JPS59224115A - Electron-beam annealing method - Google Patents

Electron-beam annealing method

Info

Publication number
JPS59224115A
JPS59224115A JP9796183A JP9796183A JPS59224115A JP S59224115 A JPS59224115 A JP S59224115A JP 9796183 A JP9796183 A JP 9796183A JP 9796183 A JP9796183 A JP 9796183A JP S59224115 A JPS59224115 A JP S59224115A
Authority
JP
Japan
Prior art keywords
electron
vacuum
degree
electron beam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9796183A
Other languages
Japanese (ja)
Other versions
JPH0427688B2 (en
Inventor
Shuichi Saito
修一 斉藤
Kohei Higuchi
行平 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9796183A priority Critical patent/JPS59224115A/en
Publication of JPS59224115A publication Critical patent/JPS59224115A/en
Publication of JPH0427688B2 publication Critical patent/JPH0427688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To control the power density of electron beams with excellent reproducibility by introducing an inert gas or nitrogen gas into a vacuum chamber and keeping the degree of vacuum in an electron-beam path constant. CONSTITUTION:When executing electron-beam annealing, at least one kind of a gas of an inert gas such as argon gas or nitrogen gas is introduced into a vacuum chamber for an electron-beam annealing device, and the degree of vacuum in an electron-beam path is kept constant. Accordingly, the diameter of electron beams is kept constant, and electron-beam annealing treatment can be executed with excellent reproducibility. The diameter of electron beams can be reduced by lowering the degree of vacuum in the vacuum chamber.

Description

【発明の詳細な説明】 本発明は、電子ビームアニール方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam annealing method.

S OI (Sem1condLLctor on I
n5ulator)構造を用いて3次元集積回路を形成
する場合、SOIの形成手段としては、電子ビームを用
いる方法が有望と考えられる。SOIの形成手段として
は、他に、レーザビーム、ストリップヒーターおよびラ
ンプを用いる方法が現在まで検討されているが、3次元
集積回路を形成する観点からすると、■下部デバイスへ
の熱による影響が少ないこと(加熱時間は、数1 ’O
m5ec以下)■801形成時、結晶成長の重ね合せが
ないこと(SOI形成形成酸長の幅がチップサイズ程度
あること)の条件は少なくとも満足することが必要と考
えられる。■の条件を満足する形成手段としては、電子
ビームあるいはレーザビームを用いる方法である。しか
し、このうちレーザビームを用いた場合、現在の所最大
出力は約20W8度でビーム径は最大でも約100μm
であり、大面積のSOIを形成する場合にはビームの重
ね合せが必要となる。この時ビームの重ね合せを行なう
と、重ね合せ部に粒界が生じ、大面積にわたり単結晶の
SOIを形成することは困難で■の条件を満足していな
い。一方電子ビニムを用いると、大面積かつ大出力のビ
ームを取シ出すことが用油でチップサイズ程度の領域を
一度に処理できる。このような点から考えると現在の所
■■の条件を満足する方法としては電子ビームを用いる
方法であると考えられる。
S OI (Sem1condLLctor on I
In the case of forming a three-dimensional integrated circuit using the n5ulator) structure, a method using an electron beam is considered to be a promising method for forming SOI. As methods for forming SOI, methods using laser beams, strip heaters, and lamps have been considered to date, but from the perspective of forming three-dimensional integrated circuits, the effects of heat on the lower device are small. (Heating time is 1'O
m5ec or less) ① During the formation of 801, it is considered necessary to satisfy at least the condition that there is no overlapping of crystal growth (the width of the SOI formation acid length is about the size of a chip). A forming means that satisfies the condition (2) is a method using an electron beam or a laser beam. However, when using a laser beam, the current maximum output is about 20 W 8 degrees and the maximum beam diameter is about 100 μm.
Therefore, when forming a large-area SOI, it is necessary to overlap the beams. When the beams are overlapped at this time, grain boundaries are generated in the overlapped portion, making it difficult to form a single crystal SOI over a large area, and the condition (2) is not satisfied. On the other hand, when electronic vinyl is used, a large-area, high-output beam can be extracted and an area about the size of a chip can be treated at once using oil. Considering this point, the method using an electron beam is currently considered to be a method that satisfies the conditions (2) and (2).

電子ビームを用いて半導体の加熱処理を行なう場合のパ
ラメータとしては、パワー密tL、走査速度、基板温度
が考えられる。このうち、ビームの走査に関しては、電
磁コイルを用いた場合数多程度の安定性が得られ、まだ
基板温度に関しても、500℃以上の筒温の場合には輻
射による加熱で良く500℃以下の場合には、ガリウム
やインジュウム等の低融点金属を半導体裏面に付着させ
る事により、面内の’ML度の均一化が可能であり、こ
れらのパラメータは、特に、大きな問題とはなっていな
い。それに対し、パワー密度を再現性良く匍1 led
することが現在太き々問題となっている。パワー密度は
、 (加速電圧)×(ビーム電流ン′(ビームの面積)によ
り求まるっ加速電圧及びビーム電流に関しては、その安
定性が、数多以下であるため、特に大きな問題が現在の
所生じていない。しかし、ビームの面積が大幅に変化し
、パワー密度に書現性がないという非常に大きな問題が
ある。
Possible parameters when performing heat treatment on a semiconductor using an electron beam include power density tL, scanning speed, and substrate temperature. Regarding beam scanning, a certain degree of stability can be obtained by using an electromagnetic coil, and as for the substrate temperature, if the tube temperature is over 500℃, heating by radiation is sufficient. In some cases, it is possible to make the in-plane 'ML degree uniform by attaching a low melting point metal such as gallium or indium to the back surface of the semiconductor, and these parameters do not pose a particular problem. On the other hand, the power density is reproducible with 1 LED.
This is currently a serious problem. The power density is determined by (accelerating voltage) × (beam current n' (beam area)).As for accelerating voltage and beam current, their stability is less than a few points, so a particularly big problem is currently occurring. However, there are very big problems in that the beam area changes significantly and the power density is not writable.

本発明の目的は、上述の如き従来法の欠点を改善し、電
子ビームのパワー密度孕再現性艮く制御する方法を提供
することである。
An object of the present invention is to improve the drawbacks of the conventional method as described above and to provide a method for controlling the power density of an electron beam with excellent reproducibility.

徴とするものである。It is a sign.

本発明によれば電子ビームによる試料の加熱処理を行な
う場合、再現性良く電子ビームのパワー密度を制御でき
加熱処理が容易になる。さらに才だ、ガスを導入し真空
度を悪くすることにより、ビームを小さくしぼれること
が分かυビーム径の小さい電子ビームを用いて、部分的
に加熱処理を行なうような場合には、真空度を悪くして
用いれば良いことが分かる。
According to the present invention, when heat-treating a sample with an electron beam, the power density of the electron beam can be controlled with good reproducibility, making the heat treatment easier. Furthermore, it is possible to narrow down the beam to a smaller size by introducing gas and lowering the degree of vacuum. When performing partial heat treatment using an electron beam with a small beam diameter, it is possible to It turns out that it's better to use it sparingly.

以下、実施例をもとによシ詳細な説明を行なう。A detailed explanation will be given below based on examples.

まず初めに、スポット状の電子ビームを用いた半導体の
処理の場合について述べる。用いた電子ビームの加速器
の性能は、加速電圧20 kV、ビーム嵐流最大で50
0μAであり、基板はザーマルコンパウンドを用い水冷
された銅ホルダー上に固定した。
First, we will discuss the case of semiconductor processing using a spot-shaped electron beam. The performance of the electron beam accelerator used was an accelerating voltage of 20 kV and a maximum beam storm current of 50 kV.
The substrate was fixed on a water-cooled copper holder using thermal compound.

ビーム径はファラデーゲージを用いて、直交する2軸方
向の径を求めた。電子ビームはガウス分布をしておりビ
ーム径としては、電子ビームの強度が1 / eになる
幅として求めた。この様な装置を用試料の加熱され方が
非常に異なってお9、前者では、試料は溶融していなか
ったものの、後者では溶融してしまった。その原因を調
べだ所、ビーム径が真空度に応じて、非常に変化してい
た。その結果の一例を次の表に示す。
The beam diameter was determined using a Faraday gauge in two perpendicular axes directions. The electron beam has a Gaussian distribution, and the beam diameter was determined as the width at which the electron beam intensity was 1/e. The way the sample was heated in these devices was very different9; in the former the sample was not melted, but in the latter it was. When we investigated the cause of this, we found that the beam diameter varied greatly depending on the degree of vacuum. An example of the results is shown in the table below.

表 表より明らかな様に真空度が悪化するに従い、ビーム径
は小さくなる傾向に9V) 4 X 10  torr
と2 X 10−’ torrの場合では、加速電圧と
ビーム電流が一定の時でもパワー密度では9倍の差かの
残留ガスをイオン化し、そのイオンは■いだめ移動が遅
く電子ビームが正のイオンにとり囲まれていることにな
る。しだがって、正のイオンにより、電子ビームの空間
電荷による効果がうち消されその分電子ビームの広がり
が押えられ、ビーム径が小さくなる。よって、電子ビー
トのビーム径を一定に保つためには、電子ビームの通過
径路内の真空度を一定に保つことが必要であると考えら
れる。
As is clear from the table, as the degree of vacuum worsens, the beam diameter tends to decrease (9V) 4 X 10 torr
In the case of 2 × 10-' torr, even when the accelerating voltage and beam current are constant, the residual gas with a power density difference of 9 times is ionized, and the ions move slowly and the electron beam becomes positive. It will be surrounded by ions. Therefore, the positive ions cancel out the effect of the space charge on the electron beam, thereby suppressing the spread of the electron beam and reducing the beam diameter. Therefore, in order to keep the beam diameter of the electron beat constant, it is considered necessary to keep the degree of vacuum constant within the path through which the electron beam passes.

真空度を一定に保つために真空室内及びコラム部分にガ
スを制御して導入できる様にし、まだ、真を泪を試料室
及び重1子銃の側面に固定した。導入したガスとしてま
ず窒素ガスを用いた。試料室及びコラム部を2 X 1
0−’ torrまで排気した後、窒素ガスを2 X 
10”” torrまで徐々に導入し、各真空度に対応
したビーム径靴測定した。
In order to keep the degree of vacuum constant, gas was controlled to be introduced into the vacuum chamber and the column, and the cylinder was fixed to the sample chamber and the side of the heavy single gun. First, nitrogen gas was used as the introduced gas. Sample chamber and column section 2 x 1
After exhausting to 0-' torr, nitrogen gas was
The beam diameter was gradually introduced to 10'' torr and the beam diameter corresponding to each degree of vacuum was measured.

第1図には試料室の真空度に対するビーム径の関係を示
す。この時加速電圧20 KV 、ビーム電流400μ
Aであシ、レンズ等の他の部分は、すべて同一条件で測
定を行なった。これよりビーム径は場合には、真空度に
応じてビーム径が変化するだめに真空度を一定に保ち処
理する必要があるととムを用いた場合であったが、次に
電子ビームを線状にした場合の実施例について述べる。
Figure 1 shows the relationship between the beam diameter and the degree of vacuum in the sample chamber. At this time, the acceleration voltage was 20 KV and the beam current was 400μ.
All other parts such as A and the lens were measured under the same conditions. From this, the beam diameter changes depending on the degree of vacuum, so it is necessary to keep the degree of vacuum constant during processing. An example will be described in which the structure is made into a shape.

用いた加速器の条件としては、加速電圧15 KVでビ
ーム電流が15mAでありだ。試料室の真空度が、4X
10’torrの場合ビームの長辺方向のさせるとビー
ム長は変化な(3,5mmであったがビーム幅は500
μmと短辺方向のみ真空度の影響が現われ変化した。線
状ビームの場合には、空間電荷をうち消す効果が、長辺
方向にそって強く作用したためにこの様にビームの短辺
方向のみ真空度のりそのだめには、ガスを導入するとい
う方法を用いれば制御できることが分かった。さ・らに
まだ、ガスを導入し真空度を悪くすることにより、電子
ビームのビーム径を非常に小さくすることができること
が分かった。
The conditions of the accelerator used were an accelerating voltage of 15 KV and a beam current of 15 mA. The degree of vacuum in the sample chamber is 4X
In the case of 10' torr, the beam length does not change if you move the beam in the long side direction (it was 3.5 mm, but the beam width was 500 mm).
The influence of the degree of vacuum appeared and changed only in μm and the short side direction. In the case of a linear beam, the effect of canceling out the space charge was strong along the long sides, so the method of introducing gas into the reservoir of the beam with a vacuum level only in the short sides of the beam was used. It turns out that it can be controlled by using it. Furthermore, it was found that the beam diameter of the electron beam could be made extremely small by introducing gas and reducing the degree of vacuum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料室内及びコラム部分に窒素ガスを導入した
時の試料室の真空度に対する電子ビームのビーム径の相
関図。
FIG. 1 is a diagram showing the relationship between the beam diameter of the electron beam and the degree of vacuum in the sample chamber when nitrogen gas is introduced into the sample chamber and the column.

Claims (1)

【特許請求の範囲】[Claims] の通過径路内の真空度を一定に保ちながら電子ビームを
試料へ照射することを特徴とする電子ビームアニール方
法。
An electron beam annealing method characterized by irradiating a sample with an electron beam while maintaining a constant degree of vacuum within the passage of the electron beam.
JP9796183A 1983-06-03 1983-06-03 Electron-beam annealing method Granted JPS59224115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9796183A JPS59224115A (en) 1983-06-03 1983-06-03 Electron-beam annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9796183A JPS59224115A (en) 1983-06-03 1983-06-03 Electron-beam annealing method

Publications (2)

Publication Number Publication Date
JPS59224115A true JPS59224115A (en) 1984-12-17
JPH0427688B2 JPH0427688B2 (en) 1992-05-12

Family

ID=14206264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9796183A Granted JPS59224115A (en) 1983-06-03 1983-06-03 Electron-beam annealing method

Country Status (1)

Country Link
JP (1) JPS59224115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003433A1 (en) * 2001-06-28 2003-01-09 Tokyo Electron Limited Chamber sensor port, chamber, and electron beam processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003433A1 (en) * 2001-06-28 2003-01-09 Tokyo Electron Limited Chamber sensor port, chamber, and electron beam processor
US6987271B1 (en) 2001-06-28 2006-01-17 Tokyo Electron Limited Chamber sensor port, chamber and electron beam processor

Also Published As

Publication number Publication date
JPH0427688B2 (en) 1992-05-12

Similar Documents

Publication Publication Date Title
JPH04102311A (en) Method of crystallizing semiconductor thin film
JPS59224115A (en) Electron-beam annealing method
JP3265227B2 (en) Doping apparatus and doping method
US3244855A (en) System for correcting the shift of an electron-gun beam from the desired region of impingement
TWI609404B (en) A photolithography method based on electronic beam
JPH04344443A (en) Measurement of carbon and oxygen density in silicon
EP0192874B1 (en) Method for injecting exotic atoms into a solid material with electron beams
US3894208A (en) Method of abrasive machining of material by means of an energy beam
US4670291A (en) Method of controlling supersaturated injection and concentration of exotic atoms into deep portions of a solid with a high energy electron beam
JPH02100297A (en) Generation method for x-ray of laser excitation type
JPH04104042A (en) Method for measuring concentration of oxygen in silicon
JPS6013067B2 (en) Vacuum deposition equipment
JPS6222243B2 (en)
JPS6132433A (en) Manufacture of semiconductor device
Kekkonen et al. Pulsed laser deposition using diffractively shaped excimer-laser beams
JPH0136970B2 (en)
EP0173465A2 (en) Glow discharge electron beam method and apparatus for the surface recrystallization of solid substances
JPS6092607A (en) Electron beam annealing device
JPS6015699B2 (en) Method and apparatus for vapor deposition treatment of strip steel
JP2000235959A (en) Doping treatment method
JPS62196368A (en) Vapor deposition method for 'permalloy(r)' film
JPS62194614A (en) Linear electron beam annealing device
JPH0610965B2 (en) Linear electron beam generator
JPS63119220A (en) Manufacture of thin-film
GB1186127A (en) Method and Apparatus for Doping Semiconductors.