JPS6222243B2 - - Google Patents

Info

Publication number
JPS6222243B2
JPS6222243B2 JP56165357A JP16535781A JPS6222243B2 JP S6222243 B2 JPS6222243 B2 JP S6222243B2 JP 56165357 A JP56165357 A JP 56165357A JP 16535781 A JP16535781 A JP 16535781A JP S6222243 B2 JPS6222243 B2 JP S6222243B2
Authority
JP
Japan
Prior art keywords
magnetic
irradiated
magnetic anisotropy
growth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56165357A
Other languages
Japanese (ja)
Other versions
JPS5867005A (en
Inventor
Koji Ando
Juko Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56165357A priority Critical patent/JPS5867005A/en
Publication of JPS5867005A publication Critical patent/JPS5867005A/en
Publication of JPS6222243B2 publication Critical patent/JPS6222243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、磁性体の微細処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for finely processing a magnetic material.

磁気異方性の一部を成す、成長誘導磁気異方性
は、磁性体の作成時に発生するものであり、成長
誘導磁気異方性を変化させることにより、磁気異
方性を制御することは、各種磁性体素子の構成に
重要なものである。
Growth-induced magnetic anisotropy, which forms part of magnetic anisotropy, occurs during the creation of magnetic materials, and it is possible to control magnetic anisotropy by changing the growth-induced magnetic anisotropy. , are important in the construction of various magnetic elements.

従来、磁性体の成長誘導磁気異方性を低下させ
る方法としては、主に高温度の炉の中で加熱する
方法が用いられてきた。しかし、この方法では、
磁性体全体の温度が一様に上昇するため磁性体の
一部分の成長誘導磁気異方性を低下させることは
不可能であつた。又レーザ光を用いて、磁性体の
温度を、非常に短い時間内(〜10ms)に上昇・
下降させ、急激な冷却効果によつて、磁気的性質
の変化を得る方法も知られているが、この方法で
は、磁気異方性の変化は、殆ど無視される程度の
量であつた。
Conventionally, as a method for reducing the growth-induced magnetic anisotropy of a magnetic material, a method of heating in a high-temperature furnace has been mainly used. However, with this method,
Since the temperature of the entire magnetic material rises uniformly, it has been impossible to reduce the growth-induced magnetic anisotropy of a portion of the magnetic material. Also, using laser light, the temperature of the magnetic material can be increased within a very short time (~10ms).
There is also a known method of obtaining a change in magnetic properties by lowering the temperature and causing a rapid cooling effect, but with this method, the change in magnetic anisotropy is almost negligible.

本発明は、従来の方法の欠点を解消するために
なされたもので、磁性体にレーザ光を照射し希望
する磁気異方性の異なつたパターンを簡単に形成
する方法を提供するものである。本発明に至つた
技術的経緯を簡単に説明する。
The present invention was made to eliminate the drawbacks of conventional methods, and provides a method for easily forming patterns with different desired magnetic anisotropy by irradiating a magnetic material with laser light. The technical background that led to the present invention will be briefly explained.

本発明者は、磁性体にレーザ光を照射し、その
磁気的性質の変化について種々研究を進めてきた
結果レーザ光を照射した部分の成長誘導磁気異方
性が低下することを見出し、この方法を用いるこ
とによつて、磁性体に磁気異方性の異なつたパタ
ーンを形成しうることが判明し、本発明に至つた
ものである。
The present inventor has carried out various studies on changes in the magnetic properties of magnetic materials by irradiating them with laser light, and has discovered that the growth-induced magnetic anisotropy of the portion irradiated with laser light decreases. It has been found that patterns with different magnetic anisotropy can be formed in a magnetic material by using the above method, leading to the present invention.

以下、本発明について説明する。第1図は本発
明のための装置の原理図である。移動台1の上に
置かれた炉2の中に、磁性体3を置き、レーザ4
の光をレンズ5で集光し、磁性体3に照射する。
移動台1は磁性体3に磁気異方性の異なるパター
ンを形成する場合に用いられ、目的によつては不
要である。又炉2は、レーザ光の照射により磁性
体3の温度が局所的に上昇し、周囲との熱膨張の
差によつて歪が生ずるのを防止するために、磁性
体3の全体の温度を適当な温度に保つために用い
られるものである。レーザ4は、磁性体3の温度
を上昇させるに十分な光出力のあるものであれ
ば、何でも良い。炉2の温度、レーザ4の光出力
およびレンズ5の磁性体3からの距離を変化さ
せ、磁性体3の光が照射されている部分の大きさ
と温度を適当に選び、一定の時間レーザ光の照射
を行なつた後、磁性体3の温度を下げる。温度が
高いほど、一定量の磁気異方性の変化を得るに必
要な時間は短くなるので、磁性体3の破損が起こ
る以下の適当な温度を選ぶ。上記の構成に於て、
磁性体3のレーザ光が照射された部分は、レーザ
光を吸収することにより、その温度を上昇させ
る。そのため、磁性体3の成長誘導磁気異方性
は、温度および磁性体3の種類、作成方法に依存
した速度で減少する。よつてレーザ4の光出力、
炉2の温度、レンズ5の磁性体3からの距離およ
びレーザ光の照射時間を適当に選ぶことにより、
希望する量の磁気異方性の変化を、希望する大き
さの部分に起こすことができる。更に移動台1に
より、磁気異方性の異なるパターンを形成でき
る。次に本発明による実施例について説明する。
The present invention will be explained below. FIG. 1 is a diagram of the principle of the device for the present invention. A magnetic material 3 is placed in a furnace 2 placed on a moving table 1, and a laser 4 is placed on it.
The light is focused by a lens 5 and irradiated onto the magnetic body 3.
The moving table 1 is used when forming patterns with different magnetic anisotropy on the magnetic material 3, and is not necessary depending on the purpose. The furnace 2 also controls the overall temperature of the magnetic body 3 in order to prevent the temperature of the magnetic body 3 from increasing locally due to laser beam irradiation and causing distortion due to the difference in thermal expansion with the surroundings. It is used to maintain an appropriate temperature. The laser 4 may be any laser as long as it has a sufficient optical output to raise the temperature of the magnetic body 3. By changing the temperature of the furnace 2, the optical output of the laser 4, and the distance of the lens 5 from the magnetic body 3, the size and temperature of the portion of the magnetic body 3 that is irradiated with the light is appropriately selected, and the laser beam is applied for a certain period of time. After the irradiation, the temperature of the magnetic body 3 is lowered. The higher the temperature, the shorter the time required to obtain a certain amount of change in magnetic anisotropy. Therefore, an appropriate temperature below at which damage to the magnetic body 3 occurs is selected. In the above configuration,
The portion of the magnetic body 3 irradiated with the laser beam absorbs the laser beam, thereby increasing its temperature. Therefore, the growth-induced magnetic anisotropy of the magnetic body 3 decreases at a rate that depends on the temperature, the type of the magnetic body 3, and the manufacturing method. Therefore, the optical output of the laser 4,
By appropriately selecting the temperature of the furnace 2, the distance of the lens 5 from the magnetic body 3, and the laser beam irradiation time,
A desired amount of change in magnetic anisotropy can be caused in a portion of a desired size. Furthermore, the movable table 1 allows patterns with different magnetic anisotropy to be formed. Next, embodiments according to the present invention will be described.

本実施例で用いた磁性体は、Gd3Ga5O12基板の
両面に(YBi)3(FeGa)5O12を液相エピタキシー
成長させたものであり、成長誘導磁気異方性に帰
因する、基板面に垂直な一軸磁気異方性を持つも
のである。磁性体を1000℃に保たれた炉2の中に
置き、アルゴンイオン・レーザの3Wの光を、磁
性体から205m/mの距離に置いた焦点距離200
m/mのレンズで集光し、2分間照射した。第2
図は、フアラデー効果を利用して求めた、磁性体
の偏光能の空間分布を、レーザ光が照射された部
分を横断する直線に沿つて示したものである。レ
ーザ光の照射された部分6の偏光能は、レーザ光
の照射されない部分7の偏光能の振巾の中間にあ
る。このことは、レーザ光の照射された部分の磁
化が、レーザ光の照射されなかつた部分の磁化に
比べ、大きく面内に傾いていることを示してい
る。第3図には、レーザ光の照射されなかつた部
分の磁化曲線を、又第4図にはレーザ光の照射さ
れた部分の磁化曲線を示した。飽和磁化の大きさ
(磁化曲線の縦軸の振巾に比例する)は、レーザ
光の照射された部分と、照射されなかつた部分と
では、殆ど変化がない。よつて、レーザ光が照射
された部分で、成長誘導異方性による一軸磁気異
方性が変化し、その部分の磁化が面内方向に大き
く傾いたことがわかる。
The magnetic material used in this example was made by growing (YBi) 3 (FeGa) 5 O 12 on both sides of a Gd 3 Ga 5 O 12 substrate by liquid phase epitaxy, and the magnetic anisotropy was caused by growth-induced magnetic anisotropy. It has uniaxial magnetic anisotropy perpendicular to the substrate surface. A magnetic material is placed in a furnace 2 kept at 1000℃, and a 3W argon ion laser beam is placed at a focal length of 200 m at a distance of 205 m/m from the magnetic material.
The light was focused with a m/m lens and irradiated for 2 minutes. Second
The figure shows the spatial distribution of the polarization power of a magnetic material, determined using the Faraday effect, along a straight line that crosses the area irradiated with laser light. The polarization power of the portion 6 that is irradiated with the laser beam is in the middle of the amplitude of the polarization power of the portion 7 that is not irradiated with the laser beam. This indicates that the magnetization of the portion irradiated with the laser beam is tilted in the plane to a greater extent than the magnetization of the portion not irradiated with the laser beam. FIG. 3 shows the magnetization curve of the portion not irradiated with the laser beam, and FIG. 4 shows the magnetization curve of the portion irradiated with the laser beam. The magnitude of saturation magnetization (proportional to the amplitude of the vertical axis of the magnetization curve) hardly changes between the portion irradiated with laser light and the portion not irradiated. Therefore, it can be seen that the uniaxial magnetic anisotropy due to growth-induced anisotropy changes in the portion irradiated with the laser beam, and the magnetization of that portion is tilted significantly in the in-plane direction.

第5図はフアラデー効果を利用して観測したレ
ーザ光の照射された部分の磁気ドメインを示す顕
微鏡写真である。レーザ光の照射された部分がコ
ントラストの弱いスポツト8として見られる。
FIG. 5 is a micrograph showing a magnetic domain in a portion irradiated with laser light, observed using the Faraday effect. The portion irradiated with the laser beam can be seen as a spot 8 with weak contrast.

以上述べたように、本発明は磁性体をあらかじ
め所定温度まで加熱しておき、レーザ光を所要部
分のみにその成長誘導磁気異方性を低下させるの
に十分な時間照射するようにしたので、磁性体に
与える熱歪を小さくして希望する量の磁気異方性
の変化を、希望する大きさの部分に起こすことが
できるものであり、これまでに知られていない、
全く新しい技術である。本発明は、光アイソレー
タ、磁気バブル、磁気メモリなどの各種素子の構
成に大きく貢献するものである。
As described above, in the present invention, the magnetic material is heated to a predetermined temperature in advance, and the laser beam is irradiated only to the required portion for a sufficient period of time to reduce the growth-induced magnetic anisotropy. It is a method that can cause a desired amount of change in magnetic anisotropy in a desired size area by reducing the thermal strain applied to the magnetic material, and is a previously unknown method.
This is a completely new technology. The present invention greatly contributes to the construction of various elements such as optical isolators, magnetic bubbles, and magnetic memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のための装置の原理図、第2
図は、本発明の方法により得られた成長誘導磁気
異方性の低下した部分の偏光能を、レーザ光が照
射されなかつた部分と共に示す図、第3図は、レ
ーザ光を照射していない部分の磁化曲線、第4図
は、本発明の方法により得られた、成長誘導磁気
異方性の低下した部分の磁化曲線、(第3図と第
4図の磁化曲線の縦軸のスケールは同一であ
る)、第5図は、第2図に示した偏光能の空間分
布に対応する顕微鏡写真である。 図中、1は移動台、2は炉、3は磁性体、4は
レーザ、5はレンズ、6はレーザ光の照射された
部分、7はレーザ光の照射されなかつた部分、8
は成長誘導磁気異方性の低下のために、磁化が、
その周囲の磁化に較べ、大きく面内方向に傾いた
領域である。
FIG. 1 is a principle diagram of the device for the present invention, and FIG.
The figure shows the polarization ability of the part with reduced growth-induced magnetic anisotropy obtained by the method of the present invention, together with the part that was not irradiated with laser light. FIG. 4 shows the magnetization curve of a portion where the growth-induced magnetic anisotropy has decreased, obtained by the method of the present invention. (The scale of the vertical axis of the magnetization curves in FIGS. 3 and 4 is FIG. 5 is a micrograph corresponding to the spatial distribution of polarization power shown in FIG. In the figure, 1 is a moving table, 2 is a furnace, 3 is a magnetic material, 4 is a laser, 5 is a lens, 6 is a part irradiated with laser light, 7 is a part not irradiated with laser light, 8
Due to the decrease in growth-induced magnetic anisotropy, the magnetization is
This is a region that is significantly tilted in the in-plane direction compared to the surrounding magnetization.

Claims (1)

【特許請求の範囲】[Claims] 1 磁性体をあらかじめ成長誘導磁気異方性を低
下させない所定温度まで加熱しておき、この磁性
体にレーザ光を所定部分のみにその成長誘導磁気
異方性を低下させるのに十分な時間照射すること
を特徴とする磁性体の微細処理方法。
1. The magnetic material is heated in advance to a predetermined temperature that does not reduce the growth-induced magnetic anisotropy, and the magnetic material is irradiated with laser light only in a predetermined portion for a sufficient time to reduce the growth-induced magnetic anisotropy. A method for fine processing of magnetic materials characterized by the following.
JP56165357A 1981-10-16 1981-10-16 Method for fine processing of magnetic body Granted JPS5867005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165357A JPS5867005A (en) 1981-10-16 1981-10-16 Method for fine processing of magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165357A JPS5867005A (en) 1981-10-16 1981-10-16 Method for fine processing of magnetic body

Publications (2)

Publication Number Publication Date
JPS5867005A JPS5867005A (en) 1983-04-21
JPS6222243B2 true JPS6222243B2 (en) 1987-05-16

Family

ID=15810824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165357A Granted JPS5867005A (en) 1981-10-16 1981-10-16 Method for fine processing of magnetic body

Country Status (1)

Country Link
JP (1) JPS5867005A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611970B1 (en) * 1987-03-06 1989-05-26 Thomson Csf METHOD FOR PRODUCING A MAGNETIC HEAD IN THIN FILMS AND APPLICATION TO A RECORDING / READING HEAD
US5601662A (en) * 1989-06-30 1997-02-11 Kabushiki Kaisha Toshiba Method of introducing magnetic anisotropy into magnetic material

Also Published As

Publication number Publication date
JPS5867005A (en) 1983-04-21

Similar Documents

Publication Publication Date Title
KR870006528A (en) Magneto-optical recording system
KR100615731B1 (en) Magnetic media patterning utilizing heat-induced phase transition
US6831249B2 (en) Slider produced by slider curvature modification by substrate melting produced with a pulsed laser beam
KR910003934B1 (en) Magnetic bias coil for magneto optical recording apparatus
US4111520A (en) Fabrication of optical waveguides
JPS6222243B2 (en)
Schultz et al. Permanent local modification of the magnetic bubble properties of epitaxial garnet films by laser annealing
JPS55150239A (en) Heat treating method
US4600488A (en) Control method of magnetic anisotropy and device utilizing the control method
JPS57164418A (en) Vertical heat magnetic recording medium
JPH03242983A (en) Manufacture of magnetic structure
Gleine et al. Laser trimming of SiON components for integrated optics
KR920001459A (en) Magneto-optical recording and reproducing method and magneto-optical recording and reproducing apparatus
Ando et al. Localised modification of magnetic anisotropy in LPE iron garnet films by laser annealing
GB1382977A (en) Magnetic memory element
US4352862A (en) Thermally stable magnetic film which resists hard bubbles
JPH0340246A (en) Magneto-optical recording medium and production thereof
JPS6325933A (en) Straining method for silicon substrate
JPS5816276B2 (en) Hikarijikikikirokuhoushiki
Ando et al. Laser annealing of magneto-optic garnet films: Localized control of direction of magnetization
JPS59224115A (en) Electron-beam annealing method
SU1249586A1 (en) Method of generating magnetic bias field in bubble storage
JPS6070542A (en) Optical magnetic storage medium
JPH04182983A (en) Method for etching pattern of magnetic garnet
CA1163713A (en) Bubble memory bias field structure