JPS6350651B2 - - Google Patents

Info

Publication number
JPS6350651B2
JPS6350651B2 JP58095704A JP9570483A JPS6350651B2 JP S6350651 B2 JPS6350651 B2 JP S6350651B2 JP 58095704 A JP58095704 A JP 58095704A JP 9570483 A JP9570483 A JP 9570483A JP S6350651 B2 JPS6350651 B2 JP S6350651B2
Authority
JP
Japan
Prior art keywords
pull rod
lid
tube
cooling jacket
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58095704A
Other languages
Japanese (ja)
Other versions
JPS59222744A (en
Inventor
Toshinori Ozaki
Sueo Kawai
Tasuku Shimizu
Takuji Torii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9570483A priority Critical patent/JPS59222744A/en
Publication of JPS59222744A publication Critical patent/JPS59222744A/en
Publication of JPS6350651B2 publication Critical patent/JPS6350651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温引張試験装置、特に高精度の高温
引張試験装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-temperature tensile test device, and more particularly to a high-precision high-temperature tensile test device.

〔発明の背景〕[Background of the invention]

高温引張装置では、高温槽内に設けられた試験
片への荷重付加機構および圧力封止機構を低温側
に設置する必要があるばかりでなく、前記機構と
高温槽との間には必ず軸方向に温度差を生ずる部
分が存在する。この場合、高温部分が下方に、低
温部分が上方にそれぞれ位置すると、その温度差
部分の周囲の流体には対流を生じ、この対流は前
記温度差部分を時間的に熱変形させる。この熱変
形は試験片への付加応力および試験片の伸びに悪
影響を与えるので、試験精度の低下を招く欠点が
ある。
In high-temperature tensile equipment, not only is it necessary to install the load application mechanism and pressure sealing mechanism for the test piece in the high-temperature chamber on the low-temperature side, but also there must be an axial connection between the mechanism and the high-temperature chamber. There are parts that cause temperature differences. In this case, when the high temperature portion is located below and the low temperature portion is located above, convection occurs in the fluid surrounding the temperature difference portion, and this convection thermally deforms the temperature difference portion over time. This thermal deformation has a negative effect on the stress added to the test piece and the elongation of the test piece, resulting in a reduction in test accuracy.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑み試験片への付加応力および
試験片の伸びの時間的変動を防止し、試験精度の
向上を図ることを目的とするものである。
In view of the above, it is an object of the present invention to prevent stress added to a test piece and temporal fluctuations in elongation of the test piece, and to improve test accuracy.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、上端面ま
たは下端面に設けた開口部を、内側に試験片取付
具を有するふたにより閉塞した高温槽と、そのふ
たの外側に取付けられ、かつ水冷ジヤケツトを備
える封圧管と、この封圧管内に挿入され、かつ前
記ふたを貫通して高温槽内に突出し、この突出端
部で試験片を保持すると共に、軸方向に移動可能
に設けられたプルロツドと、このプルロツドおよ
び前記封圧管の反高温槽側に取付けられた封圧機
構と、前記プルロツドと封圧管との間に形成され
る隙間の内前記水冷ジヤケツト下端から前記ふた
に至る区間(この区間は軸方向に温度差を有す
る。尚水冷ジヤケツトよりも上部は低温域であつ
て温度分布を生じない)に挿入した異材とからな
ることを特徴とするものである。
In order to achieve the above object, the present invention provides a high-temperature chamber in which an opening provided on the upper end surface or the lower end surface is closed by a lid having a test piece holder inside, and a water-cooling jacket attached to the outside of the lid. a confinement tube, which is inserted into the confinement tube and protrudes into the high-temperature chamber through the lid, holds a test piece at the protruding end, and is movable in the axial direction; , this pull rod and the sealing pressure mechanism attached to the opposite side of the high temperature tank of the sealing tube, and the section from the lower end of the water cooling jacket to the lid within the gap formed between the pull rod and the sealing tube (this section is There is a temperature difference in the axial direction.The upper part of the water-cooled jacket is in a low-temperature region and does not produce a temperature distribution.

以下の本願明細書中において異材とは要するに
プルロツド及び封圧管とは別の第3の部品(部
材)をいう。即ちこの部材(異材)は隙間内の高
温水の移動を流体力学的に減少させる能力を有し
かつプルロツドの移動障害とならないような部材
であつて、本発明で採用するものはステンレスウ
ールに代表されるウール状焼結部材或いはリング
状物である。リング状物を採用する場合は、軸方
向及び半径方向への移動または変形が自在なかつ
断熱性を有することが条件であり、しかもプルロ
ツドとの間に隙間を形成させる必要がある。
In the following specification of the present application, the term "different material" basically refers to a third component (member) different from the pull rod and the sealing tube. In other words, this member (different material) has the ability to hydrodynamically reduce the movement of high-temperature water within the gap and does not impede the movement of the pull rod, and the material used in the present invention is typically stainless wool. It is a wool-like sintered member or a ring-like product. When a ring-shaped member is used, it must be able to move or deform freely in the axial and radial directions, and have heat insulating properties, and it is also necessary to form a gap between it and the pull rod.

尚、上記プルロツドの外周面に溝を軸方向に複
数個設け、軸方向および円周方向の温度分布を外
部条件により変動しないように構成し、前記プル
ロツドと封圧管との間の隙間内の対流が前記溝内
で定常的に生ずるように構成することが好まし
い。
In addition, a plurality of grooves are provided in the axial direction on the outer peripheral surface of the pull rod so that the temperature distribution in the axial and circumferential directions does not change due to external conditions, and the convection in the gap between the pull rod and the confining tube is It is preferable that the structure is such that it occurs constantly within the groove.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は電気炉2により包囲さ
れ、上端面に開口部1aを有するSUS316製高温
槽、3は高温槽1の開口部1aをOリング4を介
して閉塞するふたで、このふた3の内側には突出
部3aが設けられている。5は前記突出部3aの
先端に取付けられた試験片取付けリング、6は試
験片取付けリング5にナツト7を介して取付けら
れた試験片取付具、8a,8bは前記ふた3に取
付けられたマザーループ接続パイプ、9はふた3
の外側面上に取付けられ、上部に水冷ジヤケツト
10を備える封圧管、11は封圧管9内に挿入さ
れ、かつふた3を貫通して高温槽1内に突出する
プルロツドで、このプルロツド11は軸方向に移
動可能に設けられている。
In Fig. 1, 1 is a high-temperature tank made of SUS316 that is surrounded by an electric furnace 2 and has an opening 1a on the upper end surface, and 3 is a lid that closes the opening 1a of the high-temperature tank 1 via an O-ring 4. A protrusion 3a is provided on the inside of 3. 5 is a test piece attachment ring attached to the tip of the protrusion 3a, 6 is a test piece attachment tool attached to the test piece attachment ring 5 via a nut 7, and 8a and 8b are mother plates attached to the lid 3. Loop connection pipe, 9 is lid 3
A confining tube 11 is installed on the outer surface of the confining tube and has a water cooling jacket 10 on the top thereof, and a pull rod 11 is inserted into the confining tube 9 and protrudes into the high temperature bath 1 through the lid 3. This pull rod 11 is attached to the shaft It is provided so that it can be moved in the direction.

12は封圧管9とプルロツド11との間に形成
された隙間で、この隙間12の一部、すなわち水
冷ジヤケツト10の下端とふた3との間の隙間に
は異材13が挿入されている。この異材13とし
ては、例えばステンレスウール焼結部材が用いら
れるが、この焼結部材13は18―9ステンレスの
10μφ細線を高温で焼結したものである。その細
線間は互に局部的に接合した構造からなるので、
細線は剥離を生じにくいばかりでなく、切削加工
の容易な材料である。14はプルロツド11の一
端(図の下端)と試験片取付具6の上端との間に
保持された試験片、15は封圧管9の頂部に取付
けられたシール材、16a〜16cはプルロツド
11とシール材15との間、封圧管9とシール材
15との間、プルロツド11と封圧管9との間に
それぞれ設けられたOリングである。
12 is a gap formed between the sealing tube 9 and the pull rod 11, and a foreign material 13 is inserted into a part of this gap 12, that is, the gap between the lower end of the water cooling jacket 10 and the lid 3. As this different material 13, for example, a stainless wool sintered member is used, but this sintered member 13 is made of 18-9 stainless steel.
It is made by sintering 10μφ fine wire at high temperature. Since the thin wires are made up of a structure in which they are locally joined to each other,
Thin wire is a material that is not only difficult to peel off, but also easy to cut. 14 is a test piece held between one end of the pull rod 11 (lower end in the figure) and the upper end of the test piece holder 6; 15 is a sealing material attached to the top of the confining tube 9; 16a to 16c are the pull rods 11 and These O-rings are respectively provided between the sealing material 15, between the sealing tube 9 and the sealing material 15, and between the pull rod 11 and the sealing tube 9.

上記プルロツド11は応力付与機構(図示せ
ず)により、上下動されて試験片14に応力を付
与する。この応力および試験片14の変位量(伸
び)は、前記応力付与機構とプルロツドとの間に
設けられたロードセル(図示せず)およびプルロ
ツド11の上部に取付けられた差動トランス(図
示せず)により測定可能に構成されている。
The pull rod 11 is moved up and down by a stress applying mechanism (not shown) to apply stress to the test piece 14. This stress and the amount of displacement (elongation) of the test piece 14 are determined by a load cell (not shown) installed between the stress applying mechanism and the pull rod and a differential transformer (not shown) installed at the top of the pull rod 11. It is configured to be measurable.

上述した本実施例(たゞし、隙間12内に異材
13を挿入しないもの)を用い、高温槽1内にマ
ザーループ(図示せず)より接続パイプ8aを経
て85Kg・f/cm2の純水を導入し、その高温槽1を
電気炉2により250℃に保持した。ついで、プル
ロツド11を上方に一定量移動させると共に、試
験片14に500Kg・fの荷重を付加し、その経時
変化を測定した。その結果は第2図に示すとおり
であり、この図より測定荷重および測定伸びは時
間と共にランダムに変化し、その最大変化量は50
Kg・fであつた。
Using the above-mentioned embodiment (in which the foreign material 13 is not inserted into the gap 12), a pure air of 85 kg f/cm 2 is introduced into the high temperature tank 1 from the mother loop (not shown) through the connecting pipe 8a. Water was introduced, and the high temperature bath 1 was maintained at 250°C using an electric furnace 2. Next, the pull rod 11 was moved upward by a certain amount, and a load of 500 kg·f was applied to the test piece 14, and its change over time was measured. The results are shown in Figure 2, which shows that the measured load and elongation change randomly over time, and the maximum amount of change is 50%.
It was Kg・f.

上記のようなランダム変化を生ずる理由を知る
ため、第3図に示すように水冷ジヤケツト10の
下面および高温槽1のふた3の上面間の封圧管9
の表面に熱電対17を取付け、この熱電対17を
リード線19を介して温度記録計18に接続し、
前記封圧管9の温度を測定した。
In order to understand the reason for the above-mentioned random changes, as shown in FIG.
A thermocouple 17 is attached to the surface of the thermocouple 17, and this thermocouple 17 is connected to a temperature recorder 18 via a lead wire 19.
The temperature of the sealing tube 9 was measured.

その測定結果は第4図に示すとおりであり、こ
の図のt0〜t3はそれぞれ0,5,12,17分におけ
る封圧管9の長手方向の温度分布曲線である。第
4図より封圧管9内の温度変化は、時間と共に複
雑に変化していることがわかる。その変動周期お
よび測定荷重と測定伸びとの関係から、封圧管9
とプルロツド11との間の隙間12内では激しい
対流現象が発生しているためと思われる。そし
て、熱変動に伴うプルロツド11または封圧管9
の熱変形が上記現象に反映されたものと理解され
る。
The measurement results are shown in FIG. 4, where t0 to t3 are temperature distribution curves in the longitudinal direction of the confinement tube 9 at 0, 5, 12, and 17 minutes, respectively. It can be seen from FIG. 4 that the temperature within the confining tube 9 changes in a complicated manner with time. From the fluctuation period and the relationship between the measured load and the measured elongation, the confining tube 9
This is thought to be due to the intense convection phenomenon occurring within the gap 12 between the pull rod 11 and the pull rod 11. The pull rod 11 or sealing tube 9 due to thermal fluctuations
It is understood that the thermal deformation of is reflected in the above phenomenon.

そこで、本実施例では上記現象を防止するた
め、前述したように封圧管9とプルロツド11と
の間の隙間12の一部に異材、すなわちステンレ
スウール焼結部材13を挿入すると共に、プルロ
ツド11と前記焼結部材13との間に0.08mmの隙
間を形成し、その両者11,13が仮に接触して
も、その摺動抵抗が1Kg・f程度となるようにし
た。
Therefore, in this embodiment, in order to prevent the above phenomenon, a foreign material, that is, a stainless wool sintered member 13, is inserted into a part of the gap 12 between the sealing tube 9 and the pull rod 11 as described above, and the pull rod 11 and A gap of 0.08 mm was formed between the sintered member 13 and the sliding resistance was about 1 kg·f even if the two 11 and 13 were to come into contact with each other.

その結果、封圧管9の外表面の温度分布は第4
図の曲線t0に示すようになだらかとなり、時間変
化は全く認められなかつた。同様に測定された荷
重変化は2Kg・f以下であり、また試験片14の
伸び変化量は測定限界以下であつた。したがつ
て、本実施例によれば、引張試験の精度を向上さ
せることができるので、高温下におけるSSRT試
験および疲労試験への適用が可能となる。
As a result, the temperature distribution on the outer surface of the sealing tube 9 is
As shown by the curve t 0 in the figure, the curve was gentle, and no change over time was observed at all. The load change measured in the same manner was less than 2 kg·f, and the amount of elongation change of the test piece 14 was less than the measurement limit. Therefore, according to this example, the accuracy of the tensile test can be improved, so that it can be applied to SSRT tests and fatigue tests at high temperatures.

上記第1実施例では、異材13としてステンレ
スウール焼結部材を用いたが、これに代り軸方向
および半径方向への移動または変形自在で断熱性
の高いリング、例えばSUS304ステンレス鋼製ま
たはテフロン製のリングを用いてもよい。このリ
ングは板厚を0.2または0.8mmに形成すると共に、
リングとプルロツドとの間の隙間を0.4または0.1
mmとしてこのリングを軸方向に8個設け、第1実
施例と同様にして荷重の時間変化を測定した。
In the first embodiment described above, a stainless wool sintered member was used as the foreign material 13, but instead of this, a ring with high heat insulation properties that is movable or deformable in the axial and radial directions, such as SUS304 stainless steel or Teflon, can be used. A ring may also be used. This ring is formed with a plate thickness of 0.2 or 0.8 mm, and
The gap between the ring and the pull rod is 0.4 or 0.1
8 of these rings were provided in the axial direction, and the change in load over time was measured in the same manner as in the first example.

その結果、いずれの場合でも隙間内にリングを
設けることにより、荷重変動は2Kg・f以下とな
つて優れた効果がえられた。特に板厚0.8mmのテ
フロン製リングを用い、このリングとプルロツド
との間の隙間を0.1mmにした場合には、最も優れ
た効果がえられた。
As a result, in all cases, by providing a ring in the gap, the load fluctuation was less than 2 kg·f, and an excellent effect was obtained. In particular, the best effect was obtained when a Teflon ring with a thickness of 0.8 mm was used and the gap between the ring and the pull rod was 0.1 mm.

一方、板厚0.2mmのステンレス鋼製リングを用
いた場合およびそのリングとプルロツドとの間の
隙間を0.4mmにした場合には、荷重変動は増加す
る傾向が認められた。
On the other hand, when a stainless steel ring with a plate thickness of 0.2 mm was used and when the gap between the ring and the pull rod was set to 0.4 mm, a tendency for load fluctuation to increase was observed.

上記結果より、本実施例によれば、(i)リングと
プルロツドとの間の隙間において対流現象が発生
するのを防止し、(ii)リングと封圧管との間の隙間
において対流を生じても、その熱変化をプルロツ
ドに伝達しにくゝし、(iii)リングと封圧管およびプ
ルロツドとの間の隙間をそれぞれ小さくすること
により、対流の発生を防止できることが判明し
た。
From the above results, according to this example, (i) convection is prevented from occurring in the gap between the ring and the pull rod, and (ii) convection is prevented from occurring in the gap between the ring and the sealing tube. It has also been found that (iii) the generation of convection can be prevented by making it difficult for the heat change to be transmitted to the pull rod, and (iii) by reducing the gaps between the ring, the confining tube, and the pull rod.

次に他の実施例として、第1実施例(第1図)
における水冷ジヤケツト10の下部より高温槽ふ
た3の下面までのプルロツド11の断面形状を第
5図のように形成した。すなわち前記プルロツド
11に幅4mm、深さ2mmの溝20を軸方向に4個
設けると共に、封圧管9の外側に防風壁(図示せ
ず)を設けた。その他の構造は第1実施例と同一
であるから、図面および説明を省略する。
Next, as another example, the first example (Fig. 1)
The cross-sectional shape of the pull rod 11 from the lower part of the water cooling jacket 10 to the lower surface of the high temperature tank lid 3 was formed as shown in FIG. That is, four grooves 20 each having a width of 4 mm and a depth of 2 mm were provided in the pull rod 11 in the axial direction, and a windbreak wall (not shown) was provided on the outside of the confining tube 9. The other structures are the same as those in the first embodiment, so drawings and explanations will be omitted.

このような実施例において、水温を20±0.2℃
に調節された水を水冷ジヤケツト内に流量300±
2ml/min供給し、第1実施例と同様にして試験
を行つたところ、荷重変動は2〜4Kg・fであつ
た。この場合、封圧管外周の温度は、その軸方向
では第4図の曲線t0で示すようになだらかに変化
しているが、円周方向では90℃ごとに最高と最低
となるように変化した。これより、隙間に対流現
象を発生しているが、上記のようにプルロツドに
溝を設けることにより、定常的な対流を生じてい
ることが予想され、プルロツドの熱変形に対する
時間依存性のないことがわかる。
In such an embodiment, the water temperature is 20±0.2℃.
The flow rate of water adjusted to 300± into the water cooling jacket
When a test was conducted in the same manner as in the first example with a supply of 2 ml/min, the load fluctuation was 2 to 4 kg·f. In this case, the temperature at the outer periphery of the confining pressure tube changes gently in the axial direction as shown by the curve t0 in Figure 4, but in the circumferential direction it changes with maximum and minimum values every 90°C. . From this, convection phenomenon occurs in the gap, but by providing the groove in the pull rod as described above, it is expected that steady convection occurs, and there is no time dependence on the thermal deformation of the pull rod. I understand.

前記第1実施例は、試験片14を保持するプル
ロツド11が、高温槽1の上端面に設けた開口部
1aを閉塞するふた3を貫通し、高温槽1の上方
に位置するように構成したが、これと逆にプルロ
ツドが高温槽の下端面に設けた開口部を閉塞する
ふたを貫通し、高温槽の下方に位置するように構
成してもよい。
The first embodiment is configured such that the pull rod 11 holding the test piece 14 passes through the lid 3 that closes the opening 1a provided on the upper end surface of the high temperature bath 1 and is positioned above the high temperature bath 1. However, on the contrary, the pull rod may be configured to pass through a lid that closes an opening provided on the lower end face of the high temperature tank and be located below the high temperature tank.

このように構成した本実施例を用い、第1実施
例と同様にして試験を行つた結果、荷重変動は
0.5Kg・f以下であつた。また第1実施例では荷
重繰返し速度を3Hzとしたとき、荷重変動は0.8
Kg・fであるのに対し、本実施例では依然として
0.5Kg・fであつた。これは、高温槽を上方位置
に設置することにより、対流現象が原理的に発生
しにくゝなるばかりでなく、プルロツドの移動に
伴つて流体が移動するのを防止できるからであ
る。
Using this example configured in this way, tests were conducted in the same manner as in the first example, and as a result, the load fluctuation was
It was less than 0.5Kg・f. Furthermore, in the first embodiment, when the load repetition rate is 3Hz, the load fluctuation is 0.8
Kg・f, but in this example it is still
It was 0.5Kg・f. This is because by installing the high temperature tank in an upper position, not only is it theoretically difficult for convection to occur, but also it is possible to prevent the fluid from moving as the pull rod moves.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、試験片へ
の付加応力および試験片の伸びの時間変動を防止
し、試験精度の向上をはかることができる。
As described above, according to the present invention, it is possible to prevent stress added to a test piece and time fluctuations in the elongation of the test piece, thereby improving test accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高温引張試験装置の一実施例
を示す断面図、第2図は封圧管外周面の温度測定
時の荷重と伸びを示す図、第3図は封圧管外周面
の温度測定方法を示す図、第4図は封圧管外周面
の温度測定結果を示す図、第5図は本発明に係わ
る他の実施例のプルロツドの断面図である。 1…高温槽、1a…開口部、3…ふた、6…試
験片取付具、9…封圧管、10…水冷ジヤケツ
ト、11…プルロツド、12…隙間、13…異
材、14…試験片、15…シール材、20…溝。
Fig. 1 is a sectional view showing an embodiment of the high temperature tensile test device of the present invention, Fig. 2 is a view showing the load and elongation during temperature measurement on the outer circumferential surface of the confining tube, and Fig. 3 is a diagram showing the temperature on the outer circumferential surface of the confining tube. FIG. 4 is a diagram showing the measurement method, FIG. 4 is a diagram showing the temperature measurement results on the outer peripheral surface of the confining tube, and FIG. 5 is a sectional view of a pull rod according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... High temperature tank, 1a... Opening, 3... Lid, 6... Test piece fixture, 9... Sealing tube, 10... Water cooling jacket, 11... Pull rod, 12... Gap, 13... Dissimilar material, 14... Test piece, 15... Seal material, 20...groove.

Claims (1)

【特許請求の範囲】 1 上端面または下端面に設けた開口部を、内側
に試験片取付具を有するふたにより閉塞した高温
槽と、そのふたの外側に取付けられ、かつ水冷ジ
ヤケツトを備える封圧管と、この封圧管内に挿入
され、かつ前記ふたを貫通して高温槽内に突出
し、この突出端部で試験片を保持すると共に、軸
方向に移動可能に設けられたプルロツドと、この
プルロツドおよび前記封圧管の反高温槽側に取付
けられた封圧機構と、前記プルロツドと封圧管と
の間に形成される隙間の内前記水冷ジヤケツト下
面から前記ふたに至る区間内に挿入した部材とか
らなり、かつ該部材としてウール状焼結部材を用
いることを特徴とする高温引張試験装置。 2 上端面または下端面に設けた開口部を、内側
に試験片取付具を有するふたにより閉塞した高温
槽と、そのふたの外側に取付けられ、かつ水冷ジ
ヤケツトを備える封圧管と、この封圧管内に挿入
され、かつ前記ふたを貫通して高温槽内に突出
し、この突出端部で試験片を保持すると共に、軸
方向に移動可能に設けられたプルロツドと、この
プルロツドおよび前記封圧管の反高温槽側に取付
けられた封圧機構と、前記プルロツドと封圧管と
の間に形成される隙間の内前記水冷ジヤケツト下
面から前記ふたに至る区間内に軸方向および半径
方向への移動または変形自在で断熱性を有するリ
ングを前記プルロツドとの間に隙間が形成される
ように挿入したことを特徴とする高温引張試験装
置。
[Scope of Claims] 1. A high-temperature bath whose opening provided on the upper end surface or the lower end surface is closed by a lid having a test specimen fixture inside, and a sealing tube attached to the outside of the lid and equipped with a water-cooling jacket. a pull rod inserted into the confining tube, protruding through the lid into the high temperature chamber, holding the test piece at the protruding end, and movable in the axial direction; It consists of a sealing mechanism attached to the opposite side of the sealing tube to the high temperature tank, and a member inserted into the section from the lower surface of the water cooling jacket to the lid within the gap formed between the pull rod and the sealing tube. , and a wool-like sintered member is used as the member. 2. A high-temperature bath whose opening provided on the upper end surface or lower end surface is closed by a lid having a test specimen fixture on the inside, a confining tube attached to the outside of the lid and equipped with a water cooling jacket, and a confining tube equipped with a water cooling jacket. a pull rod that is inserted into the tube and protrudes into the high temperature chamber through the lid, holds the test piece at the protruding end, and is movable in the axial direction; A sealing mechanism attached to the tank side and a gap formed between the pull rod and the sealing tube, which is movable or deformable in the axial and radial directions within the section from the lower surface of the water cooling jacket to the lid. A high-temperature tensile testing apparatus characterized in that a ring having heat insulating properties is inserted such that a gap is formed between the ring and the pull rod.
JP9570483A 1983-06-01 1983-06-01 High temperature tension tester Granted JPS59222744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9570483A JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9570483A JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Publications (2)

Publication Number Publication Date
JPS59222744A JPS59222744A (en) 1984-12-14
JPS6350651B2 true JPS6350651B2 (en) 1988-10-11

Family

ID=14144887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9570483A Granted JPS59222744A (en) 1983-06-01 1983-06-01 High temperature tension tester

Country Status (1)

Country Link
JP (1) JPS59222744A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700546B2 (en) * 2006-04-12 2011-06-15 新日本製鐵株式会社 High temperature tensile test jig
CN102410957B (en) * 2011-07-25 2014-04-02 西北工业大学 Test sample and method for testing performance parameters of pipe under complex stress state
CN105115827B (en) * 2015-09-23 2018-09-14 中国航天空气动力技术研究院 Rocket is pressurized flange and pipeline hot environment combined test device
KR102174619B1 (en) * 2019-02-07 2020-11-05 한국기초과학지원연구원 Apparatus for testing tension

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352184U (en) * 1976-10-06 1978-05-04

Also Published As

Publication number Publication date
JPS59222744A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US4590326A (en) Multi-element thermocouple
Ross et al. Heat transfer coefficient between UO 2 and Zircaloy-2
US5242226A (en) Temperature-measuring instrument
Van der Meer Stagnation point heat transfer from turbulent low Reynolds number jets and flame jets
US5880365A (en) Thermal mass flow sensor
Lee et al. Enhanced flow boiling heat transfer on chromium coated zircaloy-4 using cold spray technique for accident tolerant fuel (ATF) materials
US3862574A (en) Adjusting the temperature of a radiation furnace
US3864232A (en) Apparatus for Monitoring the Oxygen Content of High Temperature Fluids
JPS6350651B2 (en)
US5171517A (en) Method for monitoring corrosion on a member in a nuclear reactor core
SU649305A3 (en) Method of manufacturing sheet glass
US3650505A (en) Thermal valve
Gotoh et al. A gold/platinum thermocouple reference table
CN108469414A (en) A kind of Portable visual heater and cooler device suitable for high-temperature high-voltage reaction
US20200300384A1 (en) Vacuum bellows hot valve
CN208532882U (en) A kind of bell furnace of volume inner core multi-point Temperature Collection
US5122330A (en) Sensor for monitoring corrosion on a member in a nuclear reactor core
Elrod et al. Boiling heat-transfer data at low heat flux
CN215865539U (en) Thermocouple and radiometer combined temperature measuring mechanism
US3077505A (en) High temperature thermocouple
SU1236328A1 (en) Solid-expansion thermometer
JPS60108302A (en) Recombination instrument
GB957429A (en) Improvements in thermocouples
RU41864U1 (en) THERMOELECTRIC CONVERTER
CN114136631B (en) High-temperature mechanical property measuring equipment for aeroengine vacuum bellows assembly