JPS59222961A - Semiconductor nonvolatile memory - Google Patents
Semiconductor nonvolatile memoryInfo
- Publication number
- JPS59222961A JPS59222961A JP9718883A JP9718883A JPS59222961A JP S59222961 A JPS59222961 A JP S59222961A JP 9718883 A JP9718883 A JP 9718883A JP 9718883 A JP9718883 A JP 9718883A JP S59222961 A JPS59222961 A JP S59222961A
- Authority
- JP
- Japan
- Prior art keywords
- film
- insulating film
- channel
- gate electrode
- floating gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 11
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、低プログラム電圧でかつ信頼性の高い浮遊ゲ
ート型半導体不揮発注メモリに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating gate type semiconductor non-volatile memory with low programming voltage and high reliability.
まず、我々が以前に発明した低プログラムは圧のチャネ
ル注入浮遊ゲート型半導体不揮発性メモリについて説明
する。First, we will discuss the low program pressure channel injection floating gate semiconductor non-volatile memory that we previously invented.
第1図に、従来の半導体不揮発性メモリ(以下PACM
O8と呼ぶことにする)の一実施例の断面図を示す。従
来のP A O1110Elの構造及び動作原理’zN
チャネル型のメモリの場合について説明する。Figure 1 shows a conventional semiconductor non-volatile memory (PACM).
FIG. 3 shows a cross-sectional view of an embodiment of the invention (hereinafter referred to as O8). Structure and operating principle of conventional P A O1110El'zN
The case of channel type memory will be explained.
P型半導体基鈑1の表面にtq+領域のソース領域2と
ドレイン領域5を形成し、ソース・ドレイン領域間に2
つのチャネル領域、即ち、チャネルLl とチャネルL
2を形成する。第1のチャネルL+Lt、ソース領域2
に接し、ゲート酸化膜7の上に(″t−a択ゲート電極
5が形成される。、また、第2のチャネルLzl”tド
レイン領域5に接し、ゲート酸化膜6の上には浮遊ゲー
ト電極4が形成されている。浮遊ゲート電極4には、ド
レイン領域5とゲート絶縁1声6全介して強い容量結合
をしている。従って、浮遊ゲート電極4の電位は、ドレ
イン領域3に印加されるドレイン電圧VDと浮遊ゲート
電極4の中にある電荷の量によって決まる。A source region 2 and a drain region 5 in the tq+ region are formed on the surface of the P-type semiconductor substrate 1, and 2 regions are formed between the source and drain regions.
two channel regions, namely channel Ll and channel L
form 2. First channel L+Lt, source region 2
A floating gate electrode 5 is formed on the gate oxide film 7 and in contact with the second channel Lzl t drain region 5 and on the gate oxide film 6. An electrode 4 is formed.The floating gate electrode 4 has strong capacitive coupling through the drain region 5 and the gate insulator 6. Therefore, the potential of the floating gate electrode 4 is applied to the drain region 3. It is determined by the drain voltage VD applied and the amount of charge present in the floating gate electrode 4.
第1図より明らかなように、第1のチャネルL。As is clear from FIG. 1, the first channel L.
の表面電位は、選択ゲート電極5に印刀口される選択ゲ
ート「d圧■OGによって制御される。また、第2のチ
ャネルL2の電位は、浮遊ゲート電極4の中の電荷とド
レイン電IFVDによって制御される。The surface potential of the second channel L2 is controlled by the selection gate voltage OG stamped on the selection gate electrode 5.The potential of the second channel L2 is controlled by the charge in the floating gate electrode 4 and the drain voltage IFVD. controlled.
第1図のような構造のP A CM OSメ舌りの読み
出し方法について説明了る。第1のチ斗ネルL。This concludes the explanation of the method for reading out the PACM OS message having the structure as shown in FIG. The first channel L.
全反転せしめ、ドレイン′亀圧VDを印加し1こときの
ソース・ドレイン領域間のチャネルコンターフタンスを
検出することにより読み出され、る。即ち、浮遊ゲート
電極4の中に電子が多数入っている場合は、第2のチャ
ネルL2id低コンダクタンスになるため、ソース・ド
レイン領域間のチャネルのコンダクタンスも低くなる。It is read out by completely inverting the signal, applying a drain pressure VD, and detecting the channel contour between the source and drain regions. That is, when a large number of electrons are contained in the floating gate electrode 4, the conductance of the second channel L2id becomes low, and the conductance of the channel between the source and drain regions also becomes low.
逆に、浮遊ゲーha極4の中にあ壕9電子が入っていな
い場合には、浮遊ゲート電極4の下の第2のチャネルL
2は高コンダクタンスとなるために、ソース・ドレイン
領域間のチャネルのコンダクタンスも高くなる。Conversely, if there are no trench 9 electrons in the floating gate electrode 4, the second channel L under the floating gate electrode 4
Since the conductance of the transistor No. 2 is high, the conductance of the channel between the source and drain regions is also high.
次に、浮遊ゲート電極4へ電子全注入(以下プログラム
と呼ぶ)する方法について説明する。Next, a method for fully injecting electrons into the floating gate electrode 4 (hereinafter referred to as programming) will be described.
選択ゲート電圧として、第1のチャネルL1が反転する
程度の電圧全印加すると、第1の表面ポテンシャルはソ
ース領域2の電位とほぼ等しくなる。また、ドレイン領
域乙のプログラム電圧を印加すると、第2のチャネルL
2の表面ポテンシャルはプログラム電圧に近い電位にな
る。従って、第1と第2のチーヤネルが交わる半導体表
面部分にプログラム電圧にほぼ等しいポテンシャルギャ
ップが生じ、その結果、チャネル電流はそのポテンシャ
ルギャップにより加速され、その一部は浮遊ゲート電極
4に入る。When a full voltage is applied as the selection gate voltage to the extent that the first channel L1 is inverted, the first surface potential becomes approximately equal to the potential of the source region 2. Moreover, when the programming voltage of the drain region B is applied, the second channel L
The surface potential of 2 is close to the programming voltage. Therefore, a potential gap approximately equal to the programming voltage is generated in the semiconductor surface portion where the first and second channel intersect, and as a result, the channel current is accelerated by the potential gap, and a portion of it enters the floating gate electrode 4.
以上の説明のように、2つのチャネル領域間に生ずるポ
テンシャルギャップを利用しプログラムを行なうPAC
!MOSメモリの場合、よシ急なポテンシャルギャップ
を形成するために第1チヤネルLlの表面濃度は高く、
また、第1のチャネルL1の閾値電圧を下げるために、
ゲート酸化膜7は200X以下の薄い膜により形成され
ている。As explained above, PAC performs programming using the potential gap that occurs between two channel regions.
! In the case of MOS memory, the surface concentration of the first channel Ll is high to form a steep potential gap;
Also, in order to lower the threshold voltage of the first channel L1,
The gate oxide film 7 is formed of a thin film of 200× or less.
しかし、ゲート酸化膜7は、浮遊ゲート電極4を酸化す
るときに同時に形成している酸化膜であるために、薄膜
化しようとすると、浮遊ゲート電極4の上に形成される
酸化膜8も薄膜イヒされてしまい、その結果、第1図矢
印Bの如くに、一度プログラムさ力、た電子が酸化膜8
を介してぬけてしまい、寿命が短かくなる欠点を有して
いた。However, since the gate oxide film 7 is an oxide film that is formed simultaneously when the floating gate electrode 4 is oxidized, if an attempt is made to make it thin, the oxide film 8 formed on the floating gate electrode 4 will also become thin. As a result, as shown by arrow B in Figure 1, the electrons once programmed are transferred to the oxide film 8.
It has the disadvantage that it can escape through the process, shortening its lifespan.
本発明は、上記のような選択ゲート絶縁膜の薄膜化にと
もなう信頼性の低下という欠点全克服する穴めになされ
たものであり、選択ゲート絶縁膜の薄膜化を容易にする
とともに、信頼性の高いP A CM OSメモリを提
供するものである。The present invention has been made to overcome the above-mentioned drawback of reduced reliability due to thinning of the selection gate insulating film. This provides high P A CM OS memory.
第2図は、本発明の第1の実施例のPAOMOSメモリ
の断面図を示すものである。本発明のPAC!MOSメ
モリの構造fNグ゛ヤネル型の場合について説明する。FIG. 2 shows a cross-sectional view of the PAOMOS memory according to the first embodiment of the present invention. PAC of the present invention! The case of the fN channel type MOS memory structure will be explained.
P型の半導体基板110表面にN+導電型のソース領域
12及びドレイン領域13を形成する。N+ conductivity type source region 12 and drain region 13 are formed on the surface of P type semiconductor substrate 110.
ソース自ドレイン領域間のチャネル領域とドレイン領域
13の一部の上には、1ooX以下の二酸化ンリコン膜
16と100X以下のチッ化ンリコン膜17(il−形
成する。チン化ンリコン膜17の上に第2図の如く多結
晶ンリコンから成る浮遊ゲート電極14を形成する。次
に、浮遊ゲート電極14を酸化し、その時にチッ化j漠
17の上に形成される二酸化ンリコン膜18の上に、第
2図の如く選択ゲート電極15を設ける、
以上説明したように、本発明のP A OM OE!メ
モリの構造は、浮遊ゲート電極14の下の第2のチャネ
ルL2のゲート絶縁膜は、100A以下の二酸1ヒンリ
コン膜16と100X以下のチッ化シリコン膜17によ
り形成されており、選択ゲート電極15の下の第1のチ
ャネルL1のゲート絶縁膜は、第2のチャネルL2のゲ
ート絶縁膜と同時に形成される二酸化シリコン膜16と
チツ化シリコン膜17と力・らなる絶縁膜と、浮遊ゲー
ト電極14を酸化するときに同時に形成されるチツ化膜
の酸化膜18との複合膜で形成されている。浮遊ゲート
電極14の酸化の時に形成されるチツ化膜17の酸化膜
18は、100X以下と非常に薄く、一方、浮遊ゲート
電極14の酸化膜19は1000X以上簡単に厚くでき
る。これは、チツfヒシリコン膜17と浮遊ゲート電極
14の酸化速度が10倍以上異なるためである。従って
、第2図に示す如く、チャネルのゲート絶縁膜としてチ
ツ化ンリコン膜を用いることにより、浮遊ゲート電極1
4の酸化膜19を薄くせずに選択ゲート電極15のゲー
ト絶縁膜(二酸化ンリコンj漠16とチツ化シリコン膜
17と二酸[ヒシリコン膜18とから成る複合膜)を薄
くできる。従って、本発明によれば浮遊ゲート電極14
の酸化膜を容易に厚くできる構造であることから、浮遊
ゲート電極14から選択ゲート電極15への電子の揮発
を防ぐことができる。即ち、不揮発性メモリの寿命を長
くできる。On a part of the channel region and the drain region 13 between the source and drain regions, a silicon dioxide film 16 of 100X or less and a silicon nitride film 17 (il-) of 100X or less are formed. As shown in FIG. 2, a floating gate electrode 14 made of polycrystalline silicon is formed.Next, the floating gate electrode 14 is oxidized, and on the silicon dioxide film 18 formed on the nitride film 17 at that time, The selection gate electrode 15 is provided as shown in FIG. 2. As explained above, in the structure of the P AOM OE! The gate insulating film of the first channel L1 under the selection gate electrode 15 is the gate insulating film of the second channel L2. It is formed of a composite film of an insulating film consisting of a silicon dioxide film 16 and a silicon dioxide film 17 formed at the same time, and an oxide film 18 of a silicon dioxide film formed simultaneously when the floating gate electrode 14 is oxidized. The oxide film 18 of the silicon oxide film 17 formed during oxidation of the floating gate electrode 14 is very thin, less than 100X, while the oxide film 19 of the floating gate electrode 14 can be easily made thicker than 1000X. This is because the oxidation rates of the silicon film 17 and the floating gate electrode 14 are more than 10 times different.Therefore, as shown in FIG. Gate electrode 1
The gate insulating film of the selection gate electrode 15 (composite film consisting of silicon dioxide film 16, silicon dioxide film 17, and diacid film 18) can be made thinner without thinning the oxide film 19 of No. 4. Therefore, according to the present invention, the floating gate electrode 14
Since the structure allows the oxide film to be easily thickened, volatilization of electrons from the floating gate electrode 14 to the selection gate electrode 15 can be prevented. That is, the life of the nonvolatile memory can be extended.
また、選択ゲート電極15のゲート絶縁膜は容易に薄膜
化できることから、さらに高い基lfi濃度を第1のチ
ャネルL+ に使用することが可能になり、プログラム
電圧の低電圧化が容易になる。例えば、下地二酸化ンリ
コン膜167、(30A、チツ化シリコン膜17荀50
裏にすれば、プログラム電圧は容易に5V以下にできる
1、
第2図に示した本発明第1の実姉例の場合、第1のチャ
ネルLlのゲート絶縁膜を薄膜化していくと、選択ゲー
ト電圧として5v程度の電圧が基板11に対して印加さ
れると、基板11と選択ゲート電極15との間にトンネ
ル電流が流れ、その一部が、チツ化ンリコン;模17の
トラップさ)L。Further, since the gate insulating film of the selection gate electrode 15 can be easily made thin, a higher lfi concentration can be used for the first channel L+, and the programming voltage can be easily lowered. For example, the underlying silicon dioxide film 167, (30A, silicon dioxide film 17
In the case of the first practical example of the present invention shown in FIG. 2, if the gate insulating film of the first channel Ll is thinned, the selection gate When a voltage of about 5 V is applied to the substrate 11, a tunnel current flows between the substrate 11 and the selection gate electrode 15, and a portion of the tunnel current becomes a trap of silicon nitride (Model 17).
第1のチャネルLlの閾値電圧を父化する恐れがある。There is a risk that the threshold voltage of the first channel Ll will be reduced.
第3図に示した本発明第2の実施例は、第1のチャネル
L、の閾値の劣1ヒ企防ぐ構造になっている。即ち、浮
遊ゲート電極14を酸化したときに形成される千ッ化ン
リコン膜17の上の薄い酸化膜をエツチングした後に、
選択ゲート電極15を形成しである、第3図に示した本
発明第2の実施例の場合、第1のチャネルLLのゲート
絶縁膜を11シ膜化してトンネル電流が流れても、トン
ネル電流はほとんどチツ化膜17にトラップされずに選
択ゲー)1!li@15に到達するため、第1のチャネ
ルL、の閾値電圧の劣化は生じない。The second embodiment of the present invention shown in FIG. 3 has a structure that prevents the threshold value of the first channel L from being degraded. That is, after etching the thin oxide film on the phosphoric acid film 17 formed when the floating gate electrode 14 is oxidized,
In the case of the second embodiment of the present invention shown in FIG. 3 in which the selection gate electrode 15 is formed, even if the gate insulating film of the first channel LL is made into a 11-thick film and a tunnel current flows, the tunnel current will not flow. is almost not trapped by the dust film 17 and is a selection game) 1! Since li@15 is reached, no deterioration of the threshold voltage of the first channel L occurs.
以上説明したように、本発明によれば、PAcM OS
メモリのゲート絶縁膜としてチッ化シリコン1屡を用い
るため、選択ゲート電極下の絶縁膜の薄膜化及び、浮遊
ゲート電極と選択ゲート電極との絶縁膜を厚くすること
が容易にできるため、メモリの記憶の寿命を低下せずに
低プログラム電圧が可能になる。As explained above, according to the present invention, PAcM OS
Since silicon nitride is used as the memory gate insulating film, it is easy to thin the insulating film under the selection gate electrode and thicken the insulating film between the floating gate electrode and the selection gate electrode. Low program voltages are possible without reducing memory life.
第1図は、従来のPACMO8浮遊ゲート型不揮発性メ
モリの断面図、第2図は、本発明の第1の実姉例のPA
C!MOSメモリの断面図であり、第3図は、本発明第
2の実施例のp AC! M OE+メモリの断面図で
ある。
1.11・・・・・・半導体基板
2.12・・・・・・ソース領域
5.13・・・・・・ドレイン領域
4.14・・・・・・浮遊ゲーIE極
5.15・・・・・・選択ゲート電極
6.7,16.18 ・・・・・・二[1ヒシリコン
挨17 ・・・・・・・・・チッ化シリコン膜以
上
出願人 株式会社 鎖二精工舎
代理人 弁理士 最上 務FIG. 1 is a cross-sectional view of a conventional PACMO8 floating gate type nonvolatile memory, and FIG. 2 is a cross-sectional view of a PA of a first actual sister example of the present invention.
C! FIG. 3 is a cross-sectional view of a MOS memory, and FIG. 3 is a MOS memory according to a second embodiment of the present invention. FIG. 3 is a cross-sectional view of MOE+memory. 1.11... Semiconductor substrate 2.12... Source region 5.13... Drain region 4.14... Floating gate IE electrode 5.15. ...Selection gate electrodes 6.7, 16.18 ...2 [1 arsenic dust 17 ......Silicon nitride film or more]
Applicant: Kusani Seikosha Co., Ltd. Patent attorney: Tsutomu Mogami
Claims (1)
設けられた第1導′α型と異なる第2導電型のソース・
ドレイン領域と、前記ソース・ドレイン領域間の第1の
ゲート絶禄嘆を有する第1のチャネル電流と、前記ソー
ス・ドレイン領域間の第1のチャネル領域IJ外であり
、前記ドレイン領域に接する第2ゲート絶隙j摸金有す
る第2のチャネル領域と、前記第1ゲート絶縁膜上に設
けられた選択ゲート電極と、前記第2ゲート絶縁膜上に
設けられた浮遊ゲート電極とから成るとともに、チャネ
ル電流の一部が、KII記第1のチャネル領域と前記第
2のチャネル領域の接する前記半導体基4反表面から前
記ff遊ゲート電極へ注入される浮遊ゲート凋半導体不
運発注メモリにおいて、前記第2のゲート絶縁膜が10
[JA以下の二酸化ンリコン膜と100A以下のチッ化
シリコン膜との2層構造であると共に、前記第1のゲー
ト絶縁膜が前記第2のゲート絶縁膜と同時に形成された
絶縁膜層を含む構造であることを特徴とする半導体不揮
発性メモリ。Sources of a second conductivity type different from the first conductivity 'α type are provided at a distance from each other on the surface portion of the semiconductor substrate of the first conductivity type.
a first channel current having a drain region, a first gate current between the source and drain regions, and a first channel current located outside the first channel region IJ between the source and drain regions and in contact with the drain region; A second channel region having a two-gate gap, a selection gate electrode provided on the first gate insulating film, and a floating gate electrode provided on the second gate insulating film, In the floating gate semiconductor memory, a part of the channel current is injected from the opposite surface of the semiconductor substrate 4 where the first channel region and the second channel region are in contact with each other to the FF floating gate electrode. The gate insulating film of 2 is 10
[A structure in which the first gate insulating film includes an insulating film layer formed simultaneously with the second gate insulating film, which has a two-layer structure of a silicon dioxide film of JA or less and a silicon nitride film of 100 A or less. A semiconductor nonvolatile memory characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9718883A JPS59222961A (en) | 1983-06-01 | 1983-06-01 | Semiconductor nonvolatile memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9718883A JPS59222961A (en) | 1983-06-01 | 1983-06-01 | Semiconductor nonvolatile memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59222961A true JPS59222961A (en) | 1984-12-14 |
Family
ID=14185597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9718883A Pending JPS59222961A (en) | 1983-06-01 | 1983-06-01 | Semiconductor nonvolatile memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59222961A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007251183A (en) * | 2006-03-13 | 2007-09-27 | Silicon Storage Technology Inc | Nonvolatile flash memory cell of single gate |
-
1983
- 1983-06-01 JP JP9718883A patent/JPS59222961A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007251183A (en) * | 2006-03-13 | 2007-09-27 | Silicon Storage Technology Inc | Nonvolatile flash memory cell of single gate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5572054A (en) | Method of operating a single transistor non-volatile electrically alterable semiconductor memory device | |
JPH0418711B2 (en) | ||
JP2002043448A (en) | Integrated circuit and charge method of trap charge layer of memory cell | |
JPH02284473A (en) | Semiconductor integrated circuit device and its manufacture | |
JPS59222961A (en) | Semiconductor nonvolatile memory | |
JPH09260611A (en) | Electronic device | |
JP2001024077A (en) | Manufacture of flash memory cell | |
JP3512975B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS60182777A (en) | Nonvolatile semiconductor memory | |
JPS6037778A (en) | Mos non-volatile memory cell | |
JPH05267679A (en) | Semiconductor device and its manufacture | |
JPH0227773A (en) | Manufacture of nonvolatile semiconductor memory | |
JPS6314504B2 (en) | ||
JP2797466B2 (en) | Nonvolatile semiconductor memory device | |
JPH11274326A (en) | Nonvolatile memory device and its manufacture | |
JPS62229982A (en) | Semiconductor memory | |
JPS61174774A (en) | Manufacture of non-volatile semiconductor memory device | |
JPS63144577A (en) | Nonvolatile semiconductor storage device | |
JP2830808B2 (en) | Nonvolatile semiconductor memory device | |
JPH07183410A (en) | Nonvolatile semiconductor memory device | |
JPS58114459A (en) | Semiconductor non-volatile memory | |
JPS60144978A (en) | Semiconductor nonvolatile memory | |
JPH0352230B2 (en) | ||
JPH03242978A (en) | Semiconductor memory and manufacture thereof | |
JPS6329589A (en) | Semiconductor integrated circuit device |