JPS59223276A - Manufacture of sintered film - Google Patents

Manufacture of sintered film

Info

Publication number
JPS59223276A
JPS59223276A JP58094192A JP9419283A JPS59223276A JP S59223276 A JPS59223276 A JP S59223276A JP 58094192 A JP58094192 A JP 58094192A JP 9419283 A JP9419283 A JP 9419283A JP S59223276 A JPS59223276 A JP S59223276A
Authority
JP
Japan
Prior art keywords
film
cds
firing
resistance
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58094192A
Other languages
Japanese (ja)
Other versions
JPH0464192B2 (en
Inventor
宇田 宏
仁 松本
清 栗林
小松 康允
明彦 中野
池上 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58094192A priority Critical patent/JPS59223276A/en
Publication of JPS59223276A publication Critical patent/JPS59223276A/en
Publication of JPH0464192B2 publication Critical patent/JPH0464192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽電池に使用する焼結膜の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a sintered film for use in solar cells.

従来例の構成とその問題点 焼結膜の製造方法の1つとして半導体粉末を用いて印刷
ペーストを作製し、このペーストをスクリーン晶刷法で
基板上に塗布後、乾燥、焼成を行なうことにより製造す
る方法がある。この製造方法では半導体粉末を焼成中に
結晶成長させるために印刷ペーストの中に融剤を添加し
ている。この様な融剤を用いた半導体膜の焼成は、これ
まで主に高抵抗な光導電素子の製造方法として用いられ
てきた。その場合の焼成方法としては、半導体膜を塗布
した基板をそのままの状態で焼成炉に入れるか、密閉し
た容器中に入れて焼成炉に入れていた。
Conventional structure and problems One method for producing sintered films is to create a printing paste using semiconductor powder, apply this paste onto a substrate using a screen printing method, and then dry and bake it. There is a way to do it. In this manufacturing method, a flux is added to the printing paste in order to cause crystal growth of the semiconductor powder during firing. Sintering of a semiconductor film using such a flux has hitherto been mainly used as a method for manufacturing high-resistance photoconductive elements. In this case, the firing method is to put the substrate coated with the semiconductor film into a firing furnace as it is, or to put it in a sealed container and put it into the firing furnace.

ところが特公昭52−26305号公報で、同一基板上
に多数個の高抵抗な光導電素子を製造する一場今にそれ
らの光導電素子の特性を揃えるために有孔蓋付きの焼成
容器が使用することが開示されている。
However, Japanese Patent Publication No. 52-26305 describes the use of a firing container with a perforated lid in order to make the characteristics of the photoconductive elements uniform when producing a large number of high-resistance photoconductive elements on the same substrate. This is disclosed.

一方、太陽電池用の半導体膜としては低抵抗であること
が必要である。ところがスクリーン印刷法による基板へ
の半導体層の塗布とその後の焼成による半導体焼結膜の
製造方法では、これまで太陽電池用の低抵抗な膜の製造
は、前述の基板をそのままの状態で焼成炉に入れるか、
密閉した容器中に入れて焼成していた。しかし、いずれ
の場合も低抵抗な半導体膜を得ることが困難であり、融
剤を用いた焼成膜により製造された太陽1電池は十分な
出力特性を示さず、これまで実用化されていない。
On the other hand, a semiconductor film for solar cells needs to have low resistance. However, with the method of manufacturing a sintered semiconductor film by applying a semiconductor layer to a substrate using screen printing and subsequent firing, it has been difficult to manufacture a low-resistance film for solar cells by leaving the substrate as is in a firing furnace. Should I put it in?
It was baked in a sealed container. However, in either case, it is difficult to obtain a low-resistance semiconductor film, and solar cells manufactured by firing films using a flux do not exhibit sufficient output characteristics and have not been put to practical use so far.

以下、従来例の欠点を詳細々説明する。太陽電池用半導
体材料として…−■族化合物半導体は有望であり、その
薄膜太陽電池の開発が活発に行なわれている。その場合
、CdS、CdSeなどの焼結膜を得るために、融剤と
してCdCl2が用いられる。しかし、太陽電池用の半
導体膜としては低抵抗であることが必要であシ、またへ
テロ接合太陽電池の窓材料として使用される場合には、
光の透過率が高いことが大切であるが、このような要求
を満す焼結膜を得ることはCdCl2などの融剤を用い
た製造方法ではこれまで困難であった。その理由をCd
S膜の作製を例にとって説明する。
Hereinafter, the drawbacks of the conventional example will be explained in detail. Group II compound semiconductors are promising as semiconductor materials for solar cells, and thin film solar cells are being actively developed. In that case, CdCl2 is used as a flux to obtain a sintered film of CdS, CdSe, etc. However, a semiconductor film for solar cells must have low resistance, and when used as a window material for a heterojunction solar cell,
Although it is important to have high light transmittance, it has been difficult to obtain a sintered film that satisfies such requirements using a manufacturing method using a flux such as CdCl2. Cd the reason
This will be explained by taking the production of an S film as an example.

CclS焼結膜を得るためには融剤としてCdCl2が
用いられるが、この融剤の働きが焼結膜に与える影響は
非常に大きい。例えば、CdS膜を塗布した基板を密閉
容器中に入れベルト式の焼成炉中で焼成を行なうと、ま
ず共晶点以上(522G)の温度でCdCl2融液の中
にCdSが溶は込み、その後の温度上昇でCdCl2が
蒸発しだす。
CdCl2 is used as a flux to obtain a CclS sintered film, and the effect of this flux on the sintered film is very large. For example, when a substrate coated with a CdS film is placed in a closed container and fired in a belt-type firing furnace, CdS first melts into the CdCl2 melt at a temperature above the eutectic point (522G), and then As the temperature increases, CdCl2 begins to evaporate.

その結果、過飽和融液中でのCdSの結晶成長が行なわ
れ、CdS焼結膜が得られる。ところが、密閉容器中で
はこのCdCl2の容器外への蒸発が行なわれないため
、十分に結晶成長し透過率の高い膜となるが、焼成中に
CbCI2のCI−が多量に膜中に残存しCdS膜の抵
抗が高くなってしまい、太陽電池用の焼成膜としては使
用できない。
As a result, CdS crystals grow in the supersaturated melt, and a CdS sintered film is obtained. However, in a closed container, this CdCl2 does not evaporate outside the container, so crystals grow sufficiently and a film with high transmittance is obtained. However, during firing, a large amount of CI- of CbCI2 remains in the film, and The resistance of the film becomes high and it cannot be used as a fired film for solar cells.

また、基板をそのままベルト炉中に入れて焼成すると、
焼を膜中にCdCl2融剤が瞬時に蒸発してしまうため
、CdSの結晶成長が十分に行なわれず、粒径の小さい
CdS膜が得られる。ところがこの様な膜では膜中に残
存するCI−は少ないという結果となるが、結晶粒の成
長が不十分であるため透過率の低い高抵抗なCdS膜が
得られることになシ、やけシ太陽電池用の焼結膜として
は使用できない。
Also, if the substrate is placed in a belt furnace and fired,
Since the CdCl2 flux instantaneously evaporates in the film during sintering, CdS crystal growth does not occur sufficiently, resulting in a CdS film with small grain size. However, although this type of film results in less CI- remaining in the film, the growth of crystal grains is insufficient, resulting in a high resistance CdS film with low transmittance. It cannot be used as a sintered film for solar cells.

そこで焼成容器の蓋の部分に穴を開け、その穴を通して
CdCl2融剤蒸気の蒸発のコントロールを行なえば結
晶成長も十分に行なわれ、膜中に残存するCI−量の少
ない低抵抗な焼結膜が得られる可能性があるため、焼成
容器の蓋の穴の径とその個数を変えて、焼成中のCdC
l2融剤蒸発速度の制御を行なう方法を検討した。その
結果、焼成容器に入れる基板面積と焼成容器の蓋の穴の
面積とを調整することにより、低抵抗な焼結膜が、再現
性よく容易に得られることがわかった。
Therefore, if a hole is made in the lid of the firing container and the evaporation of the CdCl2 flux is controlled through the hole, sufficient crystal growth will occur, resulting in a low-resistance sintered film with a small amount of CI remaining in the film. Therefore, by changing the diameter and number of holes in the lid of the firing container, CdC can be obtained during firing.
A method for controlling the l2 flux evaporation rate was investigated. As a result, it was found that a low-resistance sintered film could be easily obtained with good reproducibility by adjusting the area of the substrate placed in the firing container and the area of the hole in the lid of the firing container.

発明の目的 本発明は、融剤を用いて製造した半導体薄膜よりなる太
陽電池の製造において、低抵抗な半導体薄膜の製造方法
を提供することを目的とするものである。即ち、上述の
特公昭!2−26306号公報で、同一基板上の複数個
の高抵抗光導電素子の光導電特性を揃えるために使用さ
れた有孔蓋つきのボートに基板を入れて焼成する製造方
法を改良することにより低抵抗な半導体薄膜を得ること
を目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor thin film with low resistance in manufacturing a solar cell made of a semiconductor thin film manufactured using a flux. In other words, the above-mentioned Tokko Akira! In Japanese Patent No. 2-26306, a manufacturing method in which a substrate is placed in a boat with a perforated lid and fired, which was used to equalize the photoconductive properties of multiple high-resistance photoconductive elements on the same substrate, has been improved. The aim is to obtain a resistive semiconductor thin film.

個の開孔を有する焼成容器内で被焼結膜を焼@FIIi
rる焼結膜の製造において、前記複数個の開孔の面積の
総和を焼成される被焼結膜面積のo、4%から2.0係
にするものである。
The film to be sintered is fired in a firing container with several openings.
In the production of the sintered film, the total area of the plurality of openings is made to be 4% to 2.0% of the area of the film to be sintered.

実施例の説明 以下、本発明の実姉例を図面にもとづいて説明する。第
1図、第2図は本発明を実施するために用いられた焼成
容器のボート部分と蓋の部分図であシ第3図は本発明の
実施例の方法により製造された太陽電池の構造図である
DESCRIPTION OF EMBODIMENTS Hereinafter, actual examples of the present invention will be explained based on the drawings. Figures 1 and 2 are partial views of the boat and lid of the firing container used to carry out the present invention, and Figure 3 is the structure of a solar cell manufactured by the method of the embodiment of the present invention. It is a diagram.

10cmX 10cmのガラス基板上にスクリーン印刷
機を用いてこのペーストを全面印刷した後、100Cの
乾燥機で1時間乾燥する。乾燥後、基板をアルミナ製の
焼成ボート1の中に入れ、その上にアルミナ製の有孔蓋
2を置く。焼成ボートの深さは3姻で、ボートの大きさ
は内径10.2cmX10.2cmである。この焼成ウ
ートを690Cの温度に保たれたベルト式焼成炉に入れ
約60〜90分間焼成する。焼成の穴3の効果を調べる
ため、穴の径と数を変えたアルミナ製の蓋を作製し、前
述のCdS基板の焼成を行なった。これら約30μ厚の
CdS焼結膜を用い、太陽電池としての特性を評価した
。太陽電池は第3図の構造で次の様にして作製した。C
d粉末とTe粉末1007にCdCl2粉末0.67を
添加し、適量のプロピレングリコールと混合することに
よりCdTe印刷ペーストを作製する。この印刷ペース
トをガラス基板4上のCdS焼結膜6上にスクリーン印
刷法にて塗布し乾燥する。この基板を前述のアルミナ製
の焼成容器中に入れベルト式焼成炉の620Cの温度で
約1時間焼成する。この時使用するアルミナ製の焼成容
器はすべて同一であり、蓋の穴の面積は、1rrrmの
穴を181個開けたもので穴の総和面積は約1.42a
lである。
This paste was printed on the entire surface of a 10 cm x 10 cm glass substrate using a screen printer, and then dried in a dryer at 100 C for 1 hour. After drying, the substrate is placed in a firing boat 1 made of alumina, and a perforated lid 2 made of alumina is placed on top of it. The depth of the firing boat is 3 mm, and the size of the boat is 10.2 cm x 10.2 cm in inner diameter. This fired ut is placed in a belt-type firing furnace maintained at a temperature of 690C and fired for about 60 to 90 minutes. In order to examine the effect of the firing holes 3, alumina lids with different diameters and numbers of holes were fabricated, and the CdS substrates described above were fired. Using these approximately 30 μm thick CdS sintered films, their properties as solar cells were evaluated. A solar cell having the structure shown in FIG. 3 was manufactured in the following manner. C
A CdTe printing paste is made by adding 0.67 of CdCl2 powder to d powder and Te powder 1007 and mixing with an appropriate amount of propylene glycol. This printing paste is applied onto the CdS sintered film 6 on the glass substrate 4 by screen printing and dried. This substrate is placed in the above-mentioned alumina firing container and fired for about 1 hour at a temperature of 620C in a belt type firing furnace. The alumina firing containers used at this time are all the same, and the area of the holes in the lid is 181 holes of 1rrrm, and the total area of the holes is approximately 1.42a.
It is l.

この様にして得られたCdTe膜6上にカーボンペース
トを用いてカーボン層を印刷し、400Cで約30分間
ベルト式焼成炉で焼成することによりカーボン電極7を
形成する。このカーボン電極上にAq電極8とCdS膜
上にAg−Ir電極9をそれぞれスクリーン印刷とその
後の熱処理で形成し、Aq電極とAg’−Ir電極より
リード線10を取り出しCd S/Cd T e太陽電
池を作製した。
A carbon layer is printed using carbon paste on the CdTe film 6 thus obtained, and the carbon electrode 7 is formed by firing it in a belt-type firing furnace at 400 C for about 30 minutes. An Aq electrode 8 was formed on the carbon electrode, and an Ag-Ir electrode 9 was formed on the CdS film by screen printing and subsequent heat treatment, and lead wires 10 were taken out from the Aq electrode and the Ag'-Ir electrode to form Cd S/Cd Te. A solar cell was created.

この太陽電池にA M 1 * 6100”W/cmの
ソーラシミュレターからの光を照射しエネルギー変換効
率(真性変換効率)を測定した。第1表に、CdS焼結
膜の焼成時の焼成容器の蓋の穴の総和面積を変えた場合
の各CdS膜の緒特性とこれらのCdS/Cd T e
太陽電池の特性を示した。
The energy conversion efficiency (intrinsic conversion efficiency) was measured by irradiating this solar cell with light from a solar simulator of A M 1 * 6100”W/cm. Characteristics of each CdS film and these CdS/Cd T e when the total area of holes in the lid is changed
The characteristics of solar cells were shown.

第1表 第1表よシ明らかなように蓋大の総和面積の小さい場合
はCdS膜の面抵抗が高く膜中に残存するCI−量も多
い。ところが穴の総和面積の増加につれ面抵抗も減少し
、穴の総和面積が0.4〜2 mOa&の範囲でほぼ一
定の70〜180Ω/口の面抵抗を示す様になシ、低抵
抗のCclS膜が得られている。ところが、更に穴総和
面積を増加させるとCdS膜の面抵抗が徐々に増加する
とともに結晶粒径も減少しだす。この結晶粒径の減少は
膜抵抗の増大とともに光の透過率の減少をも引き起こす
Table 1 As is clear from Table 1, when the total area of the lid size is small, the sheet resistance of the CdS film is high and the amount of CI remaining in the film is also large. However, as the total area of the holes increases, the sheet resistance decreases, and when the total area of the holes is in the range of 0.4 to 2 mOa, the sheet resistance of 70 to 180 Ω/hole is almost constant. A membrane has been obtained. However, when the total hole area is further increased, the sheet resistance of the CdS film gradually increases and the crystal grain size also begins to decrease. This decrease in crystal grain size causes an increase in film resistance and a decrease in light transmittance.

以上の様なCdS膜の特徴が太陽電池の変換効率に与え
る影響はどうかとみると穴の総和面積0.3cd以下の
場合は変換効率が悪い。この原因はCdS膜の面抵抗の
高さとともに第4図の分光感度特性の曲線11のような
短波長側での感度の低下による原因が大きい。これはC
,dSlq中に残存するCI−量によるもので、この残
存量が多ければ多い太陽電池を作製した場合、CdS膜
とCdTe膜との界面にCI−の働きで厚いCd S 
x T e 1−x層が形成され、この層による光吸収
のため短波長側の感度が低下することがわかった。した
がってCdS膜中の残存C1−量は少ないことが望まし
い。穴の総和面積が0.4cm以上の場合のCdS膜を
用いて太陽電池を作製した場合の分光感度特性は、曲線
12のごとく短波長側の感度はCdS膜の基礎吸収端(
0,52μm)で決まシ残存cl−g眉による特性への
影響はみられない4穴の総和面1を罰’0 * 4 e
taから2 、 Ootiの範囲の太陽電池はCd51
lQ\、゛の面抵抗も低く、結晶粒径も26〜36μm
と大きく光の透過率も高いため真性変換効率は7.0〜
8.5%と高く安定である。ところが穴の総和面積3.
1cI!以上の場合、残存CI−量は穴の総和面積0.
4〜2 、 Oclの場合と同様低く、短波長側感度の
低下はないが、CdS膜の面抵抗が大きくなりはじめる
ととき結晶粒径の減少による光の透過率のの低下のため
真性変換効率は大面積の増加により低下しだし7.0%
以上のものは得られなかった。
Looking at the effects of the above characteristics of the CdS film on the conversion efficiency of a solar cell, the conversion efficiency is poor when the total area of the holes is 0.3 cd or less. This is largely due to the high sheet resistance of the CdS film and the decrease in sensitivity on the short wavelength side as shown by curve 11 of the spectral sensitivity characteristic in FIG. This is C
This is due to the amount of CI remaining in ,dSlq, and if a large number of solar cells are produced, a thick CdS layer will be formed at the interface between the CdS film and the CdTe film due to the action of CI-.
It was found that a x T e 1-x layer was formed and the sensitivity on the short wavelength side decreased due to light absorption by this layer. Therefore, it is desirable that the amount of C1- remaining in the CdS film is small. When a solar cell is fabricated using a CdS film with a total hole area of 0.4 cm or more, the spectral sensitivity characteristics are as shown in curve 12, where the sensitivity on the short wavelength side is at the fundamental absorption edge of the CdS film (
0.52 μm), and no influence on the characteristics by the residual cl-g was observed.
Solar cells ranging from ta to 2, Ooti are Cd51
The sheet resistance of lQ\,゛ is low, and the crystal grain size is 26 to 36 μm.
Because of its large size and high light transmittance, the intrinsic conversion efficiency is 7.0~
It is high and stable at 8.5%. However, the total area of the holes is 3.
1cI! In the above case, the remaining CI amount is the total area of the holes 0.
4-2. It is low as in the case of OCl, and there is no decrease in sensitivity on the short wavelength side, but when the sheet resistance of the CdS film starts to increase, the intrinsic conversion efficiency decreases due to the decrease in light transmittance due to the decrease in crystal grain size. has started to decline due to the increase in large area and is 7.0%
I couldn't get more than that.

以上の様にCdS膜焼成時のアルミナ製焼成容器の蓋の
穴の総和面積の変化により、CdS膜およびそれを用い
て作製したCdS/CdTe太陽電池の特性に明らかに
変化のあることがわかった。即ち、穴の総和面積が小さ
い場合は、CdS膜に残存するC1−量が光起電力特性
に悪い影響を与え穴の総和面積の大きい場合は、CdS
膜の結晶粒径が十分成長せず、膜の高抵抗化と光の透過
率の低下を生じ変換効率の高い太陽電池が得られなかっ
た。太陽電池用のCdS膜として十分に低抵抗で光の透
過率高い特性を示す膜は、焼成容器の差入の面積総和が
0.4〜Q m Ocr1m&得らパIJと高く実用上
問題はない。
As described above, it was found that changes in the total area of the holes in the lid of the alumina firing container during CdS film firing clearly change the characteristics of the CdS film and the CdS/CdTe solar cell fabricated using it. . In other words, when the total area of the holes is small, the amount of C1- remaining in the CdS film has a negative effect on the photovoltaic properties, and when the total area of the holes is large, the CdS film
The crystal grain size of the film did not grow sufficiently, resulting in high film resistance and low light transmittance, making it impossible to obtain a solar cell with high conversion efficiency. A film that exhibits characteristics of sufficiently low resistance and high light transmittance as a CdS film for solar cells has a total area of 0.4 to Q m Ocr 1 m & obtained Pa IJ, which poses no practical problem. .

また、CdS印刷ペーストの作製時、CdCl2粉末α
勉逼をCdS粉末100yに対して26〜12yと変え
て同様の実験を行なったが第1表の傾向とほとんど同じ
であシ蓋大の総和面積が0.4〜2、Oolの場合に、
CdS膜の抵抗が低く太陽電池の変換効率も大きかった
。まだ、アルミナ製蓋穴の穴は同じ大きさの穴を左右、
上下対称で均一に配置した場合はどCdS膜の膜抵抗の
均一なものが得られ、その抵抗値のバラツキは1Q×1
o\ct4基板で±1o%以内であっ之。このCdS膜
吉接合を形成するCdTe膜の焼成時においても同様の
傾向があり、焼成用のアルミナ製蓋穴の総和面積が上記
の範囲の場合に最もよい接合特性を示し太陽電池の変換
効率も7.0〜8.6%と高かった。
In addition, when producing CdS printing paste, CdCl2 powder α
A similar experiment was carried out by changing the concentration from 26 to 12 y to 100 y of CdS powder, but the trend was almost the same as in Table 1. When the total area of the lid is 0.4 to 2,000 y,
The resistance of the CdS film was low and the conversion efficiency of the solar cell was high. Still, the holes of the alumina lid hole are the same size on the left and right,
If the CdS film is arranged uniformly and vertically symmetrically, the film resistance of the CdS film will be uniform, and the variation in resistance value will be 1Q×1.
It was within ±10% for o\ct4 substrate. A similar tendency occurs during firing of the CdTe film that forms this CdS film junction, and when the total area of the alumina lid holes for firing is within the above range, the best junction characteristics are obtained, and the conversion efficiency of the solar cell is also improved. It was high at 7.0-8.6%.

さらに、太陽電池用の窓材料として用いられるZ n 
x Cd 1−xS膜(x=o、1)の場合でも、融剤
としてCdCl2を用いた場合には同様の結果が得られ
た。差入の総和面積が0.4〜2 a 0cnfの場合
にZnxCd、−xS焼結膜の抵抗が最も低く300〜
600Ω/口となった。
Furthermore, Zn, which is used as a window material for solar cells,
Similar results were obtained for the xCd1-xS film (x=o, 1) when CdCl2 was used as the fluxing agent. When the total area of insertion is 0.4~2a0cnf, the resistance of ZnxCd, -xS sintered film is lowest at 300~
The resistance was 600Ω/mouth.

この様なアルミナ製の焼成容器は、材質としては、石英
ガラス、磁器のような耐薬品、耐熱性のあるものであれ
ばどのようなものでも利用できるし、蓋にあける穴も、
穴でなくてもCdCl2が通過てきるような部分があれ
ば、同様の効果が得られる。
Such alumina firing containers can be made of any material that is chemically and heat resistant, such as quartz glass or porcelain, and the holes in the lid can be made of any material.
A similar effect can be obtained even if there is a part other than a hole through which CdCl2 can pass.

発明の効果 本発明の方法によれば、融剤を用いた焼結膜の製造時に
有孔蓋付の焼成容器を用い、その蓋の大面積を調整する
だけで低抵抗の焼結膜が安定に得られる。すなわちこれ
まで太陽電池用の低抵抗な焼成膜を得ることは困難であ
ったが、本発明の方法によれば焼成時に蓋大の総和面積
が焼結膜面積の0.4〜2.0%ある焼成容器さえ用い
れば容易に低抵抗な膜が得られ、その工業上の利点は大
きい。
Effects of the Invention According to the method of the present invention, a sintered film with low resistance can be stably obtained by simply adjusting the large area of the lid by using a firing container with a perforated lid when producing a sintered film using a flux. It will be done. That is, until now it has been difficult to obtain a low-resistance fired film for solar cells, but according to the method of the present invention, the total area of the lid size during firing is 0.4 to 2.0% of the sintered film area. A low-resistance film can be easily obtained by using only a firing container, and its industrial advantages are great.

また安価で、実用的な太陽電池を容易に大量生産するこ
とができる製造方法であるスクリーン印刷ベルト炉焼成
法の特徴を失うことなく、変換効率の高い太陽電池を再
現性よく製造することができる利点もある。
In addition, solar cells with high conversion efficiency can be manufactured with good reproducibility without losing the characteristics of the screen printing belt furnace firing method, which is a manufacturing method that allows easy mass production of inexpensive and practical solar cells. There are also advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図色〉は本発明の焼結膜の製造方法に使用する焼成
容器のボート部分の平面図、第1図(b)は同断面図、
第2図(a)、(b)はそれぞれ焼成容器の蓋の平面図
と断面図、第3図は本発明の製造方法によシ製造された
太陽電池の構造を示す断面図、第4図は本発明の製造方
法によシ製造された太陽電池の効果を説明するための分
光感度特性の比較図である。 1・・・・・・焼成容器のボート、2・・・・・・焼成
容器の蓋3・・・・・・蓋の穴、4・・・・・・ガラス
基板、5・・・・・・CdS膜、6・・・・・・CdT
e膜、7・・・・・・カーボン膜、8・・・・・。 Aq主電極9・・・・・・Ag−In電極、1o・・・
・・リード線。 特許出願人    工業技術院長  川 1)裕 部第
1図 (ルン 第3図 第4図 ヲ支 五  (ヌυルノ
Figure 1 (color) is a plan view of the boat portion of the firing container used in the method for producing a sintered film of the present invention, Figure 1 (b) is a cross-sectional view of the same,
FIGS. 2(a) and (b) are a plan view and a sectional view of the lid of the firing container, respectively, FIG. 3 is a sectional view showing the structure of a solar cell manufactured by the manufacturing method of the present invention, and FIG. 4 1 is a comparison diagram of spectral sensitivity characteristics for explaining the effects of a solar cell manufactured by the manufacturing method of the present invention. 1... Boat of the firing container, 2... Lid of the baking container 3... Hole in the lid, 4... Glass substrate, 5...・CdS film, 6...CdT
e film, 7... Carbon film, 8... Aq main electrode 9...Ag-In electrode, 1o...
··Lead. Patent applicant: Director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 成する焼結膜の製造において、前記複数個の開−の面積
の総和を焼成される被焼結膜面積の0.4%から2.0
%にすることを特徴とする焼結膜の製造方法。
In the production of a sintered film, the total area of the plurality of openings is 0.4% to 2.0% of the area of the film to be sintered.
%.
JP58094192A 1983-05-30 1983-05-30 Manufacture of sintered film Granted JPS59223276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094192A JPS59223276A (en) 1983-05-30 1983-05-30 Manufacture of sintered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094192A JPS59223276A (en) 1983-05-30 1983-05-30 Manufacture of sintered film

Publications (2)

Publication Number Publication Date
JPS59223276A true JPS59223276A (en) 1984-12-15
JPH0464192B2 JPH0464192B2 (en) 1992-10-14

Family

ID=14103435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094192A Granted JPS59223276A (en) 1983-05-30 1983-05-30 Manufacture of sintered film

Country Status (1)

Country Link
JP (1) JPS59223276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052390A (en) * 2016-05-20 2016-10-26 浙江光隆能源科技股份有限公司 Sintering equipment for polycrystalline solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225305A (en) * 1975-08-15 1977-02-25 Hitachi Ltd System for controlling the appaatus for acceleating or decelerating ca rgo vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225305A (en) * 1975-08-15 1977-02-25 Hitachi Ltd System for controlling the appaatus for acceleating or decelerating ca rgo vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052390A (en) * 2016-05-20 2016-10-26 浙江光隆能源科技股份有限公司 Sintering equipment for polycrystalline solar cell
CN106052390B (en) * 2016-05-20 2018-03-16 浙江光隆能源科技股份有限公司 A kind of agglomerating plant for polycrystalline solar cell

Also Published As

Publication number Publication date
JPH0464192B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
GB2085657A (en) Photovoltaic solar cells
JPS59223276A (en) Manufacture of sintered film
JPS5846195B2 (en) Manufacturing method of contact type image sensor
EP0146967B1 (en) Photoconductive target of image pickup tube and manufacturing method thereof
JP2002064062A (en) Film formation method of compound semiconductor
US3377200A (en) Process for activating photoconductive films
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
JPH07147421A (en) Manufacture of sintered film
JPS6142435B2 (en)
JPS61107775A (en) Solar cell
JPS6227556B2 (en)
JPH08111425A (en) Production of semiconductor thin film having chalcopyrite structure
JPS6393164A (en) Manufacture of photovoltaic element
JPH0818078A (en) Manufacture of group ii-vi compound semiconductor solar cell
JP3461620B2 (en) Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element
JPS5499561A (en) Manufacture of binary chemical semiconductor thin film
JPS61219179A (en) Manufacture of semiconductor sintered film
JPS596075B2 (en) Method for manufacturing CdSe photoconductive film
JPH01179743A (en) Production of sintered cds film
JPS5941875A (en) Manufacture of sintered film
JPS59115567A (en) Manufacture of photovoltaic element
Vaccaro et al. Effects of CdCl2 on the growth of CdTe on CdS films for solar cells by isothermal close-spaced vapour transport
JPS59168669A (en) Paste material for semiconductor device
JPS59115577A (en) Manufacture of cadmium sulfide sintered film
JPS6357951B2 (en)