JPS59222744A - High temperature tension tester - Google Patents

High temperature tension tester

Info

Publication number
JPS59222744A
JPS59222744A JP9570483A JP9570483A JPS59222744A JP S59222744 A JPS59222744 A JP S59222744A JP 9570483 A JP9570483 A JP 9570483A JP 9570483 A JP9570483 A JP 9570483A JP S59222744 A JPS59222744 A JP S59222744A
Authority
JP
Japan
Prior art keywords
pull rod
high temperature
lid
gap
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9570483A
Other languages
Japanese (ja)
Other versions
JPS6350651B2 (en
Inventor
Toshinori Ozaki
敏範 尾崎
Sueo Kawai
末男 河合
Tasuku Shimizu
翼 清水
Takuji Torii
鳥居 卓爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9570483A priority Critical patent/JPS59222744A/en
Publication of JPS59222744A publication Critical patent/JPS59222744A/en
Publication of JPS6350651B2 publication Critical patent/JPS6350651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To prevent the variations of the temperature difference portion in a high temperature testing by arranging a high temperature tank closed with a lid having a test piece mounting device inside and a dissimilar material inserted into a part of the clearance between a pull rod retaining a test piece and a sealed pressure tube. CONSTITUTION:A high temperature chamber 1 contained in an electric furnace 2 is closed with a lid 3 having a test piece mounting ring 5. A sealed pressure tube 9 with a water-cooled jacket 10 is provided outside the lid 3 while a mobile pull rod 11 is inside piercing the lid 3. A dissimilar material 13 is inserted into a part of a clearance 12 between the sealed pressure tube 9 and the pull rod 11 so as to allow a clearance with the pull rod 11. This prevents the generation of a violet convection phenomenon in the clearance 12 to check variations in the force aded to a test piece 14 and the elongation thereof with time thereby a high temperature tension testing at a high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温引張試験装置、特に高精度の高温引張試験
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-temperature tensile test device, and more particularly to a high-precision high-temperature tensile test device.

〔発明の背景〕[Background of the invention]

高温引張装置では、高温槽内に設けられた試験片への荷
重付加機構および圧力封止機構を低温側に設置する必要
があるばかpでなく、前記機構と高温槽との間には必ず
軸方向に温度差を生ずる部分が存在する。この場合、高
温部分が下方に、低温部分が上方にそれぞれ位置すると
、その温度差部分の周囲の流体には対流を生じ、この対
流は前記温度差部分を時間的に熱変形させる。この熱変
形は試験片への付加応力および試験片の伸びに悪影響を
与えるので、試験精度の低下を招く欠点がある。
In high-temperature tensile equipment, it is not necessary to install the load application mechanism for the test piece and the pressure sealing mechanism installed in the high-temperature chamber on the low-temperature side; instead, there is always a shaft between the mechanism and the high-temperature chamber. There are parts where there is a temperature difference in the direction. In this case, when the high temperature portion is located below and the low temperature portion is located above, convection occurs in the fluid surrounding the temperature difference portion, and this convection thermally deforms the temperature difference portion over time. This thermal deformation has a negative effect on the stress added to the test piece and the elongation of the test piece, resulting in a reduction in test accuracy.

〔発明の目的〕[Purpose of the invention]

本発明は上記にかんがみ試験片への付加応力および試験
片の伸びの時間的変動を防止し、試験精度の向上をはか
っことを目的とするものである。
In view of the above, it is an object of the present invention to prevent stress added to a test piece and temporal fluctuations in elongation of the test piece, and to improve test accuracy.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、上端面または下端
面に設けた開口部を、内側に試験片取付具を有するふた
によシ閉塞した高温槽と、そのふたの外側に取付けられ
、かつ水冷ジャケットを備える封圧管と、この封圧管内
に挿入され、かつ前記ふたを貫通して高温槽内に突出し
、この突出端部で試験を保持すると共に、軸方向に移動
可能に設けられたグルロッドと、このプルロッドおよび
前記封圧管の反高温槽側に取付け−られた封圧機構と、
前記プルロッドと封圧管との間に形成され、かつ軸方向
に温度差を有する隙間の一部に挿入した異材とからなる
ことを特徴とするものである。
In order to achieve the above object, the present invention provides a high-temperature chamber in which an opening provided on an upper end surface or a lower end surface is closed with a lid having a test piece holder inside, and a high-temperature chamber that is attached to the outside of the lid. A confinement tube provided with a water cooling jacket, and a glu rod inserted into the confinement tube, protruding through the lid into the high temperature chamber, holding the test at the protruding end, and movable in the axial direction. and a sealing mechanism attached to the pull rod and the sealing tube on the side opposite to the high temperature tank;
It is characterized by comprising a foreign material inserted into a part of the gap formed between the pull rod and the sealing tube and having a temperature difference in the axial direction.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、lは電気炉2によシ包囲され、上端面
に開口部1aを有する5US316製高温槽、3は高温
槽1の開口部1aをOリング4を介して閉塞するふたで
、このふた3の内側には突出部3aが設けられている。
In FIG. 1, 1 is a high-temperature tank made of 5US316 that is surrounded by the electric furnace 2 and has an opening 1a on the upper end surface; 3 is a lid that closes the opening 1a of the high-temperature tank 1 via an O-ring 4; A protrusion 3a is provided inside the lid 3.

5は前記突出部3aの先端に取付けられた試験片取付は
リング、6は試験片取付はリング5にナツト7を介して
取付けられた試験片取付具、8a、8bは前記ふた3に
取付けられたマザーループ接続パイプ、9はふた3の外
側面上に取付けられ、上部に水冷ジャケット10を備え
る封圧管、11は封圧管9内に挿入され、かつふた3を
貫通して高温槽1内に突出するプルロッドで、このプル
ロッド11は軸方向に移動可能に設けられている。
5 is a test piece mounting ring attached to the tip of the protrusion 3a, 6 is a test piece holder attached to the ring 5 via a nut 7, and 8a, 8b is a test piece mounting device attached to the lid 3. A mother loop connecting pipe 9 is attached to the outer surface of the lid 3 and a sealing tube with a water cooling jacket 10 on the upper part, 11 is inserted into the sealing tube 9 and passes through the lid 3 into the high temperature tank 1. A protruding pull rod 11 is provided so as to be movable in the axial direction.

12は封圧管9とプルロッド11との間に形成された隙
間で、この隙間12の一部、すなわち水冷ジャケラ)1
0の下端とふた3との間の隙間には異材13が挿入され
ている。この異材13としては、例えばステンレスウー
ル焼結部材が用いられるが、この焼結部材13は18−
9ステンレスの10μφ細線を高温で焼結したものであ
る。その細線間は互に局部的に接合した構造からなるの
で、細線は剥離を生じにくいばかシでなく、切削加工の
容易な材料である。14はプルロッド11の一端(図の
下端)と試験片取付具6の上端との間に保持された試験
片、15は封圧管9の頂部に取付けられたシール材、1
63〜16Cはプルロッド11とシール材15との間、
封圧管9とシール材15との間、プルロッド11と封圧
管9との間にそれぞれ設けられた0リングである。
12 is a gap formed between the sealing tube 9 and the pull rod 11, and a part of this gap 12, that is, a water cooling jacket) 1
A foreign material 13 is inserted into the gap between the lower end of the cover 3 and the lid 3. As this foreign material 13, for example, a stainless wool sintered member is used.
9 stainless steel wire with a diameter of 10μφ is sintered at high temperature. Since the thin wires have a structure in which they are locally bonded to each other, the thin wires are not a fragile material that does not easily peel off, and are an easy material to cut. 14 is a test piece held between one end of the pull rod 11 (lower end in the figure) and the upper end of the test piece holder 6; 15 is a sealing material attached to the top of the confining tube 9;
63 to 16C are between the pull rod 11 and the sealing material 15;
These are O-rings provided between the sealing tube 9 and the sealing material 15 and between the pull rod 11 and the sealing tube 9, respectively.

上記プルロッド11は応力付与機構(図示せず)によυ
、上下動されて試験片14に応力を付与する。この応力
および試験片14の変位量(伸び)は、前記応力付与機
構とプルロッドとの間に設けられたロードセル(図示せ
ず)およびプルロッド11の上部に取付けられた差動ト
ランス(図示せず)によシ測定可能に構成されている。
The pull rod 11 is operated by a stress applying mechanism (not shown).
, are moved up and down to apply stress to the test piece 14. This stress and the amount of displacement (elongation) of the test piece 14 are determined by a load cell (not shown) provided between the stress applying mechanism and the pull rod and a differential transformer (not shown) attached to the upper part of the pull rod 11. It is designed to be measurable.

上部した不笑施例(たソし、隙間12内に異材13を挿
入しないもの)を用い、高温槽1内にマザーループ(図
示せず)より接続パイプ8aを経て85 kg−1/c
rn”の純水を尋人し、その高温槽1を電気炉2により
250Cに保持した。ついで、プルロッド11を上方に
一定量移動させると共に、試験片14に500kg−f
の荷重を付加し、その経時変化を測定した。その結果は
第2図に示すとおシで委り、この図より測定荷重および
測定伸びは時間と共にランダムに変化し、その最大変化
量は50kg−fであった。
Using a top-mounted structure (without inserting a foreign material 13 into the gap 12), 85 kg-1/c was passed from the mother loop (not shown) into the high temperature tank 1 through the connecting pipe 8a.
The high temperature bath 1 was maintained at 250C in the electric furnace 2.Then, the pull rod 11 was moved upward by a certain amount, and the test piece 14 was heated at 500 kg-f.
A load was applied to the test piece, and its change over time was measured. The results are shown in Figure 2, which shows that the measured load and elongation changed randomly over time, and the maximum amount of change was 50 kg-f.

上記のようなランダム変化を生ずる理由を知るため、第
3図に示すように水冷ジャケット10の下面および高温
槽1のふた3の上面間の封圧管9の表面に熱電対17を
取付け、との熱電対17をリード線19を介して温度記
録計18に接続し、前記封圧管9の温度を測定した。
In order to understand the reason for the above random changes, a thermocouple 17 was attached to the surface of the sealing tube 9 between the bottom surface of the water cooling jacket 10 and the top surface of the lid 3 of the high temperature tank 1, as shown in FIG. A thermocouple 17 was connected to a temperature recorder 18 via a lead wire 19, and the temperature of the sealing tube 9 was measured.

その測定結果は第4図に示すとおシであフ、この図のt
o〜t3はそれぞれ0,5,12.17分における封圧
管9の長手方向の温度分布曲線である。第4図よシ封圧
管9内の温度変化は、時間と共に複雑に変化しているこ
とがわかる。その変動周期および測定荷重と測定伸びと
の関係から、封圧管9とプルロッド11との間の隙間1
2内では激しい対流現象が発生しているためと思われる
The measurement results are shown in Figure 4.
o to t3 are temperature distribution curves in the longitudinal direction of the sealing tube 9 at 0, 5, and 12.17 minutes, respectively. It can be seen from FIG. 4 that the temperature inside the sealing pressure tube 9 changes in a complicated manner with time. From the relationship between the fluctuation period, the measured load, and the measured elongation, the gap 1 between the confining pressure tube 9 and the pull rod 11
This is thought to be due to the intense convection phenomenon occurring within 2.

そして、熱変動に伴うプルロッド11または封圧管9の
熱変形が上記現象に反映されたものと理解される。
It is understood that thermal deformation of the pull rod 11 or the sealing tube 9 due to thermal fluctuations is reflected in the above phenomenon.

そこで、本実施例では上記現象を防止するため、前述し
たように封圧管9とプルロッド11との間の隙間12の
一部に異材、すなわちステンレスウール焼結部材13を
挿入すると共に、プルロッド11と前記焼結部材13と
の間に0.08mの隙間を形成し、その両者11.13
が仮に接触しても、その摺動抵抗が1kg−f程度とな
るようにした。
Therefore, in this embodiment, in order to prevent the above phenomenon, a foreign material, that is, a stainless wool sintered member 13 is inserted into a part of the gap 12 between the sealing tube 9 and the pull rod 11 as described above, and the pull rod 11 and A gap of 0.08 m is formed between the sintered member 13 and the sintered member 13.
Even if they come into contact, the sliding resistance is about 1 kg-f.

その結果、封圧管9の外表面の温度分布は第4図の曲線
toに示すようになだらかとなり、時間変化は全く認め
られなかった。同様に測定された荷重変化は2kg−f
以下であシ、また試験片14の伸び変化量は測定限界以
下であった。したがって、本実施例によれば、引張試験
の精度を向上させることができるので、高温下における
5SRT試験および疲労試験への適用が可能となる。
As a result, the temperature distribution on the outer surface of the confining pressure tube 9 became gentle as shown by the curve to in FIG. 4, and no change with time was observed. Similarly measured load change is 2kg-f
The amount of change in elongation of test piece 14 was below the measurement limit. Therefore, according to this example, the accuracy of the tensile test can be improved, so that it can be applied to 5SRT tests and fatigue tests at high temperatures.

上記第1実施例では、異材13としてステンレスウール
焼結部材を用いたが、これに代シ軸方向および半径方向
への移動または変形自在で断熱性の高いリング、例えば
5US304ステンレス鋼製またはテフロン製のリング
を用いてもよい。このリングは板厚を0.2または0.
8mに形成すると共に、リングとプルロッドとの間の隙
間を0.4または0.1 trtmとなし、この隙間内
に前記リングを軸方向に8個設け、第1実施例と同様に
して荷重の時間変化を測定した。
In the above first embodiment, a stainless wool sintered member was used as the foreign material 13, but a ring with high heat insulation properties that is movable or deformable in the axial and radial directions, for example, made of 5US304 stainless steel or Teflon, is used instead. A ring may also be used. This ring has a plate thickness of 0.2 or 0.
8 m, the gap between the ring and the pull rod is 0.4 or 0.1 trtm, and eight rings are provided in this gap in the axial direction, and the load is controlled in the same manner as in the first embodiment. Changes over time were measured.

その結果、いずれの場合でも隙間内にリングを設けるこ
とにより、荷重変動は2kg−f以下となって優れた効
果かえられた。特に板厚0.8調のテフロン製リングを
用い、このリングとプルロッドとの間の隙間を0.1閣
にした場合には、最も優れた効果かえられた。
As a result, in all cases, by providing a ring within the gap, the load fluctuation was reduced to 2 kg-f or less, and an excellent effect was obtained. In particular, the most excellent effect was obtained when a Teflon ring with a thickness of 0.8 was used and the gap between the ring and the pull rod was set to 0.1.

一方、板厚0.2喘のステンレス鋼製リングを用いた場
合およびそのリングとプルロッドとの間の隙間を0.4
rranにした場合には、荷重変動は増加する傾向が認
められた。
On the other hand, when using a stainless steel ring with a plate thickness of 0.2 mm, the gap between the ring and the pull rod is 0.4 mm.
When it was set to rran, it was observed that the load fluctuation tended to increase.

上記結果よp、本実施例によれば、(1)リングとプル
ロッドとの間の隙間において対流現象が発生するのを防
止し、(10リングと封圧管との間の隙間において対流
を生じても、その熱変化をプルロッドに伝達しにく\し
、(i+D ’Jングと封圧管およびプルロッドとの間
の隙間をそれぞれ小さくすることによシ、対流の発生を
防止できることが判明した。
According to the above results, according to this example, (1) convection is prevented from occurring in the gap between the ring and the pull rod, and (10) convection is prevented from occurring in the gap between the ring and the sealing tube. However, it has been found that the generation of convection can be prevented by making it difficult for the heat change to be transmitted to the pull rod and by reducing the gaps between the sealing tube and the pull rod.

次に他の実施例として、第1実施例(第1図)における
水冷ジャケット10の下部より高温槽ふた3の下面まで
のプルロッド11の断面形状を第5図のように形成した
。すなわち前記プルロッド11に幅4輔、深さ2mmの
溝20を軸方向に4個設けると共に、封圧管9の外側に
防風壁(図示せず)を設けた。その他の構造は第1実施
例と同一であるから、図面および説明を省略する。
Next, as another example, the cross-sectional shape of the pull rod 11 from the lower part of the water cooling jacket 10 to the lower surface of the high temperature tank lid 3 in the first example (Fig. 1) was formed as shown in Fig. 5. That is, four grooves 20 each having a width of 4 mm and a depth of 2 mm were provided in the pull rod 11 in the axial direction, and a windbreak wall (not shown) was provided on the outside of the sealing tube 9. The rest of the structure is the same as the first embodiment, so drawings and explanations will be omitted.

このような実施例において、水温を20:l:0.2C
VC調節された水を水冷ジャケット内に流量300±2
 ml / min供給し、第1実施例と同様にして試
験を行ったところ、荷重変動は2〜4kg、fであった
。この場合、封圧管外周の温度は、その軸方向では第4
図の曲線1oで示すようになだらかに変化しているが、
円周方向では90cごとに最高と最低となるように変化
した。これよシ、隙間に対流現象を発生しているが、上
記のようにプルロッドに溝を設けることにょシ、定常的
な対流を生じていることが予想され、プルロッドの熱変
形に対する時間依存性のないことがわかる。
In such an embodiment, the water temperature is 20:1:0.2C.
Flow rate of VC-regulated water into the water cooling jacket is 300±2
When a test was conducted in the same manner as in the first example by supplying ml/min, the load fluctuation was 2 to 4 kg, f. In this case, the temperature at the outer periphery of the confining pressure tube is the fourth in the axial direction.
As shown by curve 1o in the figure, it changes gently,
In the circumferential direction, it changed to the highest and lowest values every 90 cm. In this case, a convection phenomenon is generated in the gap, but by providing a groove in the pull rod as described above, it is expected that a steady convection is generated, and the time dependence of the thermal deformation of the pull rod is expected to occur. It turns out that there isn't.

前記第1実施例は、試験片14を保持するプルロッド1
1が、高温槽1の上端面に設けた開口部1aを閉塞する
ふた3を貫通し、高温槽1の上方に位置するように構成
したが、これと逆にプルロッドが高温槽の下端面に設け
た開口部を閉塞するふたを貫通し、高温槽の下方に位置
するように構成してもよい。
The first embodiment has a pull rod 1 that holds a test piece 14.
1 passes through the lid 3 that closes the opening 1a provided on the upper end surface of the high temperature tank 1, and is positioned above the high temperature tank 1.However, in contrast to this, the pull rod is inserted into the lower end surface of the high temperature tank 1. It may be constructed so that it passes through a lid that closes the provided opening and is located below the high temperature bath.

このように構成した本実施例を用い、第1実施例と同様
にして試験を行った結果、荷重変動は0.5kg−f以
下であった。また第1実施例では荷重繰返し速度を3H
2としたとき、荷重変動は0.8kg−fであるのに対
し、本実施例では依然として0.5kg−fであった。
Using this example configured as described above, a test was conducted in the same manner as in the first example, and as a result, the load fluctuation was 0.5 kg-f or less. In addition, in the first embodiment, the load repetition rate was set to 3H.
2, the load variation was 0.8 kg-f, whereas in this example it was still 0.5 kg-f.

これは、高温槽を上方位置に設置することにょシ、対流
現象が原理的に発生しにく\なるばかシでなく、プルロ
ッドの移動に伴って流体が移動するのを防止できるから
である。
This is not because the convection phenomenon is theoretically less likely to occur if the high temperature tank is installed in an upper position, but also because it is possible to prevent the fluid from moving as the pull rod moves.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、試験片への付加応
力および試験片の伸びの時間変動を防止し、試験精度の
向上をはかることができる。
As explained above, according to the present invention, it is possible to prevent stress added to a test piece and time fluctuations in elongation of the test piece, and improve test accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高温引張試験装置の一実施例を示す断
面図、第2図は封圧管外周面の温度測定時の荷重と伸び
を示す図、第3図は封圧管外周面の温度測定方法を示す
図、第4図は封圧管外周面の温度測定結果を示す図、第
5図は本発明に係わる他の実施例のプルロッドの断面図
である。 工・・・高温槽、1a・・・開口部、3・・・ふた、6
・・・試験片取付具、9・・・封圧管、1o・・・水冷
ジャケット、11・・・プルロッド、12・・・隙間、
13・・・異材、第1 回 χ 2 日 第 3 a
Fig. 1 is a sectional view showing an embodiment of the high temperature tensile test device of the present invention, Fig. 2 is a view showing the load and elongation during temperature measurement on the outer circumferential surface of the confining tube, and Fig. 3 is a diagram showing the temperature on the outer circumferential surface of the confining tube. FIG. 4 is a diagram showing the measurement method, FIG. 4 is a diagram showing the temperature measurement results on the outer circumferential surface of the confining tube, and FIG. 5 is a sectional view of a pull rod according to another embodiment of the present invention. Engineering...high temperature tank, 1a...opening, 3...lid, 6
...Test specimen fixture, 9...Containment tube, 1o...Water cooling jacket, 11...Pull rod, 12...Gap,
13...Different materials, 1st χ 2nd day 3rd a

Claims (1)

【特許請求の範囲】 1、上端面または下端面に設けた開口部を、内側に試験
片取付具を有するふたによシ閉塞した高温槽と、そのふ
たの外側に取付けられ、かつ水冷ジャケットを備える封
圧管と、この封圧管内に挿入され、かつ前記ふたを貫通
して高温槽内に突出し、この突出端部で試験片を保持す
ると共に、軸方向に移動可能に設けられたプルロッドと
、このプルロッドおよび前記封圧管の反高温槽側に取付
けられた封圧機構と、前記プルロッドと封圧管との間に
形成され、かつ軸方向に温度差を有する隙間の一部に挿
入した異材とからなることを特徴とする高温引張試験装
置。 2、上記異材としてステンレスウール焼結部材を用いる
ことを特徴とする特許請求の範囲第1項記載の高温引張
試験装置。 3、上記隙間内に軸方向および半径方向への移MIJJ
または変形自在で断熱性を有するリングを挿入し、前記
隙間をプルロッドとリングとの間およびリングと封圧管
との間の各隙間に区分し、かつ前者の隙間内の流体抵抗
を後者の隙間内の流体抵抗よシ小さくしたことを特徴と
する特許請求の範囲第1項または第2項記載の高温引張
試験装置。 4、上記プルロッドの外周面に溝を軸方向に複数個設け
、軸方向および円周方向の温度分布を外部条件によシ変
動しないように構成し、前記プルロッドと封圧管との間
の隙間内の対流が前記溝内で定常的に生ずるようにした
ことを特徴とする特許請求の範囲第1項ないし第3項記
載のうちの任意の一項記載の高温引張試験装置。
[Scope of Claims] 1. A high-temperature chamber with an opening provided on the upper end surface or the lower end surface closed by a lid having a test piece holder inside, and a water-cooling jacket attached to the outside of the lid. a sealing tube, a pull rod inserted into the sealing tube, protruding into the high temperature chamber through the lid, holding a test piece at the protruding end, and movable in the axial direction; This pull rod and the sealing pressure mechanism attached to the opposite side of the high temperature tank of the sealing tube, and a foreign material inserted into a part of the gap formed between the pull rod and the sealing tube and having a temperature difference in the axial direction. A high temperature tensile test device characterized by: 2. The high-temperature tensile test device according to claim 1, wherein a stainless wool sintered member is used as the foreign material. 3. Transfer MIJJ in the axial and radial directions within the above gap.
Alternatively, a deformable ring having heat insulation properties is inserted, and the gap is divided into gaps between the pull rod and the ring and between the ring and the sealing pipe, and the fluid resistance in the former gap is reduced by the fluid resistance in the latter gap. 3. A high temperature tensile test device according to claim 1 or 2, characterized in that the fluid resistance is reduced. 4. A plurality of grooves are provided in the axial direction on the outer peripheral surface of the pull rod so that the temperature distribution in the axial and circumferential directions does not vary depending on external conditions, and the grooves are formed in the gap between the pull rod and the confining tube. 4. A high-temperature tensile testing apparatus according to any one of claims 1 to 3, characterized in that convection of 100% is generated steadily within the groove.
JP9570483A 1983-06-01 1983-06-01 High temperature tension tester Granted JPS59222744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9570483A JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9570483A JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Publications (2)

Publication Number Publication Date
JPS59222744A true JPS59222744A (en) 1984-12-14
JPS6350651B2 JPS6350651B2 (en) 1988-10-11

Family

ID=14144887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9570483A Granted JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Country Status (1)

Country Link
JP (1) JPS59222744A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285703A (en) * 2006-04-12 2007-11-01 Nippon Steel Corp High-temperature tensile testing jig
CN102410957A (en) * 2011-07-25 2012-04-11 西北工业大学 Test sample and method for testing performance parameters of pipe under complex stress state
CN105115827A (en) * 2015-09-23 2015-12-02 中国航天空气动力技术研究院 Combined testing device for rocket pressurization flange and pipeline in high-temperature environment
KR20200097159A (en) * 2019-02-07 2020-08-18 한국기초과학지원연구원 Apparatus for testing tension

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352184U (en) * 1976-10-06 1978-05-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352184U (en) * 1976-10-06 1978-05-04

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285703A (en) * 2006-04-12 2007-11-01 Nippon Steel Corp High-temperature tensile testing jig
JP4700546B2 (en) * 2006-04-12 2011-06-15 新日本製鐵株式会社 High temperature tensile test jig
CN102410957A (en) * 2011-07-25 2012-04-11 西北工业大学 Test sample and method for testing performance parameters of pipe under complex stress state
CN105115827A (en) * 2015-09-23 2015-12-02 中国航天空气动力技术研究院 Combined testing device for rocket pressurization flange and pipeline in high-temperature environment
KR20200097159A (en) * 2019-02-07 2020-08-18 한국기초과학지원연구원 Apparatus for testing tension

Also Published As

Publication number Publication date
JPS6350651B2 (en) 1988-10-11

Similar Documents

Publication Publication Date Title
US7704324B2 (en) Apparatus for processing materials in supercritical fluids and methods thereof
JP2015145871A (en) Device for irradiation of samples in core or at periphery of core of reactor
Lee et al. Enhanced flow boiling heat transfer on chromium coated zircaloy-4 using cold spray technique for accident tolerant fuel (ATF) materials
US7273316B2 (en) Device and method for thermogravimetrically testing the behavior of a solid material
JPS59222744A (en) High temperature tension tester
Kato et al. Temperature measurement of workpieces in conventional surface grinding
Levitan et al. Investigating burnout with flow of a steam--water mixture in a round tube
Magee et al. High-temperature adiabatic calorimeter for constant-volume heat capacity measurements of compressed gases and liquids
Nagy et al. Infrared observation of ballooning and burst of nuclear fuel cladding tubes
CN114935410A (en) Temperature measuring device and measuring method suitable for rapid temperature rise in loss of coolant accident
US2969674A (en) Measuring apparatus and method
da Silva et al. Emissivity measurements on shape memory alloys
US3077505A (en) High temperature thermocouple
Lin et al. Heat transfer investigation of air flow in microtubes—Part II: Scale and axial conduction effects
JPS62113042A (en) Material tester
Carden Thermal fatigue evaluation
Yokogawa et al. Apparatus for creep rupture testing in high‐pressure hydrogen at elevated temperatures
US20240145108A1 (en) In-situ temperature-controlled active instrumentation capsule for materials irradiation testing
Kear Apparatus for the Deformation of Foils at Elevated Temperatures in an Electron Microscope
O'Boyle et al. Simple High Temperature Compression Testing Apparatus
US3200647A (en) Best available copy
Hyde et al. A rig for creep and thermal ratchet testing of lead alloy models
SU1174787A1 (en) Method and apparatus for measuring quantity of heat
RU41864U1 (en) THERMOELECTRIC CONVERTER
Williams Effect of cold work on the thermal conductivity of copper