JPS59223296A - Raw material for producing sealed compound semiconductor crystal - Google Patents

Raw material for producing sealed compound semiconductor crystal

Info

Publication number
JPS59223296A
JPS59223296A JP9253983A JP9253983A JPS59223296A JP S59223296 A JPS59223296 A JP S59223296A JP 9253983 A JP9253983 A JP 9253983A JP 9253983 A JP9253983 A JP 9253983A JP S59223296 A JPS59223296 A JP S59223296A
Authority
JP
Japan
Prior art keywords
semiconductor crystal
compound semiconductor
raw material
elements
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9253983A
Other languages
Japanese (ja)
Inventor
Jiro Osaka
大阪 次郎
「ほし」川 圭吾
Keigo Hoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9253983A priority Critical patent/JPS59223296A/en
Publication of JPS59223296A publication Critical patent/JPS59223296A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To constitute a raw material from which a titled crystal can be produced with easy packing operation and decreased contamination with an impurity by putting a mixture composed of elements consstituting the compd. semiconductor crystal into a vessel consisting essentially of boron oxide. CONSTITUTION:>=1 Kind among IIb, IIIb group elements and >=1 kind among Vb, VIb group elements which are elements constituting a compd. semiconductor crystal for example, gallium 3 and arsenic 4 are put into a vessel 1 consisting of a material composed essentially of boron oxide and the vessel is closed with a cover consisting likewise of a material composed essentially of boron oxide. The veseel is heated for about 30min at about 400 deg.C in a vacuum and the vessel 1 is melt stuck to the cover 2. The gallium 3 in this stage melts to form gallium 3' mixed with the arsenic. Such material is kept housed in a vessel contg. inert gas and is used for producing the compd. semiconductor crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は揮発性元素を含む化合物半導体結晶を液体封止
引上法(以下LKO法)により製造する場合に用いる、
不純物汚染が少なくかつ充てん作業も容易に行い得るよ
うに構成して成る化合物半導体結晶製造用原料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is used when manufacturing a compound semiconductor crystal containing a volatile element by liquid confinement pulling method (hereinafter referred to as LKO method).
The present invention relates to a raw material for producing compound semiconductor crystals that is configured to have little impurity contamination and to facilitate filling operations.

(従来技術) 一般に化合物半導体結晶の電気的特性は、化合物半導体
を+b成する元素以外の、故意にあるいは不可避に混入
した元素(以下不純物元素)の種とその量に大きく左右
される。従って、化合物半導体結晶に再現性良く特性の
良好な素子を作成するためには、結晶作成時の不純物元
素の混入を可能な限り避ける必要があシ、当業者は結晶
製造の各工程において不純物元素の混入を避けるため細
心の注意を払っている所であるが、従来の方法では必ら
ずしも十分でない。
(Prior Art) In general, the electrical characteristics of a compound semiconductor crystal are greatly influenced by the species and amount of elements (hereinafter referred to as impurity elements) that are intentionally or unavoidably mixed in, other than the elements that form the compound semiconductor. Therefore, in order to create an element with good characteristics with good reproducibility in a compound semiconductor crystal, it is necessary to avoid the contamination of impurity elements during crystal creation as much as possible. Although great care is taken to avoid contamination, conventional methods are not always sufficient.

次に化合物半導体の代表であるガリウムヒ素について従
来の原料光てん方法およびその欠点について述べる。原
料であるガリウムおよびヒ素は各々の製造者によって精
製結晶化された後秤量され、容器に収容される。常温に
おいてほとんど酸化しないガリウムについては、一般に
不活性ガスが導入された合成樹脂製容器に収容される。
Next, we will discuss the conventional method for producing raw materials for gallium arsenide, which is a representative compound semiconductor, and its drawbacks. The raw materials, gallium and arsenic, are refined and crystallized by their respective manufacturers, then weighed and placed in containers. Gallium, which hardly oxidizes at room temperature, is generally stored in a synthetic resin container into which an inert gas is introduced.

一方常温においても著しく酸化し毒性の強い酸化ヒ素と
なるヒ素については、ガラス管に収容後、ガラス管の一
部を溶融し真空封止されるか、ねじぶた式ガラス製容器
にゴム製のバッキング月を用いて不活性ガス封止される
。結晶製造者はこれらの容器に封止された原料を購入入
手し、容器を開封後、各々所望量秤量して結晶製造用る
つほに移し、このるつほを結晶製造用炉に設置する。最
後に融液被覆剤(”gOs)をるつほに入れた後炉のふ
たを閉め、炉内を真空排気後昇温し、以後結晶製造に必
要な工程を行なう。
On the other hand, arsenic, which oxidizes significantly even at room temperature and becomes highly toxic arsenic oxide, is stored in a glass tube and then either melted part of the glass tube and vacuum-sealed, or placed in a screw-top glass container with a rubber backing. It is sealed with inert gas using the moon. Crystal manufacturers purchase and obtain raw materials sealed in these containers, and after opening the containers, weigh the desired amount of each and transfer them to a crystal manufacturing furnace, which is then installed in a crystal manufacturing furnace. . Finally, after putting the melt coating material (gOs) into the melting box, the lid of the furnace is closed, the inside of the furnace is evacuated, the temperature is raised, and the steps necessary for crystal production are carried out.

結晶製造者の行なう作業は必らずしも清浄な雰囲気では
行なわれず、原料容器の開封から炉内への封止までの間
には不純物元素(特に空気中忙粉じん等として存在する
Si 、 S 、 0 、0 、 AJ等)が混入する
という問題がある。さらに、結晶の品質が原料の充てん
比にも依存し、また有害な原料の飛散を防がなければな
らないため、秤量や取シ扱いは充分注意しなければなら
ないと同時に、酸化性原料であるため取シ扱いは迅速で
なければならない。従って、一連の作業は熟練者によっ
てなされるのが通常であるが、不純物の混入、有毒物質
の飛散を完全に防止することはできず、さらに充てん量
は正確さを欠き結晶品質のP)現性が悪化するという問
題がある。
The work carried out by crystal manufacturers is not necessarily carried out in a clean atmosphere, and impurity elements (particularly Si and S present in the air as particulates) are present between the opening of the raw material container and its sealing in the furnace. , 0, 0, AJ, etc.). Furthermore, the quality of the crystals depends on the filling ratio of the raw materials, and it is necessary to prevent harmful raw materials from scattering, so careful weighing and handling are required. Handling must be prompt. Therefore, although this series of operations is normally carried out by skilled personnel, it is not possible to completely prevent the contamination of impurities and the scattering of toxic substances, and the amount of filling is not accurate, resulting in crystalline quality. There is a problem with sexual deterioration.

以上の欠点がある従来の原料光てん方法についてその解
決が望まれているが、さらに、原料購入時の各々の容器
、再使用不可能な残った原料が有害物であるため特殊な
処理が必要であること、また省資源的観点からも何等か
の改良が望まれている。
There is a desire to resolve the above-mentioned shortcomings of the conventional raw material processing method, but in addition, each container at the time of raw material purchase and the remaining raw materials that cannot be reused are hazardous substances, so special treatment is required. However, some improvements are desired from the viewpoint of resource saving.

容易に考えられる方法としては、原料製造者によって清
浄雰囲気内で同一容器内に二種以上の原料が所望量秤量
光てんされる方法があるが、適切な容器相賀が見当らな
いこと、最終的に結晶製造用るつぼに移し換えなければ
ならず利点が少ない等の理由によシ工業的には採用され
ていない。
An easily conceivable method is for the raw material manufacturer to weigh out the desired amount of two or more raw materials in the same container in a clean atmosphere, but it is difficult to find a suitable container. It has not been used industrially because it requires transfer to a crucible for crystal production and has few advantages.

(発明の目的) 本発明は液体封止剤として用いる酸化ホウ素を主成分と
する容器内に化合物半導体を合成するに必要な所望量の
原料を封入することを特徴とし、その目的は、不純物の
混入を低減し再現性良く、かつ有害物質を派生せず、ま
た省資源的に高純度化合物半導体結晶を製造するための
新しい構成の原料を提供するにある。
(Object of the invention) The present invention is characterized in that a desired amount of raw materials necessary for synthesizing a compound semiconductor is sealed in a container mainly composed of boron oxide used as a liquid sealant, and its purpose is to It is an object of the present invention to provide a raw material with a new structure for manufacturing high-purity compound semiconductor crystals with reduced contamination, good reproducibility, no generation of harmful substances, and resource saving.

(発明の構成) 上記の目的を達成するため、本発明は化合物半導体結晶
の構成元素であるIlb 、 Ib族元素の一種または
二種以上およびvb 、wb族元素の一種または二種以
上との混合物または前記元素から成る多結晶あるいは前
記混合物と前記元素からなる多結晶が、酸化ホウ素(B
tOs)を主成分とする物質からなる所望の形状をした
容器およびふたによシ、内部が真空または不活性ガス雰
囲気中に収容されていることを特徴とする封止型化合物
半導体結晶製造用原料を発明の要旨°とするものである
(Structure of the Invention) In order to achieve the above object, the present invention provides a mixture of one or more Ilb group elements and one or more Vb group elements and one or more Wb group elements, which are constituent elements of a compound semiconductor crystal. Or, a polycrystal made of the above element or a polycrystal made of the mixture and the above element is made of boron oxide (B
A raw material for producing a sealed compound semiconductor crystal, comprising a container with a desired shape and a lid made of a substance containing tOs as a main component, and the inside of which is housed in a vacuum or inert gas atmosphere. This is the gist of the invention.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうろことは云
うまでもない。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

本発明は長年の研究によシ、化合物半導体の原料やその
融液との反応が極めて少なく、L]!liC法傾おいて
融液被覆剤として用いられている酸化ホウ素を主成分と
する物質からなる多様な形状をした容器を製造する技術
を開発したことに基づいて考案された。以下、化合物半
導体の代表であるガリウムヒ素結晶の合成の場合につい
て、本発明の封止型化合物半導体結晶製造用原料および
これを用いた時の具体的な結晶合成例について第1.2
゜3.4および5図を用いて詳述する。各図中において
、1は酸化ホウ素を主成分とする物質から成る容器、2
は同じく酸化ホウ素を主成分とする物質から成るふた、
3はガリウム、4はヒ素、5はアルミラミネート、6は
熱分解法窒化ボロン環るつは、7はカーボンサセプター
である 第1図は本発明の封止型化合物半導体結晶製造用原料の
だめの酸化ホウ素を主成分とする物質から成る容器およ
びふたの形状の一例を示す。容器1およびふた2の外径
は結晶製造用るつは、たとえばM5図に示す容器6の内
径よシ2〜3訴小さくしである。第2図は、第1図に示
した容器にガリウム3およびヒ素4を収容し、ふたをし
た状態を示す。第3図は本発明の一実施例であって、第
2図の状態妬した原料を収容した容器等を真空中で40
0°(330分間加熱し、容器1とふた2を融着したも
のである。この場合、ガリウム3は融点が。
The present invention has been developed through many years of research, and has shown that there is extremely little reaction with compound semiconductor raw materials or their melts. It was devised based on the development of a technology for manufacturing containers of various shapes made of a substance whose main component is boron oxide, which is used as a melt coating agent in the LiC method. Hereinafter, in the case of synthesis of gallium arsenide crystal, which is a representative compound semiconductor, the raw material for manufacturing the sealed compound semiconductor crystal of the present invention and a specific crystal synthesis example using the same will be described in Section 1.2.
It will be explained in detail using Figures 3.4 and 5. In each figure, 1 is a container made of a substance whose main component is boron oxide, 2
is also a lid made of a substance whose main component is boron oxide,
3 is gallium, 4 is arsenic, 5 is aluminum laminate, 6 is a pyrolytic boron nitride ring, and 7 is a carbon susceptor. Figure 1 shows the oxidation of the raw material reservoir for manufacturing the sealed compound semiconductor crystal of the present invention. An example of the shape of a container and a lid made of a substance containing boron as a main component is shown. The outer diameters of the container 1 and the lid 2 for crystal production are, for example, 2 to 3 times smaller than the inner diameter of the container 6 shown in Figure M5. FIG. 2 shows a state in which gallium 3 and arsenic 4 are contained in the container shown in FIG. 1 and the container is covered. FIG. 3 shows an embodiment of the present invention, in which a container containing raw materials similar to the state shown in FIG. 2 is placed in a vacuum for 40 minutes.
0° (heated for 330 minutes to fuse container 1 and lid 2. In this case, gallium 3 has a melting point of .

29°Cであるため一旦融解してヒ素混合状態のガリウ
ム3となる。この実施例の場合ガリウムおよびヒ素は真
空中に密閉されているので、本原料の取シ扱いに際して
不純物の混入は全くないことはいうまでもない。ただし
、酸化ホウ素は吸湿性物質であるため、長期保管や他所
への移動に際しては真空または不活性ガス中に保管−で
きる容器内に収容する必要がある。
Since the temperature is 29°C, it will once melt and become gallium-3 in an arsenic-mixed state. In this example, since gallium and arsenic are sealed in a vacuum, it goes without saying that no impurities are mixed in when handling this raw material. However, since boron oxide is a hygroscopic substance, when storing it for a long time or moving it to another location, it must be stored in a container that can be stored in a vacuum or an inert gas atmosphere.

次に第4図および5図を用いて本発明の原料を用いた具
体的なガリウムヒ素の合成例について述べる。第4図は
本発明の他の実施例であって、清浄雰囲気内で第2図に
示す状態にした原料を収容した容器等を一旦不活性ガス
置換した後、アルミラミネート5を使用して通常の方法
によシ真窒封止、したものである。この状態で約1ケ月
間保管した後、アルミラミネート5による封止を開封し
、あらかじめ準備した結晶製造用炉内の結晶製造用るつ
は6内に第5図に示すように設置した。その後炉のふた
を閉めた後、炉内を真空に保ちながら約400DCに1
時間保持した後、約80気圧のアルゴンガスを炉内に導
入し、炉内を80気圧に保ったまま約1300 ’Oま
で約1o分で昇温した。この列理中、カーボンサセプタ
7の温度が約820 ’0になると同時に、ガリウムヒ
素の合成が開始したが、それ以前に容器lおよびふた2
は軟化溶融し従来の合成法における液体封止剤の効果、
すなわち液体状態となって原料上面を覆いヒ素の蒸発を
防ぐ効果が見られた。さらに20分後、合成されたガリ
ウムヒ素は完全に融液となシ、その後炉内圧力を4気圧
に下げ、通常の方法によシ単結晶を作成した。得られた
結晶は、従来の原料光てん法で作成した結晶と比較して
0 、0 、 Si 、 8 、 AJ!等の不純物の
少ない良好な結晶であった。
Next, a specific example of synthesis of gallium arsenide using the raw materials of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 shows another embodiment of the present invention, in which a container containing the raw materials in the state shown in FIG. 2 in a clean atmosphere is once replaced with an inert gas, and then an aluminum laminate 5 is used to prepare It was sealed with true nitrogen using the method described above. After being stored in this state for about one month, the seal with the aluminum laminate 5 was opened, and the crystal manufacturing crucible 6 in the crystal manufacturing furnace prepared in advance was installed as shown in FIG. After that, after closing the lid of the furnace, keep the inside of the furnace in vacuum and turn the temperature around 400 DC.
After holding for a time, argon gas of about 80 atm was introduced into the furnace, and the temperature was raised to about 1300'O in about 10 minutes while maintaining the inside of the furnace at 80 atm. During this treatment, the synthesis of gallium arsenide started at the same time as the temperature of the carbon susceptor 7 reached approximately 820'0, but before that, the container 1 and the lid 2
is the effect of softening and melting liquid sealants in conventional synthesis methods,
In other words, it turned into a liquid state and covered the upper surface of the raw material, which was effective in preventing the evaporation of arsenic. After another 20 minutes, the synthesized gallium arsenide completely turned into a melt, and then the pressure inside the furnace was lowered to 4 atmospheres, and a single crystal of gallium arsenide was produced by the usual method. The obtained crystal has 0,0,Si,8,AJ! It was a good crystal with few impurities such as.

(発明の効果) 以上説明したように本発明による原料を用いることによ
って結晶製造者の行なう作業は大117に簡略化され、
かつ原料であるガリウム、ヒ素は終始真空あるいは不活
性ガス中に密閉されるかふた付容器に収容されているた
め、不純物の混入が防止されるという利点がある。また
従来法に見られた原料取扱い中に派生する有毒物質はな
く従ってその飛散も皆無であるので作業は安全であシ、
さらに、不要な容器が要らずまた原料の秤量損もないの
で省資源的であるという利点がある。同時に本発明に係
る原料の調整作業は専門の原料供給者によって行なわれ
るのが一般であシ、この場合原料の秤量は清浄雰囲気内
で慎重に行なうことが可能となるので結晶品質の再現性
が良くなるという利点もある。
(Effects of the Invention) As explained above, by using the raw material according to the present invention, the work performed by the crystal manufacturer can be simplified to 117 times,
In addition, since the raw materials gallium and arsenic are sealed in a vacuum or inert gas from beginning to end, or stored in a container with a lid, there is an advantage that contamination with impurities is prevented. In addition, there are no toxic substances derived during the handling of raw materials, which is the case with conventional methods, and there is no scattering, so the work is safe.
Furthermore, there is an advantage that resources are saved because no unnecessary containers are required and there is no loss of weighing of raw materials. At the same time, the preparation of the raw material according to the present invention is generally carried out by a specialized raw material supplier, and in this case, the raw material can be weighed carefully in a clean atmosphere, which improves the reproducibility of crystal quality. There is also the benefit of getting better.

以上化合物半導体の代表であるガリウムヒ素の場合につ
いて詳述したが、原料の充てん方法について同様の欠点
を有する他の化合物半導体すなわち化合物半導体結晶の
構成元素であるnb 、 wb族元素の一種または二種
以上およびvb 、wb族元素の一種または二種以上と
の混合物もしくは前記元素から成る多結晶あるいは前記
混合物と、前記元素からなる多結晶についても本発明が
有効であることは言うまでもない。
The case of gallium arsenide, which is a representative compound semiconductor, has been described in detail above, but other compound semiconductors that have the same drawbacks regarding the filling method of raw materials, that is, one or two of the nb and wb group elements that are constituent elements of compound semiconductor crystals. It goes without saying that the present invention is also effective for polycrystals made of the above elements, mixtures with one or more of the Vb and Wb group elements, or polycrystals made of the above mixtures and the above elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一部を成す容器およびふたの一実施例
の断面図、第2図は実施例を説明するための原料を充て
んされた容器の断面図、第3図および4図は本発明の実
施例の断面図、第5図は本発明の原料を用いてガリウム
ヒ素を合成する時の結晶製造炉内一部の断面図である。 1・・・容器、2・・・ふた、3・・・ガリウム、4・
・・ヒ素、5・・・アルミラミネート、6・・・るつぼ
、7・・・カーポンサセプター 特許出願人 第1図
FIG. 1 is a cross-sectional view of an embodiment of a container and a lid forming a part of the present invention, FIG. 2 is a cross-sectional view of a container filled with raw materials for explaining the embodiment, and FIGS. 3 and 4 are FIG. 5 is a cross-sectional view of a part of the inside of a crystal manufacturing furnace when gallium arsenide is synthesized using the raw materials of the present invention. 1... Container, 2... Lid, 3... Gallium, 4...
... Arsenic, 5... Aluminum laminate, 6... Crucible, 7... Carpon susceptor patent applicant Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体結晶の構成元素であるmb 、 m
b麹元素の一種または二種以上およびvb 、wb族元
素の一種または二種以上との混合物または前記元素から
成る多結晶あるいは前記混合物と前記元素からなる多結
晶が、酸化ホウ素(B203)を主成分とする物質から
なる所望の形状をした容器およびふたによシ、内部が真
空または不活性ガス雰囲気中に収容されていることを特
徴とする封止型化合物半導体結晶製造用原料。
(1) mb, m which are constituent elements of compound semiconductor crystal
A polycrystal consisting of one or more of the b-koji elements and one or more of the vb and wb group elements, or a polycrystal consisting of the above-mentioned element, or a polycrystal consisting of the mixture and the above-mentioned element, contains boron oxide (B203) as the main ingredient. 1. A raw material for producing a sealed compound semiconductor crystal, comprising a container and a lid of a desired shape made of a substance as a component, and the inside of which is housed in a vacuum or an inert gas atmosphere.
(2)化合物半導体結晶の構成元素であるmb 、 m
b族元素の一種または二種以上およびvb 、wb族元
索の一種または二種以上との混合物または/および前記
の元素からなる多結晶を真空または不活性ガス雰囲気中
に収容された容器およびふたが、さらに真空または不活
性ガス中に他のシール月により密閉封止されていること
を特徴とする特許請求の範囲第1項記載の封止型化合物
半導体結晶製造用原料。
(2) mb, m which are constituent elements of compound semiconductor crystal
A container and a lid containing a mixture of one or more B group elements and one or more VB and WB group elements and/or polycrystals made of the above elements in a vacuum or an inert gas atmosphere. The raw material for manufacturing a sealed compound semiconductor crystal according to claim 1, wherein the raw material is further hermetically sealed in a vacuum or inert gas with another seal.
JP9253983A 1983-05-27 1983-05-27 Raw material for producing sealed compound semiconductor crystal Pending JPS59223296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9253983A JPS59223296A (en) 1983-05-27 1983-05-27 Raw material for producing sealed compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9253983A JPS59223296A (en) 1983-05-27 1983-05-27 Raw material for producing sealed compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS59223296A true JPS59223296A (en) 1984-12-15

Family

ID=14057173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9253983A Pending JPS59223296A (en) 1983-05-27 1983-05-27 Raw material for producing sealed compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS59223296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027694A (en) * 1983-07-22 1985-02-12 Agency Of Ind Science & Technol Preparation of single crystal of semiconductor of compound by pulling method of liquid sealing
JPS60161389A (en) * 1984-01-27 1985-08-23 Toshiba Corp Manufacture of compound single crystal
JPH02107599A (en) * 1988-10-18 1990-04-19 Furukawa Electric Co Ltd:The Production of gallium arsenide semiconductor single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027694A (en) * 1983-07-22 1985-02-12 Agency Of Ind Science & Technol Preparation of single crystal of semiconductor of compound by pulling method of liquid sealing
JPS6251239B2 (en) * 1983-07-22 1987-10-29 Kogyo Gijutsuin
JPS60161389A (en) * 1984-01-27 1985-08-23 Toshiba Corp Manufacture of compound single crystal
JPH02107599A (en) * 1988-10-18 1990-04-19 Furukawa Electric Co Ltd:The Production of gallium arsenide semiconductor single crystal

Similar Documents

Publication Publication Date Title
US5167759A (en) Production process of single crystals
JPS59223296A (en) Raw material for producing sealed compound semiconductor crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JPS6036397A (en) Apparatus for growing compound single crystal
JPH0364477B2 (en)
JPS6395194A (en) Production of compound single crystal
JP2611336B2 (en) High dissociation pressure compound semiconductor processing equipment
JPH03252395A (en) Production of single crystal having high dissociation pressure
JPS6090895A (en) Growing method of compound semiconductor single crystal having volatility
JPH01242489A (en) Single crystal growth apparatus
JPH0416591A (en) Single crystal pulling up device for compound semiconductor
JP2664085B2 (en) Compound semiconductor single crystal manufacturing equipment
JP2830315B2 (en) High dissociation pressure single crystal manufacturing equipment
JPS63274691A (en) Method and device for growing single crystal
JPS6086095A (en) Treatment of gallium raw material to be used for preparation of gallium crystal
JPH052614Y2 (en)
JPS62176990A (en) Device for producing compound semiconductor single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPS623408Y2 (en)
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPH01286992A (en) Apparatus for growing single crystal
JPH04198082A (en) Apparatus for producing single crystal
JPS63307193A (en) Production of single crystal of compound of high dissociation pressure
JPS6361772B2 (en)
JPS5973500A (en) Preparation of compound semiconductor