JPS5922375A - Light-emitting semiconductor device - Google Patents

Light-emitting semiconductor device

Info

Publication number
JPS5922375A
JPS5922375A JP57132734A JP13273482A JPS5922375A JP S5922375 A JPS5922375 A JP S5922375A JP 57132734 A JP57132734 A JP 57132734A JP 13273482 A JP13273482 A JP 13273482A JP S5922375 A JPS5922375 A JP S5922375A
Authority
JP
Japan
Prior art keywords
layer
alloy layer
area
lead wire
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57132734A
Other languages
Japanese (ja)
Inventor
Toshiharu Kawabata
川端 敏治
Hitoo Iwasa
仁雄 岩佐
Susumu Furuike
進 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57132734A priority Critical patent/JPS5922375A/en
Publication of JPS5922375A publication Critical patent/JPS5922375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve bonding property with an electrode layer of a lead wire while also enhancing radiant power outputs by making the area of a first conductive layer containing an active substance smaller than that of a second conductive layer. CONSTITUTION:A square of 300mum one side is formed as the chip size of a LED, a layer 3 in Au for attaching the lead wire takes a circle of a 150mum diameter, and an alloy layer 4 is Au and Be for being brought into ohmic-contact with a P type GaP layer 6 takes a doughnut shape of a 150mum maximum outer diameter and a 100mum inner diameter. It is observed that a bonding rate of the lead wire depends upon the inner diameter gamma of the alloy layer 4 in Au and Be, the quantity of Be diffusing up to the surface of an electrode decreases with the increase of the inner diameter gamma, the reduction of the area of the alloy layer 4 in Au and Be, and bonding property is improved. Light absorption reduces due to the decrease of the area of an alloy layer 5 in a semiconductor in addition to the increase of current density because currents flow through the alloy layer 4 in Au and Be, thus improving radiant power outputs more effectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は良好なホンディング性と高発光出力を得ること
ができる発光ダイオード(以下LEI)と記す)の電極
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrode for a light emitting diode (hereinafter referred to as LEI) which can obtain good bonding properties and high light emission output.

従来例の構成とその問題点 LEDは砒化ガリウム(、GaAs )や燐化ガリウム
(GaP)等のIII−V族化合物半導体からなり、n
側およびp側にオーミック接触を得るための電極層か形
成される。そして通常、この電極層はリード線をこの電
極層に接着させるボンディングパソドを兼ねている。
Conventional structure and problems LEDs are made of III-V compound semiconductors such as gallium arsenide (GaAs) and gallium phosphide (GaP).
An electrode layer is formed on the side and the p-side to obtain ohmic contact. Usually, this electrode layer also serves as a bonding pad for bonding lead wires to this electrode layer.

半導体とのオーミック接触は一般にドナーあるいはアク
セプタとなる不純物を含んだ金属を電極層として用いる
ときに得られる。しかし、これらの不純物を含んだ金属
電極層の表j+iは酸化膜を形成しやすく、そのためリ
ード線とのホンディング性が極めて悪くなる。そこで、
通常、この種の電極層は、オーミック接触を得るための
@1層の上に良導電体の金属層を形成して2重層となし
、これによりボンディング性の改善を計ったものが用い
られている。
Ohmic contact with a semiconductor is generally obtained when a metal containing impurities serving as a donor or acceptor is used as an electrode layer. However, an oxide film is easily formed on the surface j+i of the metal electrode layer containing these impurities, and as a result, the bonding property with the lead wire becomes extremely poor. Therefore,
Usually, this type of electrode layer is a double layer in which a metal layer with good conductivity is formed on the first layer to obtain ohmic contact, thereby improving bonding properties. There is.

例えばG a Pを素材とするLEDの場合、通常、p
側電極層がボンディングパノトを兼ねる。第1図に典型
的なGaPLEDの断面図を示す。同図に示されるよう
に、リード線1はその先端のネイルヘッド部2を」二層
の金(Au)層3に圧着されている。そして、オーミッ
ク接触は、下層側の金(Au)とべIJ IJウム(B
e)との合金の層4により得ている。なお、第1図そ、
5はオーミック接触に形成されるアロイ層、6はp型G
 a P層、7はn型GaP層、8はn″−型GaP基
板てあり、9はn1型G a P基板8とオーミック接
触をなす電極層、1oはアロイ層、11はステムあるい
はコムと呼ばれる金l萬体である、しかし、このような
電極構造でも溶接(アロイ化)等の熱処理工程の間に下
層のAu −Be合金層4中のBeが上層のAu層3の
表面まで拡散し、上層のAu層3の表面にBeの酸化膜
を形成することがあり、このため同表面にリード線1を
圧着したときのホンディング性が悪くなり、これが、製
造歩留り低下の大きな要因となっている。
For example, in the case of an LED made of GaP, usually p
The side electrode layer also serves as a bonding panel. FIG. 1 shows a cross-sectional view of a typical GaPLED. As shown in the figure, the nail head portion 2 at the tip of the lead wire 1 is crimped to two gold (Au) layers 3. Ohmic contact is made between the gold (Au) on the lower layer side and the aluminum (B) on the lower layer side.
e) is obtained by layer 4 of an alloy with In addition, Figure 1
5 is an alloy layer formed in ohmic contact, 6 is a p-type G
7 is an n-type GaP layer, 8 is an n''-type GaP substrate, 9 is an electrode layer that makes ohmic contact with the n1-type GaP substrate 8, 1o is an alloy layer, and 11 is a stem or comb. However, even with this electrode structure, Be in the lower Au-Be alloy layer 4 diffuses to the surface of the upper Au layer 3 during heat treatment processes such as welding (alloying). , a Be oxide film may be formed on the surface of the upper Au layer 3, resulting in poor bonding properties when the lead wire 1 is crimped onto the same surface, and this is a major factor in reducing manufacturing yield. ing.

またLEDの発光出力は一般に順方向電流の増加に伴い
向上する。特に、GaP(純緑色)LEDは、第2図に
示すように、その傾向が顕著である。
Furthermore, the light emitting output of an LED generally improves as the forward current increases. In particular, this tendency is remarkable for GaP (pure green) LEDs, as shown in FIG.

この事実から翻ってみると、LEDの発光出力を向」ニ
させるためには、電流密度を増加させることも一つの方
策であるが、そのためには電極面積を小さくする必要が
ある。しかしながら、リード線1のネイルヘッド部2の
大きさには一定の制約かあって、任意に小さくはできず
、また、付着強度を考慮すると、電極層の面積をネイル
ヘッド部2の面積以下にすることは好ましくない。
Considering this fact, one way to increase the light emitting output of the LED is to increase the current density, but this requires reducing the electrode area. However, there are certain restrictions on the size of the nail head portion 2 of the lead wire 1, and it cannot be made arbitrarily small.Also, when considering adhesion strength, the area of the electrode layer must be less than or equal to the area of the nail head portion 2. It is not desirable to do so.

発明の目的 本発明は、従来装置にみられた」二連のような問題点を
解消するものであり、リード線の電極層へのボンディン
グ性を良好にするとともに、発光出力をも向上させたL
EDを提供するものである。
Purpose of the Invention The present invention solves the problem of "double connection" seen in conventional devices, improves the bonding property of the lead wire to the electrode layer, and improves the light emitting output. L
It provides ED.

発明の構成 本発明は、半導体と接触し、活性物質を含む第1の導電
層の面積を、前記第1の導電層に接続され、リード線の
接着された第2の導電層の面積より小さくなした発光半
導体装置であり、これにより、第1の導電層から第2の
導電層の全域に及ぶ酸化性の強い活性物質の拡散が避け
られ、併せて、半導体との接触部面積を小さくすること
によって、1妾合の電流密度を高めて高出力特性を実現
するものである。
Structure of the Invention The present invention provides that the area of a first conductive layer in contact with a semiconductor and containing an active substance is smaller than the area of a second conductive layer connected to said first conductive layer and to which a lead wire is attached. This is a light-emitting semiconductor device made of a semiconductor device, which avoids diffusion of a highly oxidizing active substance over the entire area from the first conductive layer to the second conductive layer, and also reduces the area of contact with the semiconductor. By doing so, the current density of one concatenation is increased and high output characteristics are realized.

実施例の説明 以下、GaP(純緑色)LEDにおける本発明の詳細な
説明する。本発明のLEDの平面図と断面図を第3図(
a) 、 (b)に示す。同図において、第1図と同一
番号は同一物を示す。LEDのチップサイズは1辺30
0μmの正方形で、リード線を付着させるためのAuの
層3を内径1607zmの円形とし、p型G a P層
6とオーミック接触を得るためのAuとBeとの合金層
4を最大外径16071m。
DESCRIPTION OF EMBODIMENTS A detailed description of the present invention in a GaP (pure green) LED will be given below. Figure 3 (
Shown in a) and (b). In this figure, the same numbers as in FIG. 1 indicate the same parts. LED chip size is 30 on a side
The Au layer 3 is a square with a diameter of 0 μm, and the inner diameter of the Au layer 3 for attaching the lead wire is 1607 zm, and the Au and Be alloy layer 4 has a maximum outer diameter of 16071 m to obtain ohmic contact with the p-type GaP layer 6. .

内径1ool1mのドーナツ形とした。経験によると、
電極層の最大外径150μmのもので、リード線のボン
デインク率は、AuとBeとの合金層4の内径をγ1t
mとして、その内径γに対する依存性がみられ、第4図
にその結果を示す。内径γか大きくなるにつれて、つま
りAuとBeの合金層4の面積が小さくなるにつれて、
電極の表面まで拡散してくるBeの量が減少して、ボン
ディング性か向−Iニジた。
It was shaped like a donut with an inner diameter of 1 oool and 1 m. According to experience,
The maximum outer diameter of the electrode layer is 150 μm, and the bonding ink rate of the lead wire is γ1t, which is the inner diameter of the alloy layer 4 of Au and Be.
A dependence of m on the inner diameter γ was observed, and the results are shown in FIG. As the inner diameter γ increases, that is, as the area of the Au and Be alloy layer 4 decreases,
The amount of Be that diffused to the surface of the electrode decreased, and the bonding properties deteriorated.

また、発光出力のAuとBeとの合金層4の内径γに対
する依存性を第5図に示す。同図から明らかな様に、電
流はAuとBeとの合金層4を通して流れるため、電流
密度が増加したことに加えて、半導体中のアロイ層6の
面積の減少による光の吸収が減少したことによって、発
光出力が一段と向上している。
Furthermore, the dependence of the light emission output on the inner diameter γ of the Au and Be alloy layer 4 is shown in FIG. As is clear from the figure, since the current flows through the Au and Be alloy layer 4, the current density has increased, and in addition, light absorption has decreased due to the decrease in the area of the alloy layer 6 in the semiconductor. As a result, the light output is further improved.

ところて、AuとBeの合金層4の内径γを大きくして
いくと、所定電流を供給するための順方向電圧が高くな
る。この現象を勘案すると、内径γは90〜100μm
が適当である。この範囲にすること′により、対応の従
来装置にくらべて、ボンディング率で約30%、発光出
力で約20係の向」ニしたが確認された。
However, as the inner diameter γ of the Au and Be alloy layer 4 increases, the forward voltage for supplying a predetermined current increases. Considering this phenomenon, the inner diameter γ is 90 to 100 μm.
is appropriate. It was confirmed that by setting the device within this range, the bonding rate improved by about 30% and the light emitting output increased by about 20 times compared to the corresponding conventional device.

なお、本発明はGaPLEDに限らず、すべてのLED
に適用でき、電極形状も円形に限らずすべての形状に対
して適用できる。
Note that the present invention is not limited to GaPLEDs, but can be applied to all LEDs.
It can be applied to any electrode shape, not just circular.

発明の効果 以上に詳記したように、本発明は、電極層を二層構造と
し、半導体と接触し、活性物質を含む第1の導電層の面
積を、前記第1の導電層に接続されリード線の接着され
た第2の導電層の面積より小さくしたので、前記第2の
導電層上にリード線を圧着する場合に、リード線のホン
ディング部分には、第1の導電層内に存在する酸化性の
強い不純物が拡散析出して、この部分て酸化物を形成し
て、ワイヤホンディングを4「1害する物質か除かれて
いるので、ホンディング率すなわち、ワイヤボンデイン
クの良品率を顕著に向上させることができる。また、半
桿体と電極層との接触部分の面積の径小化により、半導
体側へ流入させる電流の密度を実質的に高めて、発光出
力の向上をはかることか可能であり、すくれたLEDを
実現することかできる。
Effects of the Invention As described in detail above, the present invention provides an electrode layer with a two-layer structure, in which the area of the first conductive layer that is in contact with the semiconductor and contains an active substance is connected to the first conductive layer. Since the area is smaller than the area of the second conductive layer to which the lead wire is bonded, when the lead wire is crimped onto the second conductive layer, the bonding portion of the lead wire has a surface area within the first conductive layer. Strongly oxidizing impurities that are present diffuse and precipitate, forming oxides in these areas, and substances that harm wire bonding are removed, thereby increasing the bonding rate, that is, the quality of wire bonding ink. In addition, by reducing the diameter of the contact area between the semi-rod and the electrode layer, the density of the current flowing into the semiconductor side can be substantially increased, thereby improving the light emitting output. It is possible, and it is possible to realize a compact LED.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電極を用いたLEDの断面図。 しI LEDの平面1断面図、第4図は、リード線のボンディ
ング率のAuとBeの合金層の内径に対する依存性図、
第5図は、発光出力のAuとBeの合金層の内径に対す
る依存性図である。 1・・・・・・リード線、2・・・・・・リード線のネ
イルヘッド部、3・・・・・・リード線を付着させるた
めの導電性物質(Au)の層、4・・・・・オーミック
接触を得るための導電、性物質(AuとBeの合金)の
層、6・・・・・・アロイ層、6・・・・・・p型半導
体、7 ・・・・n型半導体、8・・・・・n型半導体
基板、9・・・・・・n側電極、1o・・・・・・アロ
イ層、11・・・・・・ステムあるいはコム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 順方向電うL(7r1.A) 第 3 区 第4図
FIG. 1 is a cross-sectional view of an LED using conventional electrodes. FIG. 4 is a cross-sectional view of the top surface of the LED, and FIG. 4 is a dependence diagram of the bonding ratio of the lead wire on the inner diameter of the Au and Be alloy layer.
FIG. 5 is a diagram showing the dependence of light emission output on the inner diameter of the Au and Be alloy layer. DESCRIPTION OF SYMBOLS 1... Lead wire, 2... Nail head portion of the lead wire, 3... Layer of conductive material (Au) for attaching the lead wire, 4... ... layer of conductive material (alloy of Au and Be) for obtaining ohmic contact, 6 ... alloy layer, 6 ... p-type semiconductor, 7 ... n type semiconductor, 8... n-type semiconductor substrate, 9... n-side electrode, 1o... alloy layer, 11... stem or comb. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Forward direction L (7r1.A) Section 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 発光半導体層と接触する電極層が第1.第2の導電層か
らなり、活性物質を含む前記第1の導電層の面積を、前
記第1の導電層に接続され、IJ−ド線に接着された前
記第2の導電層の面積より小さくなしたことを特徴とす
る発光半導体装置。
The electrode layer in contact with the light emitting semiconductor layer is the first. a second conductive layer, the area of the first conductive layer containing an active substance being smaller than the area of the second conductive layer connected to the first conductive layer and bonded to the IJ-domain; A light emitting semiconductor device characterized by:
JP57132734A 1982-07-28 1982-07-28 Light-emitting semiconductor device Pending JPS5922375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57132734A JPS5922375A (en) 1982-07-28 1982-07-28 Light-emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132734A JPS5922375A (en) 1982-07-28 1982-07-28 Light-emitting semiconductor device

Publications (1)

Publication Number Publication Date
JPS5922375A true JPS5922375A (en) 1984-02-04

Family

ID=15088341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132734A Pending JPS5922375A (en) 1982-07-28 1982-07-28 Light-emitting semiconductor device

Country Status (1)

Country Link
JP (1) JPS5922375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288459A1 (en) * 2012-04-25 2013-10-31 Hon Hai Precision Industry Co., Ltd. Method for making epitaxial structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116073A (en) * 1977-03-22 1978-10-11 Toshiba Corp Semiconductor device
JPS5784188A (en) * 1980-11-13 1982-05-26 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116073A (en) * 1977-03-22 1978-10-11 Toshiba Corp Semiconductor device
JPS5784188A (en) * 1980-11-13 1982-05-26 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288459A1 (en) * 2012-04-25 2013-10-31 Hon Hai Precision Industry Co., Ltd. Method for making epitaxial structure
US8859402B2 (en) * 2012-04-25 2014-10-14 Tsinghua University Method for making epitaxial structure

Similar Documents

Publication Publication Date Title
US6316792B1 (en) Compound semiconductor light emitter and a method for manufacturing the same
US6307218B1 (en) Electrode structures for light emitting devices
JPH08316525A (en) Light emitting diode
US6380564B1 (en) Semiconductor light emitting device
US4864370A (en) Electrical contact for an LED
TWI302383B (en) Semiconductor light-emitting device
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
US8309975B2 (en) Semiconductor light emitting element and semiconductor light emitting device using the same
JP4507358B2 (en) Optical semiconductor device
JP3494478B2 (en) Gallium nitride based compound semiconductor device
JP4366923B2 (en) Lighting device and control method thereof
JP3251603B2 (en) Semiconductor light emitting device
US6653215B1 (en) Contact to n-GaN with Au termination
JPS5922375A (en) Light-emitting semiconductor device
JPH10209494A (en) Semiconductor light emitting device
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
JPH0531317B2 (en)
KR20170134257A (en) Light-emitting diode
JP3342336B2 (en) Semiconductor light emitting device
JP2007317913A (en) Semiconductor light emitting element, and its manufacturing method
JP2950192B2 (en) Nitride semiconductor electrode
JPH08335717A (en) Semiconductor light emitting element
TW459407B (en) Light emitting diode having reverse tunneling layer
JPH07254731A (en) Light emitting element
JPH1117218A (en) Semiconductor light-emitting device