク角釣図を示す。第5(立1(2)、(b)、(
c)は2ザイクル4μ> 1Atl kt−お0る同A
・■・の諸f外図を示す。 1、 比較光約タングステン・ラング 2.21.21シ2 u・ レンズ 3 火炎測定仝帥 4、 分光器 5 分光プリズム 6、  D線スペクトル 7、 可変抵抗 8 直流矩、源 9、 ″「耗出計 1o、  直角反射怖 ti、  光フアイバーコード 12.12’  直角プリズム又は直角反射伊13、光
ファイバー・コード 14、D線用フィルター 15、  光電子増倍管 16  噌+11器 17、  データ・レコーダー 18、  オツシロースコープ 19、  機関回転軸 20、 ロータリー・エンコーダー 21、  温度センサー 2Z  光源及び受光部 23、水套 24  冷却水vIC入管 25  冷却水流出管 一1′。 第 1 図 す 茅 2 図 第3 図 ((L) (b) 手続補正書(方式) 昭和58年9月 9日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願98005号2 発
明の名称 内燃機関用燃焼ガス温度計4、補正命令の日
付  昭オ058年8月10日補正の内容 4、図面の簡単な説明 明細書12頁第2行よシ第7行を次の如く改める。 第5図は2サイクル機関における温度目盛検定方法の説
明図である。
Figure 1 is an explanatory diagram showing the D-line reversal method used for the temperature verification of this device 1 piece sensor 21
253 (1)) is a vertical cross-sectional view showing the structure of (a), 6t iυ [plane view in the direction perpendicular to (a);
) lj: radiant energy or temperature when only hanging
Crank angle diagram, (1)) is compared, y light + li! , same as 11. Inhalation stroke when put in ji, ((d)bai)
'+;'i15 line 1~! radiant energy or warm
A crank angle fishing diagram is shown. 5th (stand 1 (2), (b), (
c) is 2cycles 4μ> 1Atl kt-Oru Same A
・■・External diagrams of various f are shown. 1. Comparative light approx. tungsten lung 2.21.21 lens 3 Flame measuring device 4. Spectrometer 5 Spectroscopic prism 6. D-ray spectrum 7. Variable resistor 8 DC rectangle, source 9. 1 o in total, right angle reflection, optical fiber bar code 12.12', right angle prism or right angle reflection 13, optical fiber cord 14, D-ray filter 15, photomultiplier tube 16, +11 device 17, data recorder 18, Otsu Silloscope 19, engine rotation shaft 20, rotary encoder 21, temperature sensor 2Z, light source and light receiving section 23, water mantle 24, cooling water vIC inlet pipe 25, cooling water outflow pipe 1'. (L) (b) Procedural amendment (method) September 9, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case Patent Application No. 98005, filed in 19802 Title of the invention Combustion gas thermometer for internal combustion engines 4, Date of amendment order: August 10, 1982 Contents of amendment 4: Brief description of drawings Page 12, line 2 to line 7 are amended as follows: Figure 5 shows the temperature scale in a two-stroke engine. It is an explanatory diagram of a test method.

Claims (1)

【特許請求の範囲】 比較光源用タングステン・ランプより発する光を光ファ
イバー・コードを51!t シて内燃機関のシリング・
ヘッドに取付けた温度センサーの内部に送シ込み、セン
サー内に設けた2個の直角プリズム又は直角反射儒とそ
れらの中間光路内に設けた燃焼室の火炎に露出する空隙
部を通過させた後、入射光に平行で且つ逆方向の光とし
、これを別の光ファイバー・コードにより受光部に導き
、D線用フィルターを通過させた後、光電子増倍管にて
受光、その電気出力を増巾した後データー・レコーダー
及び/又はオツシロスコープに入力、これらによシ記録
される画像のうち、燃焼ガスの影響を受けない吸入又は
圧縮行程における比較光源のみによる出力エネルギーに
対する光源黒体温度を光高温計によシ決定し、燃焼膨張
行程において、この比較光源の黒体温度に対しD線反転
を起すクランク角を決足し、これを火炎ふく射のみを受
ける場合の燃焼膨張行程の同一クランク角における燃焼
ガス温度として目盛ることを特長とする内燃機関用燃焼
ガス温度計 2 火炎のふく射エネルギーに比例する光電子増倍管の
電気出力が温度の一次関数となるよう電気的に転換し、
等間隔温度目盛を有する温度・クランク角線図を画かせ
ることを特徴とする特許請求範囲第1項記載の内燃機関
用燃焼ガス温度計
[Claims] The light emitted from the tungsten lamp for comparison light source is 51! t Schilling of an internal combustion engine
After it is sent into the temperature sensor attached to the head, it passes through two right-angle prisms or right-angle reflections provided in the sensor and a gap exposed to the flame of the combustion chamber provided in the intermediate optical path between them. , the light is parallel to the incident light and in the opposite direction, guided to the light receiving section by another optical fiber cord, passed through a D-ray filter, received by a photomultiplier tube, and its electrical output is amplified. After that, it is input to a data recorder and/or an oscilloscope, and among the images recorded by these, the light source blackbody temperature is calculated for the output energy of only the comparison light source during the intake or compression stroke, which is not affected by the combustion gas. Using a pyrometer, determine the crank angle that causes a D-line reversal with respect to the blackbody temperature of this comparative light source during the combustion expansion stroke, and use this as the crank angle at the same crank angle during the combustion expansion stroke when receiving only flame radiation. Combustion gas thermometer for internal combustion engine 2 characterized by being scaled as combustion gas temperature Electrically converted so that the electrical output of a photomultiplier tube, which is proportional to the radiant energy of the flame, becomes a linear function of temperature,
A combustion gas thermometer for an internal combustion engine according to claim 1, characterized in that it draws a temperature/crank angle diagram having an equally spaced temperature scale.
JP58098005A 1983-06-03 1983-06-03 Combustion gas thermometer for internal combustion engine Granted JPS59224529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098005A JPS59224529A (en) 1983-06-03 1983-06-03 Combustion gas thermometer for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098005A JPS59224529A (en) 1983-06-03 1983-06-03 Combustion gas thermometer for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS59224529A true JPS59224529A (en) 1984-12-17
JPH0480331B2 JPH0480331B2 (en) 1992-12-18

Family

ID=14207595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098005A Granted JPS59224529A (en) 1983-06-03 1983-06-03 Combustion gas thermometer for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS59224529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378639A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Evaluating and controlling devices of combustion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378639A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Evaluating and controlling devices of combustion

Also Published As

Publication number Publication date
JPH0480331B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
Zhao et al. Optical diagnostics for soot and temperature measurement in diesel engines
US5319199A (en) Apparatus for remote analysis of vehicle emissions
US8330957B2 (en) Device and method for quantification of gases in plumes by remote sensing
CA1036384A (en) Non-dispersive multiple gas analyzer
US3677652A (en) Fluid analyzer apparatus
US20020026822A1 (en) Vehicle gas emission sampling and analysis assembly
CN103076107A (en) Terahertz pulse measurement-based burning temperature sensing device and method
Spicher et al. Detection of knocking combustion using simultaneously high-speed schlieren cinematography and multi optical fiber technique
CN105928902A (en) High-spectrum-resolution total atmospheric spectral transmittance measuring method
CN106124051A (en) A kind of small-sized Raman spectrometer
CN104865227A (en) Quantitative measurement apparatus for volume fraction of soot produced by combustion in optical engine cylinder
Hentschel et al. Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique
US20100294951A1 (en) Sensitive gas-phase flourimeter at ambient pressure for nitrogen dioxide
JPS59224529A (en) Combustion gas thermometer for internal combustion engine
CN101294965A (en) Miniature non-mark protein chip detecting system
PT2588847T (en) Device and method for quantification of gases in plumes by remote sensing
Ladommatos et al. A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 2: Implementation
CN206709779U (en) A kind of white light quantum interference system
CN206740638U (en) A kind of double air chambers of parallel spectrochemical analysis for gases
JPS61210918A (en) Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine
JP2004184175A (en) Gas concentration sensor, and air-fuel mixture concentration detector for engine
JPH02264831A (en) Interferometer system for generating two or more transmission light beams from one incident light beam
Hall Mid-IR fiber optic sensors for internal combustion engines
JPH0893542A (en) Air-fuel ratio detecting device for internal combustion engine
Williams et al. Measurements of temperature and N 2 number density in the combustion cylinder of a compression ignition engine utilizing laser-raman diagnostics. Arnold Eng