JPH04104042A - Method for measuring concentration of oxygen in silicon - Google Patents

Method for measuring concentration of oxygen in silicon

Info

Publication number
JPH04104042A
JPH04104042A JP22132890A JP22132890A JPH04104042A JP H04104042 A JPH04104042 A JP H04104042A JP 22132890 A JP22132890 A JP 22132890A JP 22132890 A JP22132890 A JP 22132890A JP H04104042 A JPH04104042 A JP H04104042A
Authority
JP
Japan
Prior art keywords
silicon
sample
oxygen
oxygen concentration
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22132890A
Other languages
Japanese (ja)
Inventor
Moriya Kitamura
北村 衛也
Minoru Nakamura
稔 中村
Yutaka Misawa
三沢 豊
Baan Andoriyuu
アンドリュー・バーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22132890A priority Critical patent/JPH04104042A/en
Publication of JPH04104042A publication Critical patent/JPH04104042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make it possible to measure the concentration of oxygen in silicon highly accurately even in a minute region by implanting carbon ions in the sample of the silicon, forming a defect associated with the oxygen, and computing the concentration of the oxygen based on the intensity of photoluminescence caused by the defect. CONSTITUTION:A defect associated with oxygen is formed by implanting carbon ions into the sample of silicon. The concentration of the oxygen in the silicon is computed based on the intensity of photoluminescence caused by the defect. In this way, the measuring region of the photoluminescence is made small, and the concentration of the oxygen in the minute region of the silicon sample can be measured highly accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン中の酸素濃度測定方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for measuring oxygen concentration in silicon.

〔従来の技術〕[Conventional technology]

シリコンを用いた半導体デバイスではシリコン中に存在
する不純物酸素がデバイス特性に大きな影響を及ぼす。
In semiconductor devices using silicon, the impurity oxygen present in silicon has a large effect on device characteristics.

シリコン中の酸素が高濃度に存在すると熱処理工程で析
出し、リーク電流の増加、酸化膜の耐圧低下等、種々の
悪影響を及ぼす。反面、重金属等、他の不純物をゲッタ
リングしたり、転位の抑制等の効果があるので、今日で
はシリコン中の酸素濃度を制御して、酸素を積極的に利
用する方向にある。さらに、半導体デバイスが高速化、
高集積化するに伴い、より微小な領域における不純物濃
度の制御が重要になってきており、微小領域における酸
素濃度の高感度分析の必要性が高まっている。
If oxygen exists in silicon at a high concentration, it will precipitate during the heat treatment process, causing various adverse effects such as an increase in leakage current and a decrease in the withstand voltage of the oxide film. On the other hand, because it has the effect of gettering other impurities such as heavy metals and suppressing dislocations, the current trend is to control the oxygen concentration in silicon and actively utilize oxygen. Furthermore, semiconductor devices are becoming faster and faster.
With increasing integration, it is becoming important to control impurity concentrations in smaller regions, and the need for highly sensitive analysis of oxygen concentrations in smaller regions is increasing.

現在、シリコン中の酸素濃度測定法として、バルク試料
に対しては赤外吸収分光法が広く用いられている。しか
し、薄膜に対しては大幅に感度が低下し、また、深さ方
向の酸素分布測定はできない。他の測定法として二次イ
オン質量分析法があるが、いずれも感度が低い。
Currently, infrared absorption spectroscopy is widely used for bulk samples as a method for measuring oxygen concentration in silicon. However, the sensitivity is significantly reduced for thin films, and oxygen distribution in the depth direction cannot be measured. Other measurement methods include secondary ion mass spectrometry, but both have low sensitivity.

ところでプロシーディング シンポジウム オン リデ
ュースド テンパラチャ プロセシングフォー ブイ・
エル・ニス・アイ、イー・シー・ニス、 (1985年
)第307頁から第321頁(Proe。
By the way, Proceedings Symposium on Reduced Temperature Processing for V.I.
L Nis I, E C Nis, (1985) pp. 307-321 (Proe.

5yap、on  Reduced  Tempera
ture  Processing  forVL S
 I 、 E、C,S、、(1985)pp307−3
21)において論じられているように、炭素、酸素を含
むシリコン結晶に電子線を照射すると炭素−酸素複合欠
陥が生成し、この欠陥に起因するピーク波長1.57μ
mのフォトルミネッセンスが生じる。
5yap, on Reduced Tempera
ture Processing for VL S
I, E, C, S, (1985) pp307-3
21), when a silicon crystal containing carbon and oxygen is irradiated with an electron beam, a carbon-oxygen complex defect is generated, and the peak wavelength due to this defect is 1.57μ.
m photoluminescence occurs.

このフォトルミネッセンス強度は炭素濃度、酸素濃度と
相関があるので、この強度から炭素濃度。
This photoluminescence intensity has a correlation with carbon concentration and oxygen concentration, so carbon concentration can be determined from this intensity.

酸素濃度を算出できる可能性がある。しかし、酸素濃度
を測定するためには、シリコン試料中にあらかじめ、あ
る濃度以上の炭素が含まれていることが必要であり、実
際のデバイス・プロセスに用いられるような低炭素濃度
のシリコン試料には適用が困難である。
It is possible to calculate oxygen concentration. However, in order to measure the oxygen concentration, it is necessary that the silicon sample already contains carbon at a certain concentration or higher, and silicon samples with low carbon concentrations, such as those used in actual device processes, must be prepared in advance. is difficult to apply.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来はシリコン中の酸素濃度を微小領域で
も高感度に測定できる分析方法がなかった。また、シリ
コン中の酸素の深さ方向分布を高感度に測定できる分析
手法がなかった。
As mentioned above, conventionally there has been no analytical method that can measure the oxygen concentration in silicon with high sensitivity even in a minute area. Furthermore, there was no analytical method that could measure the depth distribution of oxygen in silicon with high sensitivity.

本発明の目的はシリコン中の酸素濃度を微小領域でも高
感度に測定できる分析方法を提供することにある。
An object of the present invention is to provide an analysis method that can measure the oxygen concentration in silicon with high sensitivity even in a minute area.

本発明の他の目的はシリコン中の任意の深さ領域におけ
る酸素濃度を高感度に測定できる分析方法を提供するこ
とにある。
Another object of the present invention is to provide an analysis method that can measure oxygen concentration at any depth in silicon with high sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために1本発明はシリコン試料に炭
素イオンを注入することにより酸素に関連した欠陥を生
成させ、この欠陥に起因するフォトルミネッセンス強度
からシリコン試料中の酸素濃度を算出するようにした。
To achieve the above object, the present invention involves implanting carbon ions into a silicon sample to generate oxygen-related defects, and calculating the oxygen concentration in the silicon sample from the photoluminescence intensity caused by the defects. did.

また、シリコン試料に炭素イオン注入後、熱エネルギを
加えることにより、この欠陥に起因するフォトルミネッ
センス強度を増大させた。
Furthermore, by applying thermal energy after implanting carbon ions into the silicon sample, the photoluminescence intensity caused by this defect was increased.

また、シリコン試料に炭素イオン注入後、電子線を照射
することにより、欠陥に起因するフォトルミネッセンス
強度を増大させた。
Furthermore, by irradiating the silicon sample with an electron beam after implanting carbon ions, the photoluminescence intensity caused by defects was increased.

さらに、シリコン試料に炭素イオン注入後で電子線照射
前あるいは照射後に熱スネルギを加えることにより、欠
陥に起因するフォトルミネッセンス強度を増大させた。
Furthermore, the photoluminescence intensity caused by defects was increased by applying thermal senergies to silicon samples after carbon ion implantation and before or after electron beam irradiation.

また、他の目的を達成するために、試料に注入する炭素
イオンの加速電圧、あるいは炭素イオンと照射電子線の
両方の加速電圧を任意に設定することにより、試料中の
任意の深さ領域に酸素に関連した欠陥を生成させ、欠陥
に起因するフォトルミネッセンス強度を測定することに
より、シリコン試料中の任意の深さ領域の酸素濃度を算
出できるようにしたものである。
In addition, in order to achieve other purposes, by arbitrarily setting the accelerating voltage of the carbon ions injected into the sample, or the accelerating voltage of both the carbon ions and the irradiated electron beam, it is possible to By generating oxygen-related defects and measuring the photoluminescence intensity caused by the defects, it is possible to calculate the oxygen concentration at any depth in a silicon sample.

[作用〕 本発明者らはシリコン試料に炭素イオンを注入後、電子
線を照射することにより試料中に酸素に関連した欠陥が
生成し、この欠陥に起因するフォトルミネッセンス強度
からシリコン中の酸素濃度を算出できることを見い呂し
た。
[Function] After implanting carbon ions into a silicon sample, the present inventors irradiated the sample with an electron beam to generate oxygen-related defects in the sample, and determined the oxygen concentration in the silicon from the photoluminescence intensity caused by these defects. I was surprised to see that it was possible to calculate .

そして、さらに検討を加えた結果、シリコン試料に炭素
イオンを注入するだけでも欠陥に起因するフォトルミネ
ッセンスが生じ、このフォトルミネッセンス強度から試
料中の酸素濃度を算出できることを見い出した。これに
より分析工程数を減らすことができ、より短時間でシリ
コン中の酸素濃度を測定することができる。
As a result of further investigation, they discovered that simply implanting carbon ions into a silicon sample causes photoluminescence due to defects, and that the oxygen concentration in the sample can be calculated from the intensity of this photoluminescence. This allows the number of analysis steps to be reduced and the oxygen concentration in silicon to be measured in a shorter time.

また、シリコン試料に炭素イオンを注入後、熱エネルギ
を加えることにより、欠陥に起因するフォトルミネッセ
ンス強度が増大することを見い呂した。この効果は電子
線を照射しない場合にも、また、電子線を照射する場合
には電子線照射前あるいは照射後のいずれで熱エネルギ
を加えても同様に生しる。これによりシリコン中の酸素
濃度をより高感度に測定することができる。
They also found that by applying thermal energy after implanting carbon ions into a silicon sample, the intensity of photoluminescence caused by defects increased. This effect similarly occurs when no electron beam is irradiated, and when electron beam irradiation is performed, thermal energy is applied either before or after electron beam irradiation. This allows the oxygen concentration in silicon to be measured with higher sensitivity.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は本発明に
よる酸素濃度測定手順を示したもので、A法、B法、C
法、D法の四通りの測定方法がある。
An embodiment of the present invention will be described below. Figure 1 shows the oxygen concentration measurement procedure according to the present invention, including method A, method B, and method C.
There are four measurement methods: method and D method.

まず、(a)に示すように、シリコン試料の測定領域に
炭素イオンを注入する。炭素イオンの加速電圧は、?I
!定したい深さ領域にイオンが注入されるように設定す
る。イオン注入量は1015個/d以下が望ましく、こ
の値以上では炭素イオン注入領域が非晶質化し、フォト
ルミネッセンス強度が大幅に低下する。なお、炭素イオ
ン注入による試料表面の面荒れを防ぐために、炭素イオ
ン注入前に試料表面に保護膜を形成するのが望ましい。
First, as shown in (a), carbon ions are implanted into the measurement region of a silicon sample. What is the acceleration voltage for carbon ions? I
! Settings are made so that ions are implanted in the desired depth region. The amount of ions implanted is preferably 1015 ions/d or less, and if the amount exceeds this value, the carbon ion implanted region becomes amorphous and the photoluminescence intensity is significantly reduced. Note that in order to prevent surface roughening of the sample surface due to carbon ion implantation, it is desirable to form a protective film on the sample surface before carbon ion implantation.

保護膜は、膜形成時にシリコン中の酸素分布に影響を及
ぼさないものがよく、例えば、プラズマシリコン窒化膜
等が適している。
The protective film is preferably one that does not affect the oxygen distribution in silicon during film formation; for example, a plasma silicon nitride film is suitable.

A法では炭素イオン注入後、(b)に示すように、試料
の測定領域に励起光を照射し、試料からのフォトルミネ
ッセンスを測定する。励起光は、シリコンのバンドギャ
ップ(〜1.1eV)以上のエネルギの光であれば、例
えば、アルゴンイオン・レーザ光等が適している。また
、フォトルミネッセンス強度は試料温度が低いほど大き
いので、例えば、液体ヘリウム等で試料を冷却してフォ
トルミネッセンスを測定するのがよい。酸素に関連した
欠陥に起因するフォトルミネッセンスはピーク波長が1
.57μm(試料温度〜4K)であり、このフォトルミ
ネッセンス強度からシリコン試料中の酸素濃度を算出す
る。酸素濃度を算出するには、酸素濃度既知のシリコン
試料について測定試料と同様の測定手順でフォトルミネ
ッセンス強度を測定し、あらかしめ酸素濃度−フォトル
ミネッセンス強度較正曲線を作成しておけばよい。
In method A, after carbon ion implantation, excitation light is irradiated onto the measurement region of the sample to measure photoluminescence from the sample, as shown in (b). As the excitation light, for example, argon ion laser light is suitable as long as it has an energy higher than the band gap of silicon (~1.1 eV). Furthermore, since the photoluminescence intensity increases as the sample temperature decreases, it is preferable to cool the sample with liquid helium or the like and measure the photoluminescence. Photoluminescence due to oxygen-related defects has a peak wavelength of 1
.. 57 μm (sample temperature ~4K), and the oxygen concentration in the silicon sample is calculated from this photoluminescence intensity. In order to calculate the oxygen concentration, it is sufficient to measure the photoluminescence intensity of a silicon sample whose oxygen concentration is known using the same measurement procedure as for the measurement sample, and to create a preliminary oxygen concentration-photoluminescence intensity calibration curve.

B法では炭素イオン注入後、試料に熱エネルギを加える
。加える熱エネルギは高温で長時間はどフォトルミネッ
センス強度を大きくするが、試料中の酸素分布に影響を
与える可能性があるので、酸素分布を精密に測定したい
場合には、例えば。
In method B, thermal energy is applied to the sample after carbon ion implantation. Thermal energy applied at high temperatures for a long time will increase the photoluminescence intensity, but it may affect the oxygen distribution in the sample, so if you want to precisely measure the oxygen distribution, e.g.

レーザ・アニール、ランプ・アニール等により短時間の
熱処理を行なう方がよい。試料に熱エネルギを加えた後
、A法と同様の方法でフォトルミネッセンス強度を測定
し、試料中の酸素濃度を算出する。
It is better to perform short-time heat treatment by laser annealing, lamp annealing, or the like. After applying thermal energy to the sample, the photoluminescence intensity is measured in the same manner as method A, and the oxygen concentration in the sample is calculated.

C法では炭素イオン注入後、 (e)に示すように、試
料に電子線を照射する。電子線の照射領域は炭素イオン
注入領域を含むようにし、加速電圧は測定したい深さ領
域にわたって一様に電子が照射されるように設定する。
In method C, after carbon ion implantation, the sample is irradiated with an electron beam, as shown in (e). The electron beam irradiation region is made to include the carbon ion implantation region, and the acceleration voltage is set so that electrons are uniformly irradiated over the depth region to be measured.

試料に電子線を照射後、A法と同様の方法でフォトルミ
ネッセンス強度を測定し、試料中の酸素濃度を算出する
After irradiating the sample with an electron beam, the photoluminescence intensity is measured in the same manner as method A, and the oxygen concentration in the sample is calculated.

D法ではC法において電子線照射前あるいは照射後、B
法と同様の方法で試料に熱エネルギを加えるものである
In the D method, before or after electron beam irradiation in the C method, B
Thermal energy is applied to the sample in a similar manner to the method.

本実施例によれば、炭素イオンビームあるいは励起光の
ビーム径を絞ることにより、シリコン試料の微小領域の
酸素1度を高感度に測定することができる。また、炭素
イオンの加速電圧を任意に設定することにより、試料中
の任意の深さ領域に酸素に関連した欠陥を生成できるの
で、シリコン試料の任意の深さ領域の酸素濃度を高感度
に測定することができる。
According to this embodiment, by narrowing down the beam diameter of the carbon ion beam or the excitation light, it is possible to measure the oxygen degree in a minute region of a silicon sample with high sensitivity. In addition, by setting the carbon ion acceleration voltage arbitrarily, oxygen-related defects can be generated at any depth in the sample, so the oxygen concentration at any depth in the silicon sample can be measured with high sensitivity. can do.

特に、A法によれば分析工程数を減らすことができるの
で、測定時間を短縮することができる。
Particularly, according to method A, the number of analysis steps can be reduced, so the measurement time can be shortened.

また、B法、C法、D法によれば分析工程数は増加する
が、フォトルミネッセンス強度を増大させることができ
るので、より高感度にシリコン試料中の酸素濃度を測定
できる。
Furthermore, although the number of analysis steps increases according to Methods B, C, and D, the photoluminescence intensity can be increased, so that the oxygen concentration in the silicon sample can be measured with higher sensitivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料に注入する炭素イオンビームを絞
ることにより酸素に関連した欠陥の生成領域を小さくで
き、また、励起光を絞ることによりフォトルミネッセン
ス測定領域を小さくできるので、シリコン試料の微小領
域の酸素濃度を高感度に測定することができる。
According to the present invention, by narrowing down the carbon ion beam injected into the sample, the area where oxygen-related defects are generated can be made smaller, and by narrowing down the excitation light, the photoluminescence measurement area can be made smaller. Oxygen concentration in a region can be measured with high sensitivity.

また、試料に注入する炭素イオンの加速電圧を任意に設
定することにより、試料中の任意の深さ領域に酸素に関
連した欠陥を生成できるので、シリコン試料中の、任意
の深さ領域の酸素濃度を高感度に測定することができる
In addition, by arbitrarily setting the acceleration voltage of the carbon ions injected into the sample, it is possible to generate oxygen-related defects at any depth in the sample. Concentration can be measured with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における酸素濃度の測定手順
を示す説明図である。 1・・・シリコン試料、2・・・炭素イオン注入領域、
3・・・電子線照射領域。
FIG. 1 is an explanatory diagram showing a procedure for measuring oxygen concentration in an embodiment of the present invention. 1... Silicon sample, 2... Carbon ion implantation region,
3...Electron beam irradiation area.

Claims (1)

【特許請求の範囲】 1、シリコン試料に炭素イオンを注入することにより酸
素に関連した欠陥を生成させ、前記欠陥に起因するフォ
トルミネッセンス強度から前記シリコン試料中の酸素濃
度を算出することを特徴とするシリコン中の酸素濃度測
定方法。 2、請求項1において、炭素イオン注入後、前記シリコ
ン試料に熱エネルギを加えることにより、前記欠陥に起
因するフォトルミネッセンス強度を増大させたシリコン
中の酸素濃度測定方法。 3、請求項1において、炭素イオン注入後、前記シリコ
ン試料に電子線を照射することにより、前記欠陥に起因
するフォトルミネッセンス強度を増大させたシリコン中
の酸素濃度測定方法。 4、請求項3において、炭素イオン注入後、かつ電子線
照射前あるいは照射後、試料に熱エネルギを加えること
により、前記欠陥に起因するフォトルミネッセンス強度
を増大させたシリコン中の酸素濃度測定方法。 5、請求項1または2において、前記シリコン試料に注
入する炭素イオンの加速電圧を任意に設定することによ
り、前記シリコン試料中の任意の深さ領域に酸素に関連
した欠陥を生成させ、前記欠陥に起因するフォトルミネ
ッセンス強度を測定することにより、前記シリコン試料
中の任意の深さ領域の酸素濃度を算出するシリコン中の
酸素濃度測定方法。 6、請求項3または4において、前記シリコン試料に注
入する炭素イオン及び照射電子線の加速電圧を任意に設
定することにより、試料中の任意の深さ領域に酸素に関
連した欠陥を生成させ、前記欠陥に起因するフォトルミ
ネッセンス強度を測定することにより、前記シリコン試
料中の任意の深さ領域の酸素濃度を算出するシリコン中
の酸素濃度測定方法。
[Claims] 1. Defects related to oxygen are generated by implanting carbon ions into a silicon sample, and the oxygen concentration in the silicon sample is calculated from the photoluminescence intensity caused by the defects. A method for measuring oxygen concentration in silicon. 2. The method for measuring oxygen concentration in silicon according to claim 1, wherein the photoluminescence intensity caused by the defects is increased by applying thermal energy to the silicon sample after carbon ion implantation. 3. The method for measuring oxygen concentration in silicon according to claim 1, wherein the photoluminescence intensity caused by the defects is increased by irradiating the silicon sample with an electron beam after carbon ion implantation. 4. The method for measuring oxygen concentration in silicon according to claim 3, wherein thermal energy is applied to the sample after carbon ion implantation and before or after electron beam irradiation to increase the photoluminescence intensity caused by the defects. 5. In claim 1 or 2, by arbitrarily setting an accelerating voltage for carbon ions to be implanted into the silicon sample, oxygen-related defects are generated in an arbitrary depth region in the silicon sample, and the defects are removed. A method for measuring oxygen concentration in silicon, which calculates the oxygen concentration in an arbitrary depth region in the silicon sample by measuring photoluminescence intensity caused by. 6. In claim 3 or 4, by arbitrarily setting the acceleration voltage of the carbon ions and the irradiated electron beam to be implanted into the silicon sample, oxygen-related defects are generated in an arbitrary depth region in the sample, A method for measuring oxygen concentration in silicon, which calculates an oxygen concentration in an arbitrary depth region in the silicon sample by measuring photoluminescence intensity caused by the defects.
JP22132890A 1990-08-24 1990-08-24 Method for measuring concentration of oxygen in silicon Pending JPH04104042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22132890A JPH04104042A (en) 1990-08-24 1990-08-24 Method for measuring concentration of oxygen in silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22132890A JPH04104042A (en) 1990-08-24 1990-08-24 Method for measuring concentration of oxygen in silicon

Publications (1)

Publication Number Publication Date
JPH04104042A true JPH04104042A (en) 1992-04-06

Family

ID=16765086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22132890A Pending JPH04104042A (en) 1990-08-24 1990-08-24 Method for measuring concentration of oxygen in silicon

Country Status (1)

Country Link
JP (1) JPH04104042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156420A (en) * 2014-02-20 2015-08-27 信越半導体株式会社 Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device
CN106442434A (en) * 2016-09-30 2017-02-22 哈尔滨工业大学 Oxygen sensing and measuring method based on luminescent characteristic of praseodymium doped potassium-sodium niobate
KR20180010187A (en) 2015-05-20 2018-01-30 신에쯔 한도타이 가부시키가이샤 Manufacturing method and evaluation method of silicon epitaxial wafer
TWI647440B (en) * 2017-02-10 2019-01-11 日商環球晶圓日本股份有限公司 Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156420A (en) * 2014-02-20 2015-08-27 信越半導体株式会社 Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device
KR20180010187A (en) 2015-05-20 2018-01-30 신에쯔 한도타이 가부시키가이샤 Manufacturing method and evaluation method of silicon epitaxial wafer
US10643908B2 (en) 2015-05-20 2020-05-05 Shin-Etsu Handotai Co., Ltd. Manufacturing method and evaluation method of silicon epitaxial wafer
US11205599B2 (en) 2015-05-20 2021-12-21 Shin-Etsu Handotai Co., Ltd. Evaluation method of silicon epitaxial wafer
CN106442434A (en) * 2016-09-30 2017-02-22 哈尔滨工业大学 Oxygen sensing and measuring method based on luminescent characteristic of praseodymium doped potassium-sodium niobate
CN106442434B (en) * 2016-09-30 2019-03-12 哈尔滨工业大学 Oxygen sensor measurement method based on the praseodymium doped potassium-sodium niobate characteristics of luminescence
TWI647440B (en) * 2017-02-10 2019-01-11 日商環球晶圓日本股份有限公司 Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method
US10330599B2 (en) 2017-02-10 2019-06-25 Globalwafers Japan Co., Ltd. Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method

Similar Documents

Publication Publication Date Title
JP2013152977A (en) Impurity concentration measuring method and impurity concentration measuring device
Balakshin et al. In situ modification and analysis of the composition and crystal structure of a silicon target by ion-beam methods
RU2008742C1 (en) Process of doping of semiconductors
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
JPH04344443A (en) Measurement of carbon and oxygen density in silicon
JPH04104042A (en) Method for measuring concentration of oxygen in silicon
US4429047A (en) Method for determining oxygen content in semiconductor material
JPH0318340B2 (en)
JP4416566B2 (en) Impurity metal concentration measurement method
JP2681613B2 (en) Silicon single crystal evaluation method
JPS6116758B2 (en)
Ananchenko et al. Luminescence of F-type defects and their thermal stability in sapphire irradiated by pulsed ion beams
Oman et al. Some electrical and chemical properties of the (111) niobium surface
JPH09229860A (en) Method and apparatus for evaluating concentration of oxygen in semiconductor silicon crystal
JP6662330B2 (en) Method for measuring carbon concentration in single crystal silicon
JPH03115841A (en) Measuring method for concentration of oxygen in silicon
JPS5840331B2 (en) Semiconductor inspection method related to annealing treatment
Theodossiu et al. Formation of SiC-surface layer by ion implantation
Fateh et al. Study of Early Stage Interaction of Oxygen with Al; Methods, Challenges and Difficulties
Kalantaryan et al. Fast ion induced luminescence of silica implanted by molecular hydrogen
US20070190809A1 (en) Wafer processing method, semiconductor device manufacturing method, and wafer processing apparatus
JPH09246337A (en) Method and device for detecting crystal defect
JPH0689860A (en) Method of semiconductor crystal growth and molecular beam epitaxy device
RU2095885C1 (en) Flaw inspection method for insulating films of semiconductor structures
JPS6117031A (en) Method and apparatus for measuring concentration of interstitial oxygen in silicon crystal