JPS59222983A - Sealing method of optical part for laser tube - Google Patents

Sealing method of optical part for laser tube

Info

Publication number
JPS59222983A
JPS59222983A JP9836183A JP9836183A JPS59222983A JP S59222983 A JPS59222983 A JP S59222983A JP 9836183 A JP9836183 A JP 9836183A JP 9836183 A JP9836183 A JP 9836183A JP S59222983 A JPS59222983 A JP S59222983A
Authority
JP
Japan
Prior art keywords
indium
sealing
laser
optical part
laser tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9836183A
Other languages
Japanese (ja)
Inventor
Nobuaki Iehisa
信明 家久
Norio Karube
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9836183A priority Critical patent/JPS59222983A/en
Publication of JPS59222983A publication Critical patent/JPS59222983A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To prevent a diffusion to a non-sealing section of melted indium, and to obviate the damage of optical characteristics by previously mounting a material generating no wetting property to indium to a boundary between a sealing section and the non-sealing section. CONSTITUTION:PbF2 is evaporated previously in a ring-shaped region of a radius of 9-10.5mm. from the center in approximately 0.2-0.3mum thickness as an indium diffusion preventive material 8 on a sealing surface 7 for an optical part 6. Even when an indium diffusion preventive material 8 section covers a laser oscillation region 9, heat is hardly generated by laser beams, and the optical part 6 can be kept without a thermal damage. An indium wire 10 is fast stuck to the outer circumference of the sealing section and encircles it, and a closed loop is formed. The inside of a sealing chamber 1 is evacuated, and high-frequency induced currents are flowed through a laser tube sealing surface 5, the optical part 6 for a laser and the indium wire 10 by a high-frequency induction coil 11 to heat them. Currents flowing through the high-frequency induction coil 11 are controlled at that time, and the optical part is sealed. There are ThF4, NaF, As2S3, etc. besides PbF2 as a material generating no wetting property to indium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ管端部に光学部品を封着させるレーザ管
の光学部品封着法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for sealing optical parts of a laser tube, in which optical parts are sealed to the end of a laser tube.

従来例の構成とその問題点 従来、封止型気体レーザ管の作製において、レーザ管端
部とレーザ光反射鏡等の光学部品の封着は、エポキシ系
の接着剤を用いたり、低融点ガラスによる融着が行なわ
れていた。前者では接着剤かしの不純物質ガスの放出や
、ガスリークが存在する為に、レーザ管の長寿命化及び
信頼性向上には本質的に適していない。また、後者では
低融点ガラスの熱膨張係数がレーザ管と光学部品のそれ
と一致しなくてはならない為に、非常に限られた材料で
レーザ管を構成しなければならないといつ欠点を持って
いた。
Conventional structure and problems Conventionally, in the production of sealed gas laser tubes, the end of the laser tube and optical components such as laser beam reflectors are sealed using epoxy adhesive or low melting point glass. The fusion was carried out by The former is essentially unsuitable for extending the lifespan and improving the reliability of the laser tube because of the release of impurity gas from the adhesive and the presence of gas leaks. In addition, the latter has the disadvantage that the thermal expansion coefficient of the low-melting glass must match that of the laser tube and optical components, so the laser tube must be constructed from a very limited number of materials. .

最近、前述した欠点を補う新しいレーザ管の光学部品封
着方法が開発され、実用化さ扛ようとしている。その新
しい封着方法とは、低融点金属材料として知られている
インジウムを封着材料とし、封着母材料とインジウムが
合金を作ることにより封着を行なうものである。この封
着方法は、融解したインジウムが毛細管現象で封着部に
浸透し、封着母材料と合金を強固に作る為に封゛着断面
積を大きくすることができる。さらに、封着部からレー
ザ発振動作を妨げるような不純物ガスの発生もない為に
、レーザ管の長寿命化及び信頼性の向上全可能にでさる
。また、インジウム系合金の持つ大きな延性の為に、レ
ーザ管と光学部品との間の熱膨張係数の不整合を吸収で
さ、それらの拐料の組合せを自由にできる。しかも、封
着層の厚さをs7zm程度に薄くできるので、熱的なレ
ーザ管長の変動を受けにくいという長所をも持ち合わせ
ている。
Recently, a new method for sealing optical components of a laser tube that overcomes the above-mentioned drawbacks has been developed and is about to be put into practical use. The new sealing method uses indium, which is known as a low melting point metal material, as the sealing material, and seals by forming an alloy between the sealing base material and indium. In this sealing method, molten indium permeates into the sealing part by capillary action and forms a strong alloy with the sealing base material, making it possible to increase the sealing cross-sectional area. Furthermore, since there is no generation of impurity gas from the sealed portion that would interfere with the laser oscillation operation, it is possible to extend the life of the laser tube and improve its reliability. Furthermore, due to the large ductility of indium-based alloys, mismatches in thermal expansion coefficients between the laser tube and optical components can be accommodated, allowing for free combinations of these materials. Moreover, since the thickness of the sealing layer can be made as thin as about s7zm, it also has the advantage of being less susceptible to thermal fluctuations in the laser tube length.

しかし、この封着方法においては、封着母材がインジウ
ムと合金を形成し得るような飼料でなくてはならないた
め、融解したインジウムが制限なく毛細管現象で合金を
作りながら、封着母材止金自由に拡散して行さ、封着領
域の制量がでさない。
However, in this sealing method, the sealing base material must be a feed that can form an alloy with indium, so the molten indium forms an alloy by capillary action without any limit, and the sealing base material is bonded to the base material. The gold can be freely diffused and the sealed area cannot be controlled.

インジウム系合金層が封着領域以外に拡散すると、光学
部品の光学特性を著しく乱し、レーザ発振出力が低下す
ると共に、レーザ出力発振モードが不均一になるという
欠点があった。
When the indium-based alloy layer diffuses outside the sealing region, it significantly disturbs the optical characteristics of the optical component, resulting in a decrease in laser oscillation output and a disadvantage that the laser output oscillation mode becomes non-uniform.

発明の目的 本発明は上記従来の欠点を解消するもので、前記した封
着技術を使用し、溶融インジウムが非封着領域へ拡散す
るのを制限することにより、光学的な損傷を全く受けな
い、レーザ管端部と光学部品の封着方法を提供すること
を目的とするものである。
OBJECTS OF THE INVENTION The present invention overcomes the above-mentioned disadvantages of the prior art by using the sealing technique described above and limiting the diffusion of molten indium into the unsealed areas, thereby avoiding any optical damage. The object of the present invention is to provide a method for sealing an end of a laser tube and an optical component.

発明の構成 本発明は上記目的全達成するもので、レーザ管端部と光
学部品の封着時に、封着材料としてインジウム金使用し
、両者の間にインノウム合金層全形成することにより封
着全行なう際に、その封着部と非封着部の境界に、イン
ジウムとぬれ性を生じない材料をコーティングし、封着
領域の制[1行なうことを特徴としたレーザ管の光学部
品封着性全提供するものである。
Structure of the Invention The present invention achieves all of the above objects by using indium gold as the sealing material when sealing the end of the laser tube and the optical component, and by forming the entire innoum alloy layer between the two. When performing this process, the boundary between the sealed part and the non-sealed part is coated with a material that does not produce wettability with indium, and the sealing area is controlled. All that is offered.

実施例の説明 以下図面を参照して、本発明の詳細な説明する。Description of examples The present invention will be described in detail below with reference to the drawings.

第1図は、封着治具及び封着部の周辺を示すものである
。本封着方法の実施において、封着部の加熱は高周波誘
導加熱法により行ない、封着部のみを選択的に加熱した
。また、インジウムが融解した時に酸化を受けると、封
着母材と合金全形成できない為、ステンレス製の封着チ
ャンバー1は真空排気口2よジ真空排気が行なえるよう
になっている。封着の進行過程は、石英ガラス製の観察
窓3により外部から観測できる。耐熱ガラス製のレーザ
管4は内径18ffff、外径28mmの二重管ツクイ
ブの端面全封着面としており、そのレーザ管封着面6は
鏡面研摩された後、金を0・2〜0.4μmの早さで付
着させである。これは、耐熱ガラスとインジウムが合金
を作れない為に金を付着させるのである。レーザ用光学
部品6は1本実施例では二酸化炭素レーザ用全反射鏡の
代表的なものである、銅基板13上に金14 f O−
2〜0.3 Its蒸着した直径26゜4朋(11nc
hφ)、厚さ5朋のものを使用した。この光学部品6の
封着面7上には。
FIG. 1 shows the vicinity of the sealing jig and the sealing section. In carrying out this sealing method, the sealing portion was heated by high frequency induction heating, and only the sealing portion was selectively heated. Furthermore, if indium is oxidized when melted, it will not be possible to fully form an alloy with the sealing base material, so the sealing chamber 1 made of stainless steel can be evacuated through the vacuum exhaust port 2. The progress of sealing can be observed from the outside through an observation window 3 made of quartz glass. The laser tube 4 made of heat-resistant glass has an inner diameter of 18ffff and an outer diameter of 28 mm, and the end face of the double-tube Tsuquib is entirely sealed.The laser tube sealing surface 6 is mirror-polished and then coated with 0.2 to 0.0 mm of gold. It was deposited at a speed of 4 μm. This is because heat-resistant glass and indium cannot form an alloy, so gold is attached. In this embodiment, the laser optical component 6 is made of gold 14 f O- on a copper substrate 13, which is a typical total reflection mirror for a carbon dioxide laser.
2~0.3 Its evaporated diameter 26゜4㎜ (11nc
hφ) and a thickness of 5 mm was used. On the sealing surface 7 of this optical component 6.

中心から半径9闘から10.5 amのリング状領域に
インジウム拡散防止材8として、PbF2Q厚さ0.2
〜Q、3/1m蒸着しである。PbF2という材料はイ
ンジウムに対して、ぬれ性を持たないばかりではなく、
二酸化炭素レーザの発振波長での吸収係数が2.6 X
 10”” cm−’と小さい。従って、上記インジウ
ム拡散防止材8の部分がレーザ発振領域9にかかったと
しても、レーザ光による発熱が少なく、光学部品eを熱
的損傷なく保つことができる。封着剤たるインジウムは
1直径0.5πmのインジウムワイヤ10’li7使用
し、純度は99%以上である。インジウムワイヤ1oは
第1図に示した様に、封着部外周に密着させて巡らし、
閉ル−プを形成させる。次に封着チャンバー1内11o
Torr以下に1で真空排気を行なった後、高周波誘導
コイル11によジ、レーザ管封着面5.レーザ用光学部
品6及びインジウムワイヤ10に、高周波誘導電流を流
し加熱を行なう。この時、観察窓3全通し、封着部の温
りをパイロ検出器12によりモニターしながら、封着部
の温度を250℃一定となるように、高周波誘導コイル
11Vc流れる電流金制研し、封着を行なった。
PbF2Q thickness 0.2 as an indium diffusion prevention material 8 in a ring-shaped area with a radius of 9 to 10.5 am from the center.
~Q, 3/1m vapor deposition. The material PbF2 not only has no wettability for indium, but also
The absorption coefficient at the oscillation wavelength of the carbon dioxide laser is 2.6
It is as small as 10""cm-'. Therefore, even if the portion of the indium diffusion prevention material 8 touches the laser oscillation region 9, the amount of heat generated by the laser beam is small, and the optical component e can be kept free from thermal damage. Indium as a sealing agent is an indium wire 10'li7 with a diameter of 0.5πm and a purity of 99% or more. As shown in Fig. 1, the indium wire 1o is tightly wrapped around the outer periphery of the sealing part.
Form a closed loop. Next, inside the sealing chamber 1 11o
After evacuation to a temperature below Torr 1, the high frequency induction coil 11 is evacuated and the laser tube sealing surface 5. A high frequency induced current is applied to the laser optical component 6 and the indium wire 10 to heat them. At this time, while monitoring the temperature of the sealed part with the pyrodetector 12 through the entire observation window 3, the electric current flowing through the high frequency induction coil 11Vc is polished so that the temperature of the sealed part is constant at 250°C. I did the sealing.

同時に、本実施例の効果金兄る為に、光学部品6の封着
部と非封着部との境界に、何もコーティングしなかった
場合についても封着を行ない本実施例との比較全行った
。第2図に封着後の光学部品封着面の様子を示す。第2
図(&)は、封着部15と非封着部16との境界に何も
コーティングしなかった場合、同図(b)はその境界部
にPbF2 からなる拡散防止剤8をコーティングした
場合である。
At the same time, in order to increase the effectiveness of this example, sealing was performed even when no coating was applied on the boundary between the sealed and non-sealed parts of the optical component 6, and all comparisons with this example were made. went. FIG. 2 shows the state of the optical component sealing surface after sealing. Second
Figure (&) shows the case where nothing is coated on the boundary between the sealed part 15 and the non-sealed part 16, and Figure (b) shows the case where the boundary part is coated with the diffusion preventive agent 8 made of PbF2. be.

(&)の場合には、インジウム合金層17が自由に拡散
をし、非封着部16へも流入していることが分る。しか
し、本実施例金示す(b)図より明らかなように、この
場合には、インジウム合金層は封着部15のみ拡散をし
、非封着部16への流入は全く見られなかった。また、
封着部の真空リーク量をヘリウム検出器により測定した
結果、ヘリウムリーク速度は、両者ともに10 X 1
0  atm QC7sec以下と全く真空リークのな
いことを確認した。
In the case of (&), it can be seen that the indium alloy layer 17 diffuses freely and flows into the non-sealed portion 16 as well. However, as is clear from Figure (b) showing this example, in this case, the indium alloy layer diffused only in the sealed portion 15, and no flow into the non-sealed portion 16 was observed. Also,
As a result of measuring the amount of vacuum leak from the sealing part using a helium detector, the helium leak rate was 10 x 1 for both.
It was confirmed that there was no vacuum leak at all, with a QC of 0 atm QC of 7 seconds or less.

以上の説明のように、本発明によろレーザ管の光学部品
封着方法は、光学特性全損傷させることなく、レーザ管
端部と光学部品の封着全可能にした。本実施例では、イ
ンジウム拡散防止剤としてPbF2 に限り説明全行な
ったが、この防止材は、インジウムとぬれ性を生じない
材料であれば本質的にはよく、他に多くの月利が列挙さ
れる。例えば、  ThF4. NaF 、 )J2S
5 等である。またインジウム拡散防d=−+aの蒸着
幅(rho・tsmm以上であれば十分実用に耐えつろ
As described above, the method for sealing optical components of a laser tube according to the present invention makes it possible to completely seal the end of the laser tube and the optical components without damaging the optical properties. In this example, the explanation was limited to PbF2 as an indium diffusion inhibitor, but this inhibitor can essentially be any material that does not produce wettability with indium, and there are many other materials that can be used. Ru. For example, ThF4. NaF, )J2S
5 etc. In addition, if the evaporation width of indium diffusion barrier d=-+a (rho/ts mm or more), it is sufficient for practical use.

発明の効果 以上のように本発明はレーザ管端部に光学賃賃品をイン
ジウムを用いて封着するに際し、予め封着部と非封着部
との境界に、インジウムとぬれ1生を生じない材料を設
けたもので、溶融インジウムの非封着部への拡散、fK
:防止し、光学特性全損傷させることなく封着が行える
利点を有する。
Effects of the Invention As described above, when sealing an optical component to the end of a laser tube using indium, the present invention prevents wetting with indium from occurring in advance at the boundary between the sealed part and the non-sealed part. Diffusion of molten indium into the unsealed area, fK
: It has the advantage that it can be sealed without damaging the optical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部断面図、第2図は
封着後の光学部品封着面を示す断面図で(a) idイ
ンジウム拡散防止材を設けない場合、(b)は設けた場
合である。 1・・・・・・封着チャンノ<−、2・・・・真空材I
気口、3・・・・・観察窓、4・・・・・・レーザ管、
5・・・レーづ管」付着面、6・・・・・・光学部品、
7・・・・・・光学13品封着面、8・・・・・・イン
ジウム拡散防止材、9・・・・・・レー→ノ′発1辰領
域、1o・・・・・・インジウムワイヤ、11・・・・
高J?6波誘導コイル、12・・・・・・ノ;イロ検出
2i、13・・・・・・銅基板、14・・・・・・金蒸
着膜、16・・・・・封着91(,16・・・・・・非
封着部、17・・・・・・インジウム合金層。 代理人の氏名 弁理士 中 尾 敏 男 −1か1名第
1図 2 第2図 (出) (甚2
Fig. 1 is a cross-sectional view of a main part showing an embodiment of the present invention, and Fig. 2 is a cross-sectional view showing a sealing surface of an optical component after sealing. ) is provided. 1... Sealing channel <-, 2... Vacuum material I
Air port, 3...Observation window, 4...Laser tube,
5... Adhesion surface of the laser tube, 6... Optical components,
7...Sealing surface for 13 optical products, 8...Indium diffusion prevention material, 9...Ra → ノ' emission 1 area, 1o...Indium Wire, 11...
High J? 6-wave induction coil, 12...No; Color detection 2i, 13...Copper substrate, 14...Gold vapor deposited film, 16...Sealing 91 (, 16...Unsealed portion, 17...Indium alloy layer. Name of agent Patent attorney Toshi Nakao Male -1 or 1 person Figure 1 2 Figure 2 (excerpt) 2

Claims (1)

【特許請求の範囲】[Claims] レーザ管端部に元学部品全インジウムを用いて封着する
際、封着部と非封着部の境界にインジウムとぬれ性を生
しない材料を設けた後、インジウム封着を行うことを特
徴とするレーザ管の光学部品封着法。
When sealing the end of the laser tube using original all-indium, the indium sealing is performed after providing a material that does not wettability with indium at the boundary between the sealed and non-sealed parts. A method for sealing optical components in laser tubes.
JP9836183A 1983-06-02 1983-06-02 Sealing method of optical part for laser tube Pending JPS59222983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9836183A JPS59222983A (en) 1983-06-02 1983-06-02 Sealing method of optical part for laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9836183A JPS59222983A (en) 1983-06-02 1983-06-02 Sealing method of optical part for laser tube

Publications (1)

Publication Number Publication Date
JPS59222983A true JPS59222983A (en) 1984-12-14

Family

ID=14217736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9836183A Pending JPS59222983A (en) 1983-06-02 1983-06-02 Sealing method of optical part for laser tube

Country Status (1)

Country Link
JP (1) JPS59222983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174763U (en) * 1985-04-19 1986-10-30
JP2002359417A (en) * 2001-06-01 2002-12-13 Matsushita Electric Ind Co Ltd Sealed gas laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777281A (en) * 1970-08-03 1973-12-04 U Hochuli Seal and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777281A (en) * 1970-08-03 1973-12-04 U Hochuli Seal and method of making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174763U (en) * 1985-04-19 1986-10-30
JPH0445265Y2 (en) * 1985-04-19 1992-10-23
JP2002359417A (en) * 2001-06-01 2002-12-13 Matsushita Electric Ind Co Ltd Sealed gas laser
JP4639531B2 (en) * 2001-06-01 2011-02-23 パナソニック株式会社 Sealed gas laser device

Similar Documents

Publication Publication Date Title
US5226067A (en) Coating for preventing corrosion to beryllium x-ray windows and method of preparing
US4403243A (en) Semi-conductor laser apparatus with support and soldering means for light-transmitting member
JPH0643298A (en) Light transmission type vacuum separation window and soft x-ray transmission window
JP3298466B2 (en) Short arc type discharge lamp and method of manufacturing the same
JPH06119893A (en) Vacuum vessel having beryllium foil
JPS59222983A (en) Sealing method of optical part for laser tube
KR100343051B1 (en) Device and method for fuse-connection of material with high melting point
JP2002197973A (en) Window for admitting passage of electron beams and manufacturing method for window
JP3200657B2 (en) Infrared sensor
JP2006162535A (en) Electron beam tube
JPS58178580A (en) Sealing method for optical part of laser tube
JPH05275774A (en) Ion laser tube
JPH0484723A (en) Temperature measuring device for nonmetallic inorganic member and heating device utilizing temperature measuring device
JPH03242605A (en) Hermetic sealing structure of optical fiber introducing part
JP2697692B2 (en) Pigtails and how to make them
KR20190131209A (en) Quartz vacuum system
RU2760320C1 (en) Method for manufacturing a vacuum-tight beryllium outlet window
JPH0777612A (en) Device with brazing bond and preparation thereof
JPS5837706B2 (en) Gas Laser Kanno Mirror Fuchiyakuhouhou
JPH10281883A (en) Optical frequency reference cell
JPS60144932A (en) Molecular beam growth method of compound semiconductor crystal
JP2017058171A (en) X-ray detector and manufacturing method thereof
JPH0425659B2 (en)
JPS61160040A (en) Specimen cell for optical measuring device and its preparation
JPH05142046A (en) Light source at infrared ray wavelength region