JPS61210918A - Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine - Google Patents

Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine

Info

Publication number
JPS61210918A
JPS61210918A JP5035585A JP5035585A JPS61210918A JP S61210918 A JPS61210918 A JP S61210918A JP 5035585 A JP5035585 A JP 5035585A JP 5035585 A JP5035585 A JP 5035585A JP S61210918 A JPS61210918 A JP S61210918A
Authority
JP
Japan
Prior art keywords
data
flame image
soot
flame
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5035585A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nagase
和彦 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP5035585A priority Critical patent/JPS61210918A/en
Publication of JPS61210918A publication Critical patent/JPS61210918A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Abstract

PURPOSE:To facilitate the spectrochemical analysis of the combustion flame of a reciprocating internal combustion engine by converting data to spectral illuminance by taking the attenuation rate of a flame image into consideration. CONSTITUTION:A spectroscope is operated at a specific wavelength and the spectral illuminance of the light transmitted through soot in the wavelength region thereof is detected by a light power meter. The data measured by a similar method in the state perior to sticking of soot is separately obtd. The data 77 on the attenuation rate of the flame image propagation at specific wavelengths lambda1-lambda4 by the sticking of the soot is obtd. from the difference between such data and the data obtd. in soot sticking stage. The data 77 is stored into an RAM65 in an analyzer 61 contg. an arithmetic element, storage element, etc. automatically or by a manual operation from the outside. On the other hand, the data on the information on the analysis illuminance of the flame image, etc. converted and stored at an electrical level into a data recorder is inputted to a CPU64. The data on the attenuation rate of the soot from the RAM65 is also inputted to the CPU64. The CPU64 reads out the necessary information from an ROM66 from two sets of the data and calculates the spectral illuminance corresponding to the engine stroke by taking the attenuation rate of the flame image propagation by the influence of the soot into consideration.

Description

【発明の詳細な説明】 下これを「機関」という)燃焼火炎の分光分析に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to spectroscopic analysis of combustion flames (hereinafter referred to as "engines").

(発明の技術的背景とその間和点) 機関内部の高温高圧の燃焼室の燃焼状況の詳細を検知す
るには、燃焼時に発生する光エネルギー(以下これをし
火炎像]という)を外部(伝ばさせ、かつ伝はさせた火
炎像を分光器郷の分光装置で分光し、いわゆるスペクト
ル分析を行う必要がある。この分析を行うためには、燃
焼室に通視窓を設置し、ここから火炎像を分析装置まで
導く必要がある。しかし、実際の機関の燃焼室に恒久的
な耐熱性、及び、耐圧性のある窓を設置することは容易
ではな(、また、たとえ、設置できたとしても、窓の表
面に付着する煤の影響による火炎像め、従前から、実機
のそれも湿態における正確な分光分析を行うことはきわ
めて困難な状勢にあった。
(Technical background of the invention and their sum) In order to detect the details of the combustion situation in the high-temperature, high-pressure combustion chamber inside the engine, it is necessary to transmit the light energy generated during combustion (hereinafter referred to as the flame image) to the outside (transmission). It is necessary to perform so-called spectral analysis by analyzing the flame image that has spread and propagated using a spectrometer at the spectrometer.In order to perform this analysis, a viewing window is installed in the combustion chamber, and the It is necessary to guide the flame image to the analyzer. However, it is not easy to install a permanent heat-resistant and pressure-resistant window in the combustion chamber of an actual engine (and even if it could be installed, However, it has been extremely difficult to perform accurate spectroscopic analysis of actual equipment in wet conditions due to the flame image caused by soot adhering to the window surface.

(発明の概要) 最近、その内部に気密に貫通した光ファイバ等の光ガイ
ドを設けた取付金具を機関燃焼室隔壁を気密に貫通設置
し、光ガイド入射面を燃焼火炎忙対向させることによっ
て火炎像を外部に伝ばさせる方法などが考案され、その
代表例としてはfi+願昭59−176861 (昭和
59年8月27日)などが知られる。このような取付金
具を用いれば、外部に火炎像を伝ばさせることも容易な
だけでなく、装置自体が耐久性に富むため、実機の、し
かも湿態における燃焼の実態を把握することができる。
(Summary of the Invention) Recently, a mounting bracket having a light guide such as an optical fiber hermetically penetrated inside the engine combustion chamber partition wall is installed, and the light guide incident surface is placed opposite to the combustion flame. A method of transmitting the image to the outside was devised, and a typical example is fi+ 176861 (August 27, 1982). By using such mounting brackets, it is not only easy to transmit the flame image to the outside, but also because the device itself is highly durable, making it possible to grasp the actual state of combustion in actual equipment, even in wet conditions. .

また、外部へ伝ばした火炎像を分光させる際に一光ガイ
ドに光ファイバ等を用いれば、分光に際しての複雑な光
軸合せ等の作業を省略し、最小の光エネルギーで、効率
よ<、シかも、きわめて容易にこれ着する煤の問題につ
いても、火炎像を電気的レベルに一旦変換記録したのち
、取付金具を燃焼室隔壁か調査し、かく調査した減衰量
を参酌して前記の電気的レベルに一旦変換記録したデー
タを分光輝度又は照度(以下し照度]という)に変換す
ることとすればその影響を排除できる。本発明の特徴は
このような方法によって往復動内燃機関の燃焼火炎を分
光分析することにある。
In addition, if an optical fiber or the like is used as a single light guide when dispersing the flame image transmitted to the outside, the complicated work of aligning the optical axis during spectroscopy can be omitted, and the efficiency can be improved by using the minimum light energy. Regarding the problem of soot, which is extremely easy to adhere to, first convert the flame image to an electrical level and record it, then check whether the mounting bracket is on the combustion chamber bulkhead, take into account the attenuation thus investigated, and then This effect can be eliminated by converting the recorded data into spectral brightness or illuminance (hereinafter referred to as illuminance). A feature of the present invention is that the combustion flame of a reciprocating internal combustion engine is spectroscopically analyzed by such a method.

(発明の実施例) 本発明の実施態様はいろいろ考えられるが、以下に述べ
る実施例は、データ採集のための機関の運転を完了後、
光ガイド入射面に付着した煤の減独・を調べ、この結果
に基づいて分光分析を行うに際し採集データを補正する
方法についてのべてみよう。
(Embodiments of the Invention) Various embodiments of the present invention are possible, but in the embodiment described below, after the operation of the engine for data collection is completed,
Let's discuss how to investigate the reduction of soot attached to the light guide entrance surface and correct the collected data when performing spectroscopic analysis based on the results.

第1図は本発明を公知の予燃焼室形ディーゼル機関に実
施した例を示す概念でありて、図において、機関1のシ
リンダヘッド2には、燃焼室3の頂点部分く吸排気ボー
ト4が設けられ、その側方に副燃焼室5が設けられてい
る。副燃焼室5には燃料噴射弁6が取り付けられ、ここ
から噴射された燃料が燃焼室3に流入し、ピストン7に
より断熱圧縮されて着火し燃焼する。
FIG. 1 is a concept showing an example in which the present invention is implemented in a known pre-combustion chamber type diesel engine. A sub-combustion chamber 5 is provided on the side thereof. A fuel injection valve 6 is attached to the auxiliary combustion chamber 5, and fuel injected from the valve flows into the combustion chamber 3, is adiabatically compressed by the piston 7, and ignites and burns.

11はその詳細を後述する構成からなる内部に気密に貫
通した光ガイドを設けた取付金具であって、燃焼室隔壁
10を気密に貫通して設置され、隔壁からの着脱はねじ
により容易に実施し得る構成となりている。取付金具1
1の副燃焼室側先端には副燃焼室5内に生ずる火炎像を
入射する光ガ11は前記貫通孔31に対しねじにより取
り付けられた取付金具で、副燃焼室5側にテーパ面32
が形成されている。33は前記取付金具11の長手方向
に形成された透孔部、34は光ガイドたるロッド状の光
ファイバ、35は前記光ファイバあの入射面、36は前
記光ファイバの出射面、37は前記光ファイバ34の入
射面35側を支持する第1の支持具で、光ファイバ34
との間に熱により生ずる収差を吸差を吸収せしめるため
光ファイバ34の細心(長手)方向に対して摺動可能に
なっており、取付金具11の透孔部33とねじにより固
定されている。38は支持具37の副燃焼室5側に取り
付けられた透視窓で図示のものはレンズ形のものが使用
され、副燃焼室5内の火炎像を透過し、集光するもので
あり、固さと溶融点が高く、耐熱性、耐圧性を有し、か
つ、光と熱の透過性がよく、腐蝕に強い人工サファイア
を素材として形成されたもので、耐熱性、気密性を有す
る固着剤39により光フアイバ340部分を気密に封止
し、光7アイパ34が燃焼室で発生する高温、高圧のガ
ス、衝撃波または腐蝕ガス等により損傷したり特性が劣
化するのを防止している。
Reference numeral 11 denotes a mounting bracket having a structure whose details will be described later and has a light guide that penetrates the combustion chamber partition wall 10 in an airtight manner, and is installed to pass through the combustion chamber partition wall 10 in an airtight manner, and can be easily attached and removed from the partition wall using screws. The configuration is such that it can be done. Mounting bracket 1
A light beam 11 that receives a flame image generated in the sub-combustion chamber 5 is attached to the tip of the sub-combustion chamber 5 by a screw, and a tapered surface 32 is attached to the sub-combustion chamber 5 side.
is formed. 33 is a through hole formed in the longitudinal direction of the mounting bracket 11, 34 is a rod-shaped optical fiber serving as a light guide, 35 is an entrance surface of the optical fiber, 36 is an output surface of the optical fiber, and 37 is a rod-shaped optical fiber that serves as a light guide. A first support that supports the entrance surface 35 side of the fiber 34, which supports the optical fiber 34.
In order to absorb the aberration caused by heat between the optical fiber 34 and the optical fiber 34, it is slidable in the fine (longitudinal) direction of the optical fiber 34, and is fixed to the through hole 33 of the mounting bracket 11 with a screw. . 38 is a see-through window attached to the side of the sub-combustion chamber 5 of the support 37, and the one shown is a lens-shaped one that transmits the flame image in the sub-combustion chamber 5 and condenses the light. A fixing agent that is made of artificial sapphire, which has a high melting point, heat resistance, pressure resistance, good light and heat transmission, and is resistant to corrosion, and has heat resistance and airtightness39 The optical fiber 340 portion is hermetically sealed to prevent the optical fiber 340 from being damaged or having its properties deteriorated by high temperature, high pressure gas, shock waves, corrosive gas, etc. generated in the combustion chamber.

このように、往復動内燃機関1の副燃焼室5内が光フア
イバ34等に影譬な与えるような高温となるのは燃料が
燃焼する間のきわめて短時間である。
As described above, the inside of the auxiliary combustion chamber 5 of the reciprocating internal combustion engine 1 reaches a high temperature that may affect the optical fiber 34 and the like only for a very short time while the fuel is being combusted.

したがりて短時間の間だけ高温から光ファイノ<34の
透視窓38でカバーすればよい。上記の透視窓38はレ
ンズ形に限るものではなく、平板状のものであってもよ
いが、さらに、光ファイバの保饅を必要としない場合に
はこの窓を省略した別の構造のものとしてもよい。40
は取付金具11の本体に圧入された第2の支持具であっ
て、その内面は取付金具11の長手方向に形成された透
孔部33と同一面を形成し、一部は第1の支持具37を
取付金具11と同様に支持している。41は光ファイバ
34と第2の支持具40とを封止する接着剤よりなる固
着部、42は他の光ガイドと当光ファイバ36との接続
に使用される公知の接続金具である。
Therefore, it is only necessary to cover the high temperature with the transparent window 38 of the optical fiber <34 for a short period of time. The above-mentioned transparent window 38 is not limited to a lens shape and may be a flat plate shape, but if the optical fiber protection is not required, a different structure without this window may be used. Good too. 40
is a second support that is press-fitted into the main body of the mounting bracket 11, the inner surface of which is flush with the through hole 33 formed in the longitudinal direction of the mounting bracket 11, and a part of the support is in contact with the first support. The fitting 37 is supported in the same way as the mounting fitting 11. Reference numeral 41 indicates a fixing portion made of adhesive for sealing the optical fiber 34 and the second support 40, and 42 indicates a known connecting fitting used to connect the optical fiber 36 to another light guide.

このような構成の取付金具11において、副燃焼室5内
に生じた火炎像は透視窓38を介し光ファイバ340入
射面35に入射し、出射面36から外部に出射する。ま
た、副燃焼室5より放射伝達される熱論ように内部に光
ガイドを設けた取付金具11によって高温・高圧の燃焼
室から外部へ伝ばした火炎像の分光方法はいろいろな方
法が考えられる。
In the mounting bracket 11 having such a configuration, the flame image generated in the sub-combustion chamber 5 enters the entrance surface 35 of the optical fiber 340 through the see-through window 38 and exits from the exit surface 36 to the outside. In addition, various methods can be considered for spectroscopy of the flame image transmitted from the high-temperature, high-pressure combustion chamber to the outside by the mounting bracket 11 provided with a light guide inside, such as heat radiatively transmitted from the sub-combustion chamber 5.

例へば、最も一般的な方法として取付金具出射端に大口
径の光ファイバを取りつけ、これより公知の分波器等で
火炎像を分岐させ、分岐した火炎像のそれぞれの端末に
複数の公知の分光器を並置して分光した後、電気的レベ
ルに変換する方法がある。別の方法として、取付金具1
1の入射面に何件させ、はぼ連続的に分光スペクトルを
とる方法などが考えられるが、以下には公知の分岐ノ(
ンドル光ファイバとフィルターにより容易に火炎像を分
光する方法を述べてみよう。
For example, the most common method is to attach a large-diameter optical fiber to the output end of the mounting bracket, branch the flame image using a known splitter, etc., and use multiple known spectrometers at each end of the branched flame image. There is a method of arranging instruments side by side to perform spectroscopy and then converting it to electrical levels. Alternatively, the mounting bracket 1
One possible method is to add a number of light beams to the incident surface of 1 and obtain a nearly continuous spectrum.
Let's explain how to easily disperse flame images using fiber optic fibers and filters.

第1図において、取付金具11の図示しない出射端には
その詳細を第3図に示すところの入射端が一束に結束さ
れ、かつ出射端が複数(本実施例では4)群に分割され
た公知の分岐バンドル光ファイバ8が第2図に示す接続
金具42、並びに、公知のアダプタ51、及び接続金具
52により接続れた光ファイバ東540入射端とは公知
の元ファイバ接続方法により、接続金具42,52、ア
ダプタ51を用い接続され、か(して火炎像は光ファイ
バ束54の入射端へ伝ばされる。分岐バンドル光ファイ
バ8の出射端側は1不もしくは複数本ごとに束ねられ、
4群に分割され、そのそれぞれの出射端には特定の狭い
波長域のみを良く透過させる公知のバンドパスフィルタ
を前置した応答性及び感度のよい光電素子を含む光電変
換器9が接続され、それぞれの変換器の分光感度域は火
炎諏の分光分析を行い易い適値に設定されたものとする
。16は応答性の優れた公知の増幅器でありて、取付金
具11の入射面に入射した光の分光照度に応じた電圧が
出力される。なお、この出力値は取付金具11が機関I
K取り付けられるに先立って公知の黒体炉、又η枦標準
光源尋により予め較正が行われており、取付金具11の
入射端が煤等により汚損されない状態での入射面におけ
る特定波長の分光照度は増幅器16の出力電圧より検知
でき、・かく検知した出力は公知のデータレコーダ54
に入力・記録される。55は公知のクランク角度検知器
、56は公知のパルス式回転計であって、共に機関1の
カム軸、及び、クランク軸に装着され、機関の運転時に
増幅器16か勢の出力と併せ、データ・レコーダに特定
クランク角度情報(行程位it、 )、及び、いわゆる
回転パルスが記録される。
In FIG. 1, an input end (details of which are shown in FIG. 3) is tied together at the output end (not shown) of the mounting bracket 11, and the output end is divided into a plurality of groups (four in this embodiment). The well-known branch bundle optical fiber 8 is connected to the input end of the optical fiber east 540 connected by the connecting fitting 42 shown in FIG. They are connected using metal fittings 42, 52 and an adapter 51, and the flame image is transmitted to the input end of the optical fiber bundle 54.The output end side of the branched bundle optical fibers 8 is bundled in units of one or more fibers. is,
It is divided into four groups, and the output end of each group is connected to a photoelectric converter 9 including a photoelectric element with high responsiveness and sensitivity, which is preceded by a known bandpass filter that transmits only a specific narrow wavelength range. It is assumed that the spectral sensitivity range of each converter is set to an appropriate value that facilitates the spectroscopic analysis of flame rays. Reference numeral 16 denotes a well-known amplifier with excellent responsiveness, which outputs a voltage corresponding to the spectral illuminance of the light incident on the incident surface of the mounting bracket 11. Note that this output value indicates that the mounting bracket 11 is
The spectral illuminance of a specific wavelength at the entrance surface is calibrated in advance using a known blackbody furnace or a standard light source before installation, and the entrance end of the mounting bracket 11 is not contaminated by soot, etc. can be detected from the output voltage of the amplifier 16, and the thus detected output is sent to a known data recorder 54.
is input and recorded. 55 is a known crank angle detector, and 56 is a known pulse type tachometer, both of which are attached to the camshaft and crankshaft of the engine 1, and when the engine is running, they receive data along with the output of the amplifier 16. -Specific crank angle information (stroke position it, ) and so-called rotation pulses are recorded on the recorder.

なお、データの記録方法にデータ・レコーダを用いる方
法は一実施例にすぎず、これにかえ、公知の記憶素子等
を用いてもよく、七〇一実施例を以下に示す。第4図は
公知の記憶素子を用いた外夕記録装貴主要構成を示すブ
ロック図である。図において、機関の行程(クランク角
K)が燃焼開始点近くに来た旨の情報(クランク角度情
報)をクランク角度検知器55から入力した公知のグー
)GTは動作となり、クランク軸が一定角度進角スを図
示しない公知の波形整形回路を介して公知のカウンタ5
7に出力して、当カランタを動作させ、公知の記憶素子
58のアドレス指定を行う。
Note that the method of using a data recorder to record data is only one embodiment, and instead, a known memory element or the like may be used, and a 701st embodiment will be shown below. FIG. 4 is a block diagram showing the main structure of an external recording device using a known memory element. In the figure, the well-known GT is operated by inputting information (crank angle information) that the engine stroke (crank angle K) is near the combustion start point from the crank angle detector 55, and the crankshaft is rotated at a constant angle. A known counter 5 is connected to the advance angle via a known waveform shaping circuit (not shown).
7 to operate this quanta and address the known storage element 58.

これと同時に公知のAD変換器59にも前記パルスは出
力され、これを動作となし、増幅器16から出力される
電気レベルに変換された特定波長域火炎像をデジタル変
換のうえ、該当のアドレスに公知の方法でデータの読み
込みを行う。
At the same time, the pulse is also output to a well-known AD converter 59, which is activated, and the specific wavelength range flame image converted to an electrical level output from the amplifier 16 is digitally converted and sent to the corresponding address. Data is read using a known method.

つぎに、このようにして記録されたデータから分光分析
を行うに際し、取付金具11の光ガイド入射面に付着し
た煤の影RkKよる火炎像伝は時の減衰量を前記取付金
具を副燃焼室隔壁10から取りはずずこと罠よって11
11査し、か(調査した減衰量を参酌して、前記作業を
行う方法について述べてみよう。
Next, when performing spectroscopic analysis from the data recorded in this way, the flame image transmission due to the shadow RkK of soot adhering to the light guide entrance surface of the mounting bracket 11 is calculated by comparing the amount of attenuation when the mounting bracket is connected to the sub-combustion chamber. It was removed from the bulkhead 10 and the trap 11
(Let's discuss how to perform the above work, taking into consideration the attenuation amount investigated.

第5図は、取付金具11の光ガイド入射面に付着した煤
による火炎像伝ばの減衰量の検知方法を示す概念図を含
むブロック図である。機関1から取りはずされた取付金
具11は煤が付着した状態ファイバ74が接続されてお
り、公知のハロゲン灯、又は黒体炉などからなる標準光
源71から出射された白色光が公知の集光系72、及び
、分光器73を通して入射し、かく入射した光は取付金
具11の光ガイド入射面から出射し、そこに取り付けら
れた公知の光パワーメータ75の検知器76に入射する
。かような構成において、分光器73を特定の波長(具
体的には光電変換器9のバンドパスフィルタの透過波長
)で動作させることにより光パワーメータはその波長域
における煤を透過した光の分光照度を検知できる。さら
に、煤付着以前の状態下で同様の方法で測定したデータ
、又は、当測定作業終了後、煤を除去した状態で再度測
定したデータを得、これと前記煤付着時のデータとの差
異を求めることにより、煤竹ykKよる特定各波長λ1
〜14における火炎像伝ばの減衰量データ77を得る。
FIG. 5 is a block diagram including a conceptual diagram showing a method of detecting the amount of attenuation of the flame image propagation due to soot attached to the light guide entrance surface of the mounting bracket 11. The mounting bracket 11 removed from the engine 1 has soot attached to it, and a fiber 74 is connected to it, and white light emitted from a standard light source 71 such as a known halogen lamp or a black body furnace is collected in a known condensed state. The light enters through the system 72 and the spectroscope 73, and exits from the light guide entrance surface of the mounting bracket 11, and enters the detector 76 of a known optical power meter 75 mounted there. In such a configuration, by operating the spectrometer 73 at a specific wavelength (specifically, the transmission wavelength of the bandpass filter of the photoelectric converter 9), the optical power meter calculates the fraction of the light that has passed through the soot in that wavelength range. Can detect light illuminance. Furthermore, data measured using the same method under conditions before soot adhesion, or data measured again with soot removed after the measurement work was completed, was obtained, and the difference between this and the data when soot adhesion was determined. By calculating, each specific wavelength λ1 by soot ykK
Attenuation amount data 77 of flame image propagation in ~14 is obtained.

つぎに前記のいわば手作業で減衰量を求める万作させた
時、当該波長に分光器73をセットした旨の情報を図示
しない分光器73内の回折格子の位置を図示しない公知
の方法で検知し、これを光パワーメータ75が検知した
当該波長の分光照度変換器79を介し、公知の記憶素子
80にメモリする。以下、他の特定波長くついても同様
の測定を繰返し、これによって、ます、煤か付着した状
態での光パワーメータが検知した特定波長λ暑〜λ4の
分光照度をメモリする。ついで、一旦取付金具11を取
りはずし、煤を除去した後、外部からの測定モードの指
示に従りて、前述の方法と同じ方法によりこの状態での
特定波長の分光照度を測定し、当データも記憶素子80
にメモリする。ついで、演算素子82に与えられる外部
からの測定モード指示に従って、記憶素子80にメモリ
された前記2つのデータについて同一波長の分光照度の
に従って、演算素子82は公知の方法で求め、しかして
、前記と同様の減衰データを得て、これを詳細に後述す
る分析器61に内蔵された記憶素子6FIK出力する。
Next, when the attenuation amount is determined manually, the position of the diffraction grating in the spectrometer 73 (not shown) is detected by a known method (not shown) to indicate that the spectrometer 73 is set to the wavelength in question. This is then stored in a known storage element 80 via the spectral illuminance converter 79 of the wavelength detected by the optical power meter 75. Thereafter, similar measurements are repeated for other specific wavelengths, and the spectral illuminance of the specific wavelengths λ~λ4 detected by the optical power meter with soot attached is memorized. Next, after removing the mounting bracket 11 and removing the soot, measure the spectral illuminance of the specific wavelength in this state using the same method as described above according to the measurement mode instruction from the outside, and also obtain this data. Memory element 80
to memory. Next, in accordance with an external measurement mode instruction given to the arithmetic element 82, the arithmetic element 82 calculates the spectral illuminance of the same wavelength for the two data stored in the storage element 80 using a known method, and Attenuation data similar to the above is obtained and outputted to a memory element 6FIK built into the analyzer 61, which will be described in detail later.

つぎに、このようにして得たaiCよるデータ減衰デー
タを参酌して、火炎像の分光分析を行う方法を第1図に
従って述べてみよう。第5図で述べた方法により得た煤
の減衰量データ77は前述の方法により自動的に、ある
いは、外部からの手動操作により、演算素子、記憶素子
等を含む分析器61内の記憶素子65にメモリされる。
Next, a method for performing spectroscopic analysis of a flame image will be described with reference to FIG. 1, taking into consideration the data attenuation data from aiC obtained in this manner. The soot attenuation amount data 77 obtained by the method described in FIG. is stored in memory.

かく状況の下で、データレコーダに!気的レベルで変換
、記録された火炎像の分光照度、及び、クランク角度情
報等のデータは分析器61に入力され公知のAD変換器
62、及び、波形整形回路63などを経由して演算素子
64に入力する。同素子には記憶素子65から併せて煤
の減衰量データも入力される。
Under these circumstances, use it as a data recorder! Data such as the spectral illuminance of the flame image converted and recorded at the atmospheric level and crank angle information are input to an analyzer 61 and sent to an arithmetic element via a known AD converter 62, a waveform shaping circuit 63, etc. 64. Soot attenuation data is also input to the same element from the memory element 65.

演算素子64は前記2つのデータからクランク角度に応
じた分光照度を演算算出するために心象とれる電気的レ
ベルを照度に換刃、するための較正値、演算式、煤の減
衰量による照度補正演算式などの情報をメモリした記憶
素子66がら読み出すとともに、これらの情報により前
記2つのデータから煤の影響による火炎像の伝は減衰量
を参酌した機関行程に応じた分光照度を演S算出し、か
く算出された測定値は内蔵の公知の駆動回路67を介し
、プロッタ68に出力され、かくして当初意図した測定
データ69を得ろ。
The arithmetic element 64 calculates the spectral illuminance according to the crank angle from the above two data by converting the electric level that can be visualized into the illuminance, a calibration value, a calculation formula, and an illuminance correction calculation based on the attenuation amount of soot. Information such as formulas is read out from the memory element 66, and based on this information, the spectral illuminance according to the engine stroke is calculated based on the attenuation amount of the flame image due to the influence of soot. The measured values thus calculated are outputted to the plotter 68 via a built-in known drive circuit 67, thus obtaining the originally intended measured data 69.

なお、電気的レベル(変換記録された火炎像の分光照度
をデータレコーダ54で集録することに代えて、第4図
に示したように記憶素子によりメモリする場合にはか(
メモリされたデータの分析器61内演算素子64への転
送は公知のデータ・バスを用いて容易処実施でき、さら
には、この素子58自体を分析器61に内蔵させること
としてもよい。
Note that instead of collecting the electrical level (converted and recorded spectral illuminance of the flame image with the data recorder 54), if it is stored in memory using a storage element as shown in FIG.
The stored data can be easily transferred to the arithmetic element 64 in the analyzer 61 using a known data bus, or the element 58 itself may be built into the analyzer 61.

火炎像を記録する際、データレコーダ54を用いる場合
には時間をベースとして、また、記憶素実施する例を述
べたが、これにとられれるものではない。
Although an example has been described in which the data recorder 54 is used to record a flame image on a time-based basis and in memory element implementation, this is not limiting.

火炎像の測定回数について今述べた実施例では特に言及
していないが、煤の付着状況の変化がほとんど認められ
ない場合には、その回数を多数とよい。また、付着する
煤の状況が燃焼等により著しく変化する場合でも機関を
運転の最中に、燃料供給が行われている行程以外の行程
で応答性の早い燃料遮断弁を用い燃料供給を中止し、し
かる後、取付金具11を取りはずして、煤の減衰量デー
タを採る方法を採用すれば、機関運転時の最終燃焼行程
時の火炎像分光分析を高い精度で行うことができる。
The number of measurements of the flame image is not particularly mentioned in the embodiment just described, but if there is almost no change in the state of soot adhesion, the number of measurements may be set to a large number. Furthermore, even if the condition of adhering soot changes significantly due to combustion, etc., the fuel supply can be stopped using a quick-response fuel cutoff valve during strokes other than those in which fuel is being supplied while the engine is running. If a method is adopted in which the mounting bracket 11 is then removed and soot attenuation data is collected, flame image spectroscopic analysis during the final combustion stroke during engine operation can be performed with high accuracy.

さらに今まで述べてきた実施例は煤の付着による火炎像
伝は減衰の評価方法は減衰量自体を測走し、測定データ
を補正する例、ヤなわち、増幅器室り的レベルは煤が付
着しない状tで較正を行った値を用いる例について述べ
た。しかし、これと別の方法として、電気的レベルの較
正は事前には全く行うことをせず、まず機関を運転しデ
ータを一旦データレコーダ等に記録した後、取付金JA
、11を堆っけすし、煤が付着した状態のまま黒体炉、
又は、標準光源等を用いて電気的レベルの較正を行い、
かく得た較正値を用いて直接驚り的レベルの記録データ
を分光照度に変換することとしてもよい。この方法を採
りた場合は、第1図で述べたとほぼ同じ実施方法によっ
て分光分析データを得ることが出来るが、この実施例に
おいても、基本的な考え方、すなわち、測定データを分
光照度に変換するに際し、光ガイド入射面に付着した煤
の影411による火炎像伝は時の減衰量を取付金具を取
りはずすことによって調査し、かく調査した減衰量を参
酌して、データを分光照度に変換するという考え方につ
いでは同一である。
Furthermore, in the embodiments described so far, when flame propagation is caused by soot adhesion, the attenuation evaluation method measures the amount of attenuation itself and corrects the measured data. An example of using a value calibrated in a state t without the use of t has been described. However, as an alternative method, you do not calibrate the electrical level at all in advance, but first operate the engine and record the data on a data recorder, etc., and then
, 11 was dumped and put into a black body furnace with soot still attached.
Alternatively, calibrate the electrical level using a standard light source, etc.
The recorded data at an astonishing level may be directly converted into spectral illuminance using the calibration value thus obtained. When this method is adopted, spectroscopic analysis data can be obtained by almost the same method as described in Figure 1, but in this example as well, the basic idea is that the measurement data is converted to spectral illuminance. At this time, the amount of attenuation due to the shadow 411 of soot attached to the light guide entrance surface is investigated by removing the mounting bracket, and the data is converted into spectral illuminance by taking into consideration the amount of attenuation thus investigated. The way of thinking is the same.

さらに、別の実施例として煤の付着の状態が変しても差
しつかえない場合には、第1図で述べた実施例において
、データレコーダへの記録を省略し、既知の煤減衰デー
タを事前に分析器61人力したのち、直接増幅器16の
出力を分析器61入力し、分光分析を行うこととしても
よい。
Furthermore, as another embodiment, if there is no problem even if the state of soot adhesion changes, the recording on the data recorder is omitted in the embodiment described in FIG. After manually inputting the analyzer 61, the output of the amplifier 16 may be directly input to the analyzer 61 to perform spectroscopic analysis.

(発明の効果) 以上述べたような方法を拌ることによって、機関の火炎
倫を煤などの影響を排除した状態で分光分析を行うこと
ができる。
(Effects of the Invention) By stirring the method as described above, it is possible to perform spectroscopic analysis of the engine flame while eliminating the effects of soot and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構造概念図、第2図は
その内部に気密に貫通した光ガイドを設けた取付金具の
一実施例を示す側断面図、第3図は分岐バンドル光ファ
イバの接続方法を示す側断面図、第4図は記憶素子を用
いたデータ記録装置の主要構成部を示すブロック図、第
5図は取付金具の光ガイド入射端忙付着した煤による光
伝ばの減衰量検知方法を示す概念図である。 分岐バンドル光7アイバ、9・・・光電変換器、51・
・・アダプタ、61・・・分析器。 指定代理人 口本国有鉄道総裁室法務課長本間達三
Fig. 1 is a structural conceptual diagram showing an embodiment of the present invention, Fig. 2 is a side cross-sectional view showing an embodiment of a mounting bracket having a light guide hermetically penetrated therein, and Fig. 3 is a branch bundle. Fig. 4 is a block diagram showing the main components of a data recording device using a memory element; Fig. 5 is a side sectional view showing how to connect optical fibers; Fig. 5 is a block diagram showing the main components of a data recording device using a storage element; FIG. 3 is a conceptual diagram showing a method for detecting the amount of attenuation. Branch bundle optical 7 eyeball, 9... photoelectric converter, 51.
...Adapter, 61...Analyzer. Designated Agent: Tatsuzo Honma, Director of Legal Affairs Division, Office of the President of National Railways

Claims (1)

【特許請求の範囲】  1)その内部に気密に貫通した光ガイドを設けた取付
金具を往復動内燃機関燃焼室隔壁から容易に着脱可能な
状態で当該隔壁を気密に貫通して設置し、当該ガイド入
射面を燃焼室火炎に対向設置することによって燃焼火炎
像を外部の分光装置に伝ぱ、分光し、かく分光した火炎
像を分光装置出射側に設けた光電変換装置で電気的レベ
ルに変換したのち、機関行程に応じ当該レベルを記憶装
置に記憶するとともに、かく記憶したデータを分光照度
に変換するに際し、光ガイド入射面に付着した煤の影響
による火炎像の伝ぱ時の減衰量を前記取付金具を燃焼室
隔壁から取りはずすことによって調査し、かく調査した
減衰量を参酌して前記データを分光照度に変換すること
を特徴とする往復動内燃機関燃焼火炎の分光分析方法。  2)分光した火炎像を分光装置出射側に設けた光電変
換装置で電気的レベルに変換したのち、記憶装置に記憶
するに際し、機関行程に代えて時間に応じ当該レベルを
記憶することを特徴とする特許請求の範囲第1項記載の
往復動内燃機関燃焼火炎の分光分析法。  3)その内部に気密に貫通した光ガイドを設けた取付
金具を往復動内燃機関燃焼室隔壁から容易に着脱可能な
状態で当該隔壁を気密に貫通して設置し、当該光ガイド
入射面を燃焼室火炎に対向設置することによって燃焼火
炎像を外部の分光装置に伝ぱ、分光し、かく分光した火
炎像を分光装置出射側に設けた光電変換装置を介して分
光照度に変換するに際し、光ガイド入射面に付着する煤
の影響による火炎像の伝ぱ時の減衰量を前記取付金具を
燃焼室隔壁から取りはずすことによって事前に調査し、
かく調査した減衰量を参酌して前記レベルを分光照度に
変換することを特徴とする往復動内燃機関燃焼火炎の分
光分析方法。
[Scope of Claims] 1) A mounting bracket provided with a light guide airtightly penetrating the inside thereof is installed in a reciprocating internal combustion engine combustion chamber partition wall in an easily attachable/detachable state so as to airtightly penetrate the partition wall; By placing the guide entrance surface facing the flame in the combustion chamber, the combustion flame image was transmitted to an external spectrometer for spectroscopy, and the thus spectroscopic flame image was converted to an electrical level by a photoelectric conversion device installed on the output side of the spectrometer. Later, the level is stored in the storage device according to the engine stroke, and when converting the stored data to spectral illuminance, the amount of attenuation during propagation of the flame image due to the influence of soot adhering to the light guide entrance surface is calculated as described above. A method for spectroscopic analysis of a combustion flame in a reciprocating internal combustion engine, characterized in that the metal fitting is investigated by removing it from the combustion chamber partition wall, and the data is converted into spectral illuminance by taking into consideration the attenuation thus investigated. 2) The spectroscopic flame image is converted into an electrical level by a photoelectric conversion device provided on the output side of the spectrometer, and then stored in a storage device, and the level is stored according to time instead of engine stroke. A method for spectroscopic analysis of combustion flame in a reciprocating internal combustion engine according to claim 1. 3) Install a mounting bracket with a light guide airtightly passing through the partition wall of a combustion chamber of a reciprocating internal combustion engine in an easily attachable/detachable state, and install the mounting bracket airtightly through the partition wall of the combustion chamber of a reciprocating internal combustion engine. By installing the combustion flame image opposite to the chamber flame, the combustion flame image is transmitted to an external spectrometer for spectroscopy, and the resulting flame image is converted into spectral illuminance via a photoelectric conversion device installed on the output side of the spectrometer. Investigating in advance the amount of attenuation during propagation of the flame image due to the influence of soot adhering to the entrance surface by removing the mounting bracket from the combustion chamber partition,
A method for spectroscopic analysis of a combustion flame in a reciprocating internal combustion engine, characterized in that the level is converted into spectral illuminance by taking into account the amount of attenuation investigated in this manner.
JP5035585A 1985-03-15 1985-03-15 Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine Pending JPS61210918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035585A JPS61210918A (en) 1985-03-15 1985-03-15 Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035585A JPS61210918A (en) 1985-03-15 1985-03-15 Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61210918A true JPS61210918A (en) 1986-09-19

Family

ID=12856589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035585A Pending JPS61210918A (en) 1985-03-15 1985-03-15 Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61210918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350657A (en) * 1986-08-13 1988-03-03 Nissan Motor Co Ltd Fuel supply system for internal combustion engine
JP2007231845A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Control device for internal combustion engine
JP2009053128A (en) * 2007-08-29 2009-03-12 Denso Corp Device for visualizing inner part of exhaust pipe
JP2012026885A (en) * 2010-07-23 2012-02-09 Ngk Spark Plug Co Ltd Method for checking water spray of protector
JP2012063165A (en) * 2010-09-14 2012-03-29 Ngk Spark Plug Co Ltd Method for confirming water penetration into protector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108734A (en) * 1980-11-11 1982-07-06 Bosch Gmbh Robert Sensor
JPS57153238A (en) * 1981-02-20 1982-09-21 Bosch Gmbh Robert Sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108734A (en) * 1980-11-11 1982-07-06 Bosch Gmbh Robert Sensor
JPS57153238A (en) * 1981-02-20 1982-09-21 Bosch Gmbh Robert Sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350657A (en) * 1986-08-13 1988-03-03 Nissan Motor Co Ltd Fuel supply system for internal combustion engine
JP2007231845A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Control device for internal combustion engine
JP2009053128A (en) * 2007-08-29 2009-03-12 Denso Corp Device for visualizing inner part of exhaust pipe
JP2012026885A (en) * 2010-07-23 2012-02-09 Ngk Spark Plug Co Ltd Method for checking water spray of protector
JP2012063165A (en) * 2010-09-14 2012-03-29 Ngk Spark Plug Co Ltd Method for confirming water penetration into protector

Similar Documents

Publication Publication Date Title
US5659133A (en) High-temperature optical combustion chamber sensor
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
KR20090082893A (en) Reaction analyzer, recording medium, measurement system, and control system
US4780832A (en) Radiation probe and method of use
CN104165868A (en) Solid propellant smog optical transmittance measuring method
JPS61210918A (en) Spectrochemical analyzing method for combustion flame of reciprocating internal-combustion engine
CN113484025A (en) Flame temperature measuring device of optical engine
Vögelin et al. Experimental investigation of multi-in-cylinder pyrometer measurements and exhaust soot emissions under steady and transient operation of a heavy-duty diesel engine
Nagase et al. A study of NOx generation mechanism in diesel exhaust gas
GB2401939A (en) Device and method for determining the concentration of at least one gas component in a respiratory gas mixture
JPS6123928A (en) Spectral analyzing device for combustion flame using optical fiber
CN111504497B (en) Temperature measurement method based on fluorescent optical fiber
Neyezhmakov et al. Increasing the measurement accuracy of wide-aperture photometer based on digital camera
JP3242232B2 (en) Flame detection and combustion diagnostic device
US5285676A (en) Air-fuel ratio measurement apparatus and method therefor
Nagase et al. An investigation of combustion in internal combustion engines by means of optical fibers
Linares-Herrero et al. High-speed IR monitoring of a turbojet engine gas flow using an uncooled MWIR imaging sensor
Witze In-cylinder diagnostics for production spark ignition engines
Shoji Measurement of the combustion gas temperature in the spark ignition engine
RU2044305C1 (en) Fume meter of exhaust of diesel engines
Smith et al. Spectroscopic method for simultaneous determination of species concentration and temperature in a cyclic combustion process
Vattulainen et al. Fast exhaust channel optical absorption method and apparatus to study the gas exchange in large diesel engines
JP2024041461A (en) Combustion diagnosis device, combustion diagnosis system and combustion diagnosis device program
JPS61292539A (en) Plasma monitor
CN117433998A (en) Device and method for testing local equivalence ratio of flame