JP3461620B2 - Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element - Google Patents

Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element

Info

Publication number
JP3461620B2
JP3461620B2 JP11816795A JP11816795A JP3461620B2 JP 3461620 B2 JP3461620 B2 JP 3461620B2 JP 11816795 A JP11816795 A JP 11816795A JP 11816795 A JP11816795 A JP 11816795A JP 3461620 B2 JP3461620 B2 JP 3461620B2
Authority
JP
Japan
Prior art keywords
cds
film
complex
thin film
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11816795A
Other languages
Japanese (ja)
Other versions
JPH08316247A (en
Inventor
邦嘉 尾村
彰 花房
聡 渋谷
繁雄 近藤
Original Assignee
松下電池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電池工業株式会社 filed Critical 松下電池工業株式会社
Priority to JP11816795A priority Critical patent/JP3461620B2/en
Priority to US08/648,544 priority patent/US5714391A/en
Priority to EP96303491A priority patent/EP0744779A3/en
Publication of JPH08316247A publication Critical patent/JPH08316247A/en
Application granted granted Critical
Publication of JP3461620B2 publication Critical patent/JP3461620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機イオウカドミウム
錯体による化合物半導体薄膜および光電変換素子の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor thin film using an organic sulfur cadmium complex and a method for manufacturing a photoelectric conversion element.

【0002】[0002]

【従来の技術】光照射による膜抵抗変化を利用した光セ
ンサーや光フィルターで利用するCdS膜は、印刷塗
布、焼結により形成したものや、溶液析出法で形成する
方法が一般に知られている。しかし、これらの方法は大
量生産ができにくいという問題点があった。また、現
在、CdS膜を用いて化合物半導体太陽電池として実用
化されているものとしては、CdS/CdTe太陽電池
が知られている。しかし、CdS膜はCdSペーストを
作製し、印刷塗布した後、これらのペーストを焼結方法
で形成している。このため作製したCdS膜厚は20〜
50μmと厚膜であり、そのため、光線透過率に限界が
あり、光電変換素子の光電変換効率を向上させる事は困
難で、変換効率の向上には、CdS膜の薄膜化が要望さ
れている。また、CdS/CdTe化合物半導体光電変
換素子は、光電変換素子構成物質としてCdを用いるた
め、光電変換素子を用いた商品である太陽電池が一般家
庭に普及すると、カドミウム環境汚染の問題が生じると
いう課題を有している。
2. Description of the Related Art CdS films used in optical sensors and optical filters that utilize the change in film resistance due to light irradiation are generally known to be formed by printing coating, sintering, or by a solution deposition method. . However, these methods have a problem that mass production is difficult. Further, at present, a CdS / CdTe solar cell is known as being practically used as a compound semiconductor solar cell using a CdS film. However, the CdS film is formed by forming a CdS paste, printing it, and then sintering the paste. Therefore, the produced CdS film thickness is 20 to
Since the thickness is 50 μm and the film is thick, the light transmittance is limited, and it is difficult to improve the photoelectric conversion efficiency of the photoelectric conversion element. To improve the conversion efficiency, thinning of the CdS film is required. In addition, since CdS / CdTe compound semiconductor photoelectric conversion element uses Cd as a photoelectric conversion element constituent material, when a solar cell, which is a product using the photoelectric conversion element, spreads to general households, a problem of cadmium environmental pollution occurs. have.

【0003】そこで、現在、カドミウム環境汚染問題を
極力少なくさせる1つの方法としてCdS膜の薄膜化が
考えられており、実用的なCdS薄膜の製造手法の開発
が要望されている中で、従来のCdS薄膜の製造方法と
しては、真空蒸着法、スパッタ法、溶液析出法等の方法
が知られている。真空蒸着法は、真空下で、CdS自体
を加熱蒸発させ、基板上にCdS膜を生成させる方法で
ある。スパッタ法は、低気圧下でCdSソースと膜生成
基板間に電圧を印加し、CdSソース基板から生成した
CdSを膜生成基板に生成させるものである。溶液析出
法は、Cd,Sをふくむ化合物を溶液中に溶解させ、基
板上にCdS膜を析出させる方法である。
Therefore, at present, as one method for minimizing the problem of cadmium environmental pollution, thinning of the CdS film is considered, and development of a practical manufacturing method of the CdS thin film is demanded. As a method for manufacturing a CdS thin film, a vacuum vapor deposition method, a sputtering method, a solution deposition method and the like are known. The vacuum vapor deposition method is a method in which CdS itself is heated and evaporated under a vacuum to form a CdS film on a substrate. In the sputtering method, a voltage is applied between the CdS source and the film formation substrate under a low pressure to generate CdS generated from the CdS source substrate on the film formation substrate. The solution deposition method is a method of dissolving a compound containing Cd and S in a solution to deposit a CdS film on a substrate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな、真空蒸着法およびスパッタ法は、真空設備を必要
とし、又大面積のCdS膜を得るためには、高額の設備
を必要とする。また、溶液析出法は、CdS膜が膜生成
基板の必要とする表面だけでなく裏面に析出したり、さ
らにはこれら基板以外の部品にもCdS膜が析出するた
め、膜生成基板の裏面をマスクしたり、析出処理毎に容
器や攪拌機を清掃する必要があり、さらに、溶液自体も
再生できないため、すべて入れ替える必要がある。この
ように、これら従来の手法では、連続生産あるいは低コ
ストの半導体薄膜を提供するには不向きといえる。
However, such a vacuum vapor deposition method and a sputtering method require vacuum equipment, and in order to obtain a large area CdS film, expensive equipment is required. In addition, in the solution deposition method, the CdS film is deposited not only on the required surface of the film formation substrate but also on the back surface, and further, the CdS film is also deposited on components other than these substrates, so the back surface of the film formation substrate is masked. In addition, it is necessary to clean the container and the stirrer for each precipitation treatment, and since the solution itself cannot be regenerated, it is necessary to replace all of them. Thus, it can be said that these conventional methods are not suitable for continuous production or provision of low-cost semiconductor thin films.

【0005】本発明は、このような課題を解決し、均一
なCdS薄膜を安価な装置で連続的に生成させることが
できる方法を提供するものである。
The present invention solves such problems and provides a method capable of continuously producing a uniform CdS thin film with an inexpensive apparatus.

【0006】[0006]

【課題を解決するための手段】本発明は、有機イオウカ
ドミウム錯体を蒸発させ、蒸気中に有機イオウ錯体分解
温度まで熱したガラス等のCdS生成基板を設置するこ
とにより、CdS生成基板表面で有機イオウカドミウム
錯体を分解させ、ガラス基板表面にCdS膜を生成させ
る構成である。
According to the present invention, an organic sulfur cadmium complex is vaporized, and a CdS producing substrate such as glass heated to the decomposition temperature of the organic sulfur complex is placed in the vapor to form an organic compound on the surface of the CdS producing substrate. In this structure, the sulfur-cadmium complex is decomposed to form a CdS film on the surface of the glass substrate.

【0007】[0007]

【作用】有機イオウカドミウム錯体蒸気中に基板を設置
し、基板表面温度を有機イオウカドミウム錯体分解温度
以上にすることにより、該基板表面に、CdS薄膜を均
一に生成することができる。さらに生成するCdS膜は
有機イオウカドミウム錯体蒸気量を抑制することによ
り、その膜厚を0.01μmから5μmまで自由に制御
することができる。また得られたCdS膜は光透過率に
優れるため、従来のCdS膜作成法、例えばCdS結晶
粒子と有機バインダーより構成されるCdSペーストを
スクリーン印刷により塗布後、その基板を焼結により生
成させた厚膜CdSを用いた太陽電池よりも光電流を2
0〜50%向上させることができる。また、大気圧下ま
たは不活性気体中でCdS膜の生成が行える。さらに、
ヒートプレート方式のベルト炉で薄膜CdS膜を製造可
能ならしめると共に、大面積薄膜CdSの製造も可能と
なる。また、この薄膜CdS光電変換素子を用いた太陽
電池素子では、従来の厚膜CdSを用いた太陽電池素子
でのCdの使用量を約1/100に減少させることがで
き、Cd環境汚染問題を極めて少なくすることを可能な
らしめる。
The CdS thin film can be uniformly formed on the surface of the substrate by placing the substrate in the organic sulfur-cadmium complex vapor and setting the substrate surface temperature to the decomposition temperature of the organic sulfur-cadmium complex or higher. Further, the film thickness of the produced CdS film can be freely controlled from 0.01 μm to 5 μm by suppressing the amount of organic sulfur cadmium complex vapor. Since the obtained CdS film has excellent light transmittance, a conventional CdS film forming method, for example, a CdS paste composed of CdS crystal particles and an organic binder was applied by screen printing, and then the substrate was produced by sintering. 2 more photocurrent than a solar cell using thick film CdS
It can be improved by 0 to 50%. Further, the CdS film can be formed under atmospheric pressure or in an inert gas. further,
It is possible to manufacture a thin film CdS film in a heat plate type belt furnace, and it is also possible to manufacture a large area thin film CdS. Further, in the solar cell element using this thin film CdS photoelectric conversion element, the amount of Cd used in the conventional solar cell element using the thick film CdS can be reduced to about 1/100, which causes the problem of Cd environmental pollution. It is possible to make it extremely small.

【0008】[0008]

【実施例】本実施例の有機イオウカドミウム錯体による
製造プロセスを図1に示す。1はソース側ガラス基板、
2は有機イオウカドミウム錯体、3は膜生成側ガラス基
板、4は有機イオウカドミウム錯体の蒸気、5は生成し
たCdS膜を示す。膜生成側ガラス基板には、SnO2
とF2の混合物からなる透明導電膜を形成したものを使
用した。透明導電膜としては、酸化インジウムや酸化亜
鉛系の化合物を含むものを用いてもよく、その導電率は
100Ω/cm2以下の範囲であることが望ましい。1
00Ω/cm2を越えると、太陽電池素子を形成した際
に、太陽電池の内部抵抗の増大により、光電特性が低下
するものとなる。図1(a)に示すように、ソース側ガ
ラス基板1上に有機イオウカドミウム錯体2を一定膜厚
塗布し、膜生成側ガラス基板3とソース側ガラス基板1
間にスペーサ6を設置し、スペーサ6とガラス基板3と
ソース側ガラス基板1の3者で密閉空間7を作る。この
密閉空間は、N2,Arのような不活性ガス雰囲気とす
ることが望ましいが、若干の酸素の存在は、本発明のC
dS膜生成には支障ない。この3者(有機イオウカドミ
ウム錯体2を塗布したソース側ガラス基板1、スペーサ
6、膜生成側ガラス基板3)のうち、ガラス基板内温度
がカドミウム錯体が溶融し、気化する温度となるようガ
ラス基板3を加熱し、その加熱温度がカドミ錯体の分解
温度以上となるよう設定する。望ましくは、300〜4
00℃が良く、この状態を約5分間保持することによ
り、膜生成側ガラス基板の表面には有機イオウカドミウ
ム錯体蒸気が分解され、光電変換素子に適する硫化カド
ミウム(CdS)の薄膜を析出させることが出来る。
EXAMPLE FIG. 1 shows the manufacturing process of the organic sulfur cadmium complex of this example. 1 is a glass substrate on the source side,
Reference numeral 2 is an organic sulfur cadmium complex, 3 is a glass substrate on the film forming side, 4 is a vapor of the organic sulfur cadmium complex, and 5 is a formed CdS film. SnO 2 is used for the glass substrate on the film formation side.
A transparent conductive film formed of a mixture of C and F 2 was used. As the transparent conductive film, one containing an indium oxide or zinc oxide-based compound may be used, and its conductivity is preferably in the range of 100 Ω / cm 2 or less. 1
When it exceeds 00 Ω / cm 2 , when the solar cell element is formed, the internal resistance of the solar cell increases, and the photoelectric characteristics deteriorate. As shown in FIG. 1A, an organic sulfur cadmium complex 2 is applied on a source-side glass substrate 1 with a constant film thickness to form a film-forming-side glass substrate 3 and a source-side glass substrate 1.
A spacer 6 is installed between them, and a closed space 7 is created by the spacer 6, the glass substrate 3, and the source-side glass substrate 1. This closed space is preferably an inert gas atmosphere such as N 2 or Ar, but the presence of some oxygen may cause C
It does not hinder the formation of dS film. Of these three members (the source-side glass substrate 1 coated with the organic sulfur cadmium complex 2, the spacer 6, and the film-forming-side glass substrate 3), the glass substrate is adjusted so that the temperature inside the glass substrate is a temperature at which the cadmium complex melts and vaporizes. 3 is heated, and the heating temperature is set to be equal to or higher than the decomposition temperature of the cadmium complex. Desirably 300-4
00 ℃ is good, and by keeping this state for about 5 minutes, organic sulfur cadmium complex vapor is decomposed on the surface of the film formation side glass substrate, and a thin film of cadmium sulfide (CdS) suitable for photoelectric conversion element is deposited. Can be done.

【0009】以下、本発明の実施例を説明する。 (実施例1)有機イオウカドミウム錯体2として、ジエ
チルジチオカルバミン酸カドミウム錯体を用いた実施例
について説明する。該錯体の分解温度は250〜350
℃の範囲であり、CdS膜生成基板温度は、この錯体の
分解温度(ここでは350℃とした)以上に設定し、ソ
ース供給側のガラス基板温度は、ジエチルジチオカルバ
ミン酸カドミウム錯体の融点(240℃)と分解温度
(300〜350℃)の範囲内となるように設定した。
図1に示した構造では、ソース供給側のガラス基板1の
温度は、膜生成側のガラス基板3の温度よりも約100
℃低くなり、ソース供給側ガラス基板1の温度は200
℃〜300℃の温度範囲にコントロールした。これによ
り、図1の(b)に示したように、ソース供給基板表面
に塗布したジエチルジチオカルバミン酸カドミウム錯体
が溶融、気化し、予め、N2雰囲気に置換した密閉空間
7内にジエチルジチオカルバミン酸カドミウム錯体蒸気
が充満する。(c)に示したようにCdS膜生成基板表
面でジエチルジチオカルバミン酸カドミウム錯体蒸気が
分解し、CdS膜を生成させることが出来た。
An embodiment of the present invention will be described below. Example 1 An example in which a cadmium diethyldithiocarbamate complex is used as the organic sulfur cadmium complex 2 will be described. The decomposition temperature of the complex is 250 to 350.
CdS film formation substrate temperature is set to the decomposition temperature of this complex or higher (here, 350 ° C.), and the glass substrate temperature on the source supply side is the melting point of the cadmium diethyldithiocarbamate complex (240 ° C.). ) And the decomposition temperature (300 to 350 ° C.).
In the structure shown in FIG. 1, the temperature of the glass substrate 1 on the source supply side is about 100 times higher than the temperature of the glass substrate 3 on the film formation side.
The temperature of the glass substrate 1 on the source supply side becomes 200 ° C.
The temperature was controlled in the range of ℃ to 300 ℃. As a result, as shown in FIG. 1B, the diethyldithiocarbamate cadmium complex applied to the surface of the source supply substrate was melted and vaporized, and the diethyldithiocarbamate cadmium was stored in the closed space 7 which was previously replaced with an N 2 atmosphere. The complex vapor fills. As shown in (c), the diethyldithiocarbamate cadmium complex vapor was decomposed on the surface of the CdS film forming substrate, and the CdS film could be formed.

【0010】得られたCdS膜の光学特性を図2に示し
た。図中には、比較のためにスクリーン印刷した後、焼
結する従来の製造方法で作成したCdS膜の特性も示し
た。この結果から分かるように本発明により作成したC
dS膜は、光透過全波長域で従来のスクリーン印刷、焼
結法で作成したCdS膜の分光透過性を上回っており、
薄膜であることから、500nm以下の短波長域でも光
透過性を有している。したがって、従来のCdS膜より
も本発明により作成したCdS膜は光学的に優れた特性
を有した膜であることが判明した。
The optical characteristics of the obtained CdS film are shown in FIG. In the figure, for comparison, the characteristics of the CdS film prepared by the conventional manufacturing method of screen-printing and then sintering are also shown. As can be seen from these results, C prepared by the present invention
The dS film exceeds the spectral transmittance of the CdS film formed by the conventional screen printing and sintering methods in the entire light transmission wavelength range,
Since it is a thin film, it has optical transparency even in a short wavelength region of 500 nm or less. Therefore, it was revealed that the CdS film produced according to the present invention is a film having optically superior characteristics as compared with the conventional CdS film.

【0011】(実施例2)ジエチルジチオカルバミン酸
カドミウム錯体を、基板1上に塗布し、基板1温度を、
250℃にコントロールし、膜生成側ガラス基板3の温
度を350℃に設定した。温度保持時間は、5分間とし
た。3分間では100Å、10分間で10000Åの膜
厚が得られた。
Example 2 A cadmium diethyldithiocarbamate complex was coated on the substrate 1 and the temperature of the substrate 1 was adjusted to
The temperature of the glass substrate 3 on the film formation side was set to 350 ° C. by controlling at 250 ° C. The temperature holding time was 5 minutes. A film thickness of 100Å was obtained in 3 minutes and 10,000Å in 10 minutes.

【0012】CdS膜厚は、光電特性に影響を与える
が、膜厚が小さくなれば光線透過率が向上する。しか
し、開放電圧Vocが不安定となることが判った。好ま
しいCdS膜厚は100〜10000Åの範囲で光電変
換素子の光電特性として最適な特性を示した。
The CdS film thickness affects the photoelectric characteristics, but the light transmittance increases as the film thickness decreases. However, it was found that the open circuit voltage Voc becomes unstable. The preferable CdS film thickness is in the range of 100 to 10000Å, and the optimum photoelectric property of the photoelectric conversion element is shown.

【0013】実施例2において、CdS膜の生成は膜生
成側ガラス基板温度を一定とし、加熱時間を変化させる
ことにより、種々の膜厚を得たが、本実施例では、膜生
成側ガラス基板温度を変化させ、その際の加熱時間を一
定とすることにより種々のCdS膜厚を得た。いずれの
膜も実施例1と殆ど変わらない光学特性を示した。
In Example 2, various film thicknesses were obtained by forming the CdS film by keeping the temperature of the glass substrate on the film forming side constant and changing the heating time. In this example, the glass substrate on the film forming side was obtained. Various CdS film thicknesses were obtained by changing the temperature and keeping the heating time at that time constant. Both films showed almost the same optical characteristics as in Example 1.

【0014】実施例1および2のCdS膜作成において
は、図1−(a)での密閉空間はN 2ガスで予め置換
し、CdS膜を生成した。このCdS膜生成プロセス
は、望ましくは不活性ガス雰囲気中で行う必要がある。
これは、酸素雰囲気中で行うとCdSが酸素と反応し、
CdOが生成することによりCdS膜の光線透過率が低
下するからである。しかし、酸素濃度が低濃度であれ
ば、このような問題は生じない。
In producing the CdS films of Examples 1 and 2,
Is the closed space in FIG. 1- (a) is N 2Replace with gas in advance
Then, a CdS film was produced. This CdS film formation process
Should preferably be performed in an inert gas atmosphere.
When this is done in an oxygen atmosphere, CdS reacts with oxygen,
The light transmittance of the CdS film is low due to the generation of CdO.
Because I will give you down. However, even if the oxygen concentration is low
Therefore, such a problem does not occur.

【0015】本実施例では、N2ガス中にO2ガスを加
え、N2/O2ガス雰囲気中でCdS膜の作成を行った。
得られた膜の光線透過率と、用いたN2/O2ガスの濃度
の関係を図3に示した。図から分かるように、10%以
下のO2の存在は本目的とするCdS膜特性上支障ない
ことが判った。
[0015] In this embodiment, the O 2 gas in addition to the N 2 gas was performed to create a CdS film with N 2 / O 2 gas atmosphere.
The relationship between the light transmittance of the obtained film and the concentration of the N 2 / O 2 gas used is shown in FIG. As can be seen from the figure, the presence of 10% or less of O 2 does not impair the intended CdS film properties.

【0016】(実施例3)実施例1で作成したCdS膜
を用いた光電変換素子を作成した。その素子の断面概略
図を図4に示した。図中9はCdTe膜、10はC電極
膜、11はAgIn電極膜を示す。実施例1で作成した
CdS膜5上に、Cd、Te、CdTeの混合粉末をP
HG(フェニールグリコール)によりペースト状にした
ものを、スクリーン印刷法により塗布し、この基板を窒
素ガス雰囲気中660℃の温度で焼結した。形成したC
dTe膜9上に更にカーボンペーストを塗布し、400
℃で乾燥硬化させることにより該CdTe膜上にカーボ
ン電極10を形成した。更にCdS膜5の電極として、
AgInペーストをCdS膜上に塗布し、200℃で乾
燥硬化させることによりAgIn電極11を形成した。
Example 3 A photoelectric conversion element using the CdS film produced in Example 1 was produced. A schematic sectional view of the device is shown in FIG. In the figure, 9 is a CdTe film, 10 is a C electrode film, and 11 is an AgIn electrode film. On the CdS film 5 prepared in Example 1, P is mixed powder of Cd, Te and CdTe.
A paste made of HG (phenyl glycol) was applied by a screen printing method, and this substrate was sintered at a temperature of 660 ° C. in a nitrogen gas atmosphere. Formed C
A carbon paste is further applied onto the dTe film 9 to form 400
The carbon electrode 10 was formed on the CdTe film by drying and curing at a temperature of ℃. Furthermore, as an electrode of the CdS film 5,
The AgIn paste was applied on the CdS film and dried and hardened at 200 ° C. to form the AgIn electrode 11.

【0017】本発明によって作成した薄膜CdSは、C
dTe膜9を形成させる際に、溶液析出法、スパッタ
法、蒸着法の各種薄膜生成法で作成した薄膜CdSが、
CdTeにより約3000Åの膜厚が浸食されるのに対
し、500Å程度しか浸食されない性質を有している。
したがって、CdSの膜厚が500〜1000Åの薄さ
でも光電変換素子を作成できるため、光電流量を大きく
させることができる。
The thin film CdS produced by the present invention is C
When the dTe film 9 is formed, the thin film CdS formed by various thin film forming methods such as the solution deposition method, the sputtering method, and the vapor deposition method is
While CdTe erodes a film thickness of about 3000 Å, it has the property of eroding only about 500 Å.
Therefore, the photoelectric conversion element can be prepared even if the film thickness of CdS is as thin as 500 to 1000Å, and the photoelectric flow rate can be increased.

【0018】このようにして、作成した薄膜CdSの化
合物半導体光電変換素子は、100mW/cm2、AM
1.5の条件下で、短絡電流値は24mA/cm2、開
放電圧0.8V/セルが得られた。
The compound semiconductor photoelectric conversion device of the thin film CdS thus produced has a resistance of 100 mW / cm 2 , AM
Under the condition of 1.5, a short circuit current value of 24 mA / cm 2 and an open circuit voltage of 0.8 V / cell were obtained.

【0019】(比較例1)実施例3の効果を調べるた
め、スクリーン印刷法によりCdS膜、CdTe膜を形
成し、従来法に基づきCdS化合物の半導体光変換素子
を作成し、その特性を実施例5と同条件下で測定した。
その結果、短絡電流として、19mA/cm 2が得ら
れ、開放電圧は、0.75V/セルを示した。
(Comparative Example 1) The effect of Example 3 was examined.
Therefore, the CdS film and CdTe film are formed by the screen printing method.
CdS compound semiconductor optical conversion device based on conventional method
Was prepared and its characteristics were measured under the same conditions as in Example 5.
As a result, the short-circuit current was 19 mA / cm 2Got
The open circuit voltage was 0.75 V / cell.

【0020】以上の比較例から判るように、100mW
/cm2、AM1.5の条件下で、従来の厚膜CdS法
では短絡電流が19mA/cm2であるのに対し、24
mA/cm2が得られ、20%の短絡電流値の向上が認
められた。また、さらに、起電力発生層となるpn接合
層が均一にできることより、開放電圧は、従来の厚膜C
dS光電変換素子が0.75V/セルであるのに対し、
薄膜CdS光電変換素子は0.80V/セルと高い電圧
を得ることができた。又、真性光電変換効率としては、
従来の厚膜が11%であるのに対し、13%が得られ
た。
As can be seen from the above comparative examples, 100 mW
In the conventional thick film CdS method, the short-circuit current is 19 mA / cm 2 under the conditions of AM / cm 2 and AM1.5 of 24.
mA / cm 2 was obtained, and an improvement in the short circuit current value of 20% was recognized. In addition, since the pn junction layer serving as the electromotive force generation layer can be made uniform, the open circuit voltage is the same as the conventional thick film
Whereas the dS photoelectric conversion element is 0.75V / cell,
The thin film CdS photoelectric conversion element was able to obtain a high voltage of 0.80 V / cell. Also, as the intrinsic photoelectric conversion efficiency,
13% was obtained compared to 11% for the conventional thick film.

【0021】(実施例4)本実施例では、実施例1〜3
において有機イオウカドミウム錯体として用いたジエチ
ルジチオカルバミン酸カドミウムをイミダゾールカドミ
ウム錯体に置き換えてCdS膜を作成した。用いたイミ
ダゾールカドミウム錯体として2−メルカプトベンゾイ
ミダゾールCd錯体を用いた。
(Embodiment 4) In this embodiment, Embodiments 1 to 3 are used.
A CdS film was prepared by replacing the cadmium diethyldithiocarbamate used as the organic sulfur cadmium complex in 1. with an imidazole cadmium complex. A 2-mercaptobenzimidazole Cd complex was used as the imidazole cadmium complex used.

【0022】この錯体の分解温度は300℃〜350℃
の範囲であり、CdS膜生成基板温度は、この分解温度
以上に設定し、ソース供給側のガラス基板温度は、イミ
ダゾールカドミウム錯体の融点(250〜280℃)と
分解温度(300〜400℃)の範囲に設定した。この
ように実施例1と同様にして作成した薄膜CdS5上
に、実施例5で示した方法に基づいてCdTe膜9、C
膜10、AgIn膜11を形成し、光電変換素子を作成
した。得られた素子の光電特性は実施例3で得た素子の
特性とほとんど同等の特性が得られる。
The decomposition temperature of this complex is 300 ° C to 350 ° C.
CdS film formation substrate temperature is set above this decomposition temperature, and the glass substrate temperature on the source supply side is the melting point (250 to 280 ° C.) and decomposition temperature (300 to 400 ° C.) of the imidazole cadmium complex. Set to range. Thus, on the thin film CdS5 formed in the same manner as in Example 1, the CdTe films 9 and C were formed based on the method shown in Example 5.
The film 10 and the AgIn film 11 were formed to prepare a photoelectric conversion element. The photoelectric characteristics of the obtained device are almost the same as those of the device obtained in Example 3.

【0023】なお、ジエチルジチオカルバミン酸カドミ
ウム錯体と、イミダゾールカドミウム錯体を混合して用
いても同様の結果が得られた。
Similar results were obtained when a cadmium diethyldithiocarbamate complex and an imidazole cadmium complex were mixed and used.

【0024】(実施例5)本実施例では、有機イオウカ
ドミウム錯体としてメルカプトベンゾカドミウム錯体を
用いた以外は実施例3と同様にして光電変換素子を作成
した。得られた素子の光電特性は、実施例3で得た素子
の特性とほとんど同等の特性が得られた。
Example 5 In this example, a photoelectric conversion element was prepared in the same manner as in Example 3 except that a mercaptobenzocadmium complex was used as the organic sulfur cadmium complex. The photoelectric characteristics of the obtained device were almost the same as those of the device obtained in Example 3.

【0025】[0025]

【発明の効果】以上の説明で明らかな様に、有機イオウ
カドミウム錯体を用いて、ガラス基板上にCdS膜を形
成する本発明の製造方法による化合物半導体薄膜および
それを用いた光電変換素子は、従来の厚膜CdSに比べ
て光線透過率が20〜50%高い値を得ることができ
た。また、同一膜厚で、溶液析出法やスパッタ法、蒸着
法よりも光線透過率が約10%高い値が出ることが確認
され、優れた光電変換素子を提供できることが判った。
As is clear from the above description, the compound semiconductor thin film and the photoelectric conversion device using the same according to the manufacturing method of the present invention in which a CdS film is formed on a glass substrate using an organic sulfur cadmium complex, The light transmittance was 20 to 50% higher than that of the conventional thick film CdS. Further, it was confirmed that the light transmittance was about 10% higher than that of the solution deposition method, the sputtering method, and the vapor deposition method with the same film thickness, and it was found that an excellent photoelectric conversion element can be provided.

【0026】又、本発明によるCdS膜の生成法は、5
〜10分という極めて短時間にCdS膜を形成すること
ができ、大面積のCdSの生成にも応用できることか
ら、生産性に極めて優れた製造方法である。本発明の薄
膜CdSの光線透過率は従来の厚膜CdSの光線透過率
よりも20〜50%高い値が観測され、光電変換素子の
光電特性も、100mW/cm2、AM1.5の照射光
で短絡電流が19mA/cm2から24mA/cm2に向
上した。
The method for producing a CdS film according to the present invention is 5
Since the CdS film can be formed in an extremely short time of 10 minutes and can be applied to the production of CdS in a large area, it is a manufacturing method with extremely excellent productivity. The light transmittance of the thin film CdS of the present invention is observed to be 20 to 50% higher than the light transmittance of the conventional thick film CdS, and the photoelectric characteristics of the photoelectric conversion element are 100 mW / cm 2 and irradiation light of AM1.5. in short circuit current is increased from 19 mA / cm 2 to 24mA / cm 2.

【0027】また、作成した光電変換素子に含まれるC
d含有量は、100〜1000Åの薄膜CdSを用いる
ため、素子中のCdの含有量は従来の厚膜CdSの約1
/200〜1/2000となり、環境汚染問題の度合も
極めて低減された。
Further, C contained in the created photoelectric conversion element
Since the thin film CdS having a d content of 100 to 1000 Å is used, the content of Cd in the device is about 1 of that of the conventional thick film CdS.
/ 200 to 1/2000, and the degree of the environmental pollution problem was significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるCdS膜の製造工程図FIG. 1 is a manufacturing process diagram of a CdS film according to an embodiment of the present invention.

【図2】本発明の一実施例によるCdS膜と従来の方法
に基づいて作成したCdS膜の分光感度特性を示す図
FIG. 2 is a diagram showing spectral sensitivity characteristics of a CdS film according to an embodiment of the present invention and a CdS film formed based on a conventional method.

【図3】本発明の一実施例による有機イオウカドミウム
錯体を用いたCdS膜を生成させる雰囲気ガスのO2
2比と生成させたCdS膜の分光感度特性を示す図
FIG. 3 is an atmosphere gas O 2 / which forms a CdS film using an organic sulfur cadmium complex according to an embodiment of the present invention.
Shows the spectral sensitivity characteristics of CdS film was produced with N 2 ratio

【図4】本発明の一実施例による光電変換素子の断面構
造図
FIG. 4 is a sectional structural view of a photoelectric conversion element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ソース側ガラス基板 2 有機イオウカドミウム錯体 3 膜生成側ガラス基板 4 有機イオウカドミウム錯体蒸気 5 CdS膜 6 スペーサ 7 密閉空間 8 CdTe膜 1 Source side glass substrate 2 Organic sulfur cadmium complex 3 Film formation glass substrate 4 Organic Sulfur Cadmium Complex Vapor 5 CdS film 6 spacers 7 closed space 8 CdTe film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−88382(JP,A) 特開 昭61−166978(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/365 H01L 31/04 H01L 31/0248 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Kondo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-8-88382 (JP, A) JP-A-61- 166978 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/365 H01L 31/04 H01L 31/0248

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも硫黄、窒素、炭素、カドミウム
原子を含んでなる有機イオウカドミウム錯体の蒸気を発
生させ、この錯体蒸気中に設置した基板表面で前記錯体
を熱分解させ、前記基板表面にCdS薄膜を生成させる
ことを特徴とする化合物半導体薄膜の製造方法。
1. A vapor of an organic sulfur-cadmium complex containing at least sulfur, nitrogen, carbon and cadmium atoms is generated, and the complex is thermally decomposed on the surface of the substrate placed in the complex vapor, and CdS is formed on the surface of the substrate. A method for producing a compound semiconductor thin film, which comprises forming a thin film.
【請求項2】CdS薄膜を少なくともN2雰囲気中、も
しくはこれにO2が含まれてなる雰囲気中で生成させる
ことを特徴とする請求項1に記載の化合物半導体薄膜の
製造方法。
2. The method for producing a compound semiconductor thin film according to claim 1, wherein the CdS thin film is formed in at least an N 2 atmosphere or an atmosphere containing O 2 .
【請求項3】有機イオウカドミウム錯体はイミダゾール
カドミウム錯体、チアゾールカドミウム錯体、カルバミ
ン酸カドミウム錯体の少なくとも1種類以上を含むこと
を特徴とする請求項1記載の化合物半導体薄膜の製造方
法。
3. The method for producing a compound semiconductor thin film according to claim 1, wherein the organic sulfur cadmium complex includes at least one kind of an imidazole cadmium complex, a thiazole cadmium complex, and a cadmium carbamate complex.
【請求項4】有機イオウカドミウム錯体をこの錯体の融
点以上、分解温度以下の温度範囲で溶融、気化させ、こ
の錯体の蒸気中に設置した基板の表面温度を前記錯体の
分解温度以上に設定し、前記基板表面で有機イオウカド
ミウム錯体を熱分解させ、前記基板表面にCdS薄膜を
生成させることを特徴とする請求項1、2または3記載
の化合物半導体薄膜の製造方法。
4. An organic sulfur cadmium complex is melted and vaporized within a temperature range from the melting point to the decomposition temperature of the complex, and the surface temperature of the substrate placed in the vapor of the complex is set to the decomposition temperature of the complex or higher. The method for producing a compound semiconductor thin film according to claim 1, 2 or 3, wherein the organic sulfur cadmium complex is thermally decomposed on the substrate surface to form a CdS thin film on the substrate surface.
【請求項5】請求項1、2、3または4記載の方法によ
り製造されたCdS薄膜上にCd,TeおよびCdTe
のうちから選ばれる1種以上の化合物を含むペーストを
塗布し、焼結させCdTe膜を形成させることを特徴と
する光電変換素子の製造方法。
5. Cd, Te and CdTe on a CdS thin film produced by the method of claim 1, 2, 3 or 4.
A method of manufacturing a photoelectric conversion element, which comprises applying a paste containing one or more compounds selected from the above and sintering it to form a CdTe film.
JP11816795A 1995-05-17 1995-05-17 Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element Expired - Fee Related JP3461620B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11816795A JP3461620B2 (en) 1995-05-17 1995-05-17 Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element
US08/648,544 US5714391A (en) 1995-05-17 1996-05-16 Method of manufacturing a compound semiconductor thin film for a photoelectric or solar cell device
EP96303491A EP0744779A3 (en) 1995-05-17 1996-05-16 A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816795A JP3461620B2 (en) 1995-05-17 1995-05-17 Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH08316247A JPH08316247A (en) 1996-11-29
JP3461620B2 true JP3461620B2 (en) 2003-10-27

Family

ID=14729779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816795A Expired - Fee Related JP3461620B2 (en) 1995-05-17 1995-05-17 Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3461620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681870B2 (en) * 1997-09-05 2005-08-10 松下電池工業株式会社 Method for producing compound semiconductor film and solar cell
JP5006245B2 (en) * 2008-04-15 2012-08-22 本田技研工業株式会社 Method and apparatus for manufacturing chalcopyrite thin film solar cell

Also Published As

Publication number Publication date
JPH08316247A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
Romeo et al. Recent progress on CdTe/CdS thin film solar cells
JP4621427B2 (en) Method for producing CdTe / CdS thin film solar cells on a large scale
Romeo et al. Comparison of different conducting oxides as substrates for CdS/CdTe thin film solar cells
US5714391A (en) Method of manufacturing a compound semiconductor thin film for a photoelectric or solar cell device
Kumazawa et al. 15.1% Highly efficient thin film CdSCdTe solar cell
Aramoto et al. A new technique for large-area thin film CdS/CdTe solar cells
JP5042363B2 (en) Method for forming non-rectifying back contact in CDTE / CDS thin film solar cell
JP3461620B2 (en) Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JPH07226410A (en) Method for manufacturing thin film made of chalcopyrite type compound, and solar cell having the thin film
JPH0364973A (en) Photovoltaic element
JP3497249B2 (en) Solar cell manufacturing method
JPH10303445A (en) Manufacture of cdte film and solar battery using the same
JPH0974213A (en) Manufacture of compound semiconductor thin film
JP3063326B2 (en) Solar cell and manufacturing method thereof
CA1272107A (en) Methods for cds-based film and zno film deposition
JP3146612B2 (en) Method for producing solid solution thin film and method for producing solar cell
JPH0483379A (en) Manufacture of cds-zns solid solution thin film
JPH0376166A (en) Photoelectric converter
JP3064658B2 (en) Solar cell and manufacturing method thereof
Berg et al. Deposition of CdS by evaporation through a gas discharge
Nakazawa et al. Transparent and conductive cadmium-tin oxide films deposited by atom beam sputtering
JPH1051016A (en) Solar battery and its manufacture
CN117440741A (en) Semitransparent perovskite solar cell and preparation method thereof
JPH0216776A (en) Manufacture of solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees