JPS59221684A - Ultrasonic distance measuring device - Google Patents

Ultrasonic distance measuring device

Info

Publication number
JPS59221684A
JPS59221684A JP9495383A JP9495383A JPS59221684A JP S59221684 A JPS59221684 A JP S59221684A JP 9495383 A JP9495383 A JP 9495383A JP 9495383 A JP9495383 A JP 9495383A JP S59221684 A JPS59221684 A JP S59221684A
Authority
JP
Japan
Prior art keywords
gain
amplifier
circuit
output
variable gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9495383A
Other languages
Japanese (ja)
Inventor
Takeshi Aizawa
毅 相澤
Koichi Iwata
耕一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9495383A priority Critical patent/JPS59221684A/en
Publication of JPS59221684A publication Critical patent/JPS59221684A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/529Gain of receiver varied automatically during pulse-recurrence period

Abstract

PURPOSE:To select an optimum gain automatically and measure the distance to a body to be measured by increasing the gain of a variable gain amplifier gradually from a minimum valve. CONSTITUTION:The gain of the variable gain amplifier 12 is set to the minimum under the command of a CPU. An ultrasonic wave is reflected by the body to be measured and detected by a receiving sensor, an only an ultrasonic wave frequency component is passed through a band-pass filter 7 and amplified by the variable gain amplifier 12. At this time, when the output of the amplifier 12 does not attains to a threshold level set in a comparator 9, the comparator 9 sets an unmeasurable flag as a CPU signal x2, and the CPU clears a counter to increase the amplifier gain slightly with the command of an input x1 to a gain converting circuit 13, and outputs a measurement command gain. The series of operations is repeated by a trigger latch circuit 11 until a measurement end output is generated.

Description

【発明の詳細な説明】 本発明は超音波距離測定装置に関する。[Detailed description of the invention] The present invention relates to an ultrasonic distance measuring device.

超音波比II測定装置は第1図に示すようにCPUIか
らの指令によりロジック回路2を制御して発信回路3を
駆動し発信センサ4からパルス状に超音波を被測定物に
向けて発信し、一方杖測定物にて反射した超音波を受信
センサ5で検出し受信回路6にて受はロジック回路2を
介してCPUIに信号を送、DCPUIにて発信時と受
信時との間の時間を測定して被測定物までの距離をはか
るものである。この構成に基づいて距離測定を行なうタ
イミングチャートラ第2図に示す。第2図(A)は時間
測定のためのカウンタ基本クロック、(B)はCPUI
からの計測指令信号、(C)は計測指令に基づき発信さ
れた超音波信号、(D)は超音波が被測定物から反射し
て戻った場合の受信超音波、(E)はこの受信超音波か
らのラッチ信号、(F)はカウンタエネーブル、(G)
は発信から受@までのカラ/タフロックである。
As shown in Fig. 1, the ultrasonic ratio II measuring device controls the logic circuit 2 based on commands from the CPUI to drive the transmitting circuit 3, and transmits pulsed ultrasonic waves from the transmitting sensor 4 toward the object to be measured. On the other hand, the receiving sensor 5 detects the ultrasonic waves reflected by the object to be measured, and the receiving circuit 6 sends a signal to the CPUI via the logic circuit 2, and the DCPUI detects the time between the time of transmission and the time of reception. The distance to the object to be measured is determined by measuring the distance. A timing chart for distance measurement based on this configuration is shown in FIG. Figure 2 (A) is the counter basic clock for time measurement, (B) is the CPU
(C) is the ultrasonic signal transmitted based on the measurement command, (D) is the received ultrasonic wave when the ultrasonic wave is reflected from the object to be measured, and (E) is this received ultrasonic signal. Latch signal from sound wave, (F) counter enable, (G)
is a Kara/tough rock from sending to receiving @.

また、第3図は第1図に示す受信回路6の構成を示し、
被測定物からの反射波を受信した場合、受信センサから
の出力信号は第3囚に示すようにバンドパスフィルタ7
を介して超音波信号の周波数帯域のもののみ抽出され、
ついで増幅器8で増幅され、比較器9にて適宜なスレッ
シュホルドレベルと比較して被反射波とノイズ信号とを
区別し、更に波形整形回路10を通ってトリガラッチ回
路11にて超音波受信時のトリガが出力されラッチされ
る。
Further, FIG. 3 shows the configuration of the receiving circuit 6 shown in FIG. 1,
When a reflected wave from the object to be measured is received, the output signal from the receiving sensor is passed through the bandpass filter 7 as shown in the third figure.
Only the frequency band of the ultrasound signal is extracted through
The signal is then amplified by an amplifier 8, compared with an appropriate threshold level by a comparator 9 to distinguish reflected waves from noise signals, and further passed through a waveform shaping circuit 10 to a trigger latch circuit 11 to generate an ultrasonic signal at the time of ultrasonic reception. A trigger is output and latched.

以上に示す回路構成において、被測定物に超音波を発射
し物体からの反射波を検出することによシ、被測定物ま
での距離を測定する装置では、受信回路6に必要な超音
波信号とノイズが入力される。
In the circuit configuration shown above, in the device that measures the distance to the object to be measured by emitting ultrasonic waves to the object and detecting the reflected waves from the object, the ultrasonic signal required for the receiving circuit 6 is and noise is input.

受信センサ5の出力レベルは超音波センナから被測定物
までの距離によって、第4図に示す如く大幅に変動する
。第4図のグラフの縦軸線受信センナの出力レベルであ
り、横軸はセンナから被測定物までの距離であって、同
図の如く変動幅は、距離りが数十C11I〜数軍の範囲
でも、波長が約r cmの超音波では数十倍も変動する
The output level of the receiving sensor 5 varies significantly depending on the distance from the ultrasonic sensor to the object to be measured, as shown in FIG. The vertical axis of the graph in Figure 4 is the output level of the receiving sensor, and the horizontal axis is the distance from the sensor to the object to be measured. However, in the case of ultrasonic waves with a wavelength of approximately r cm, the variation varies by several tens of times.

他方、センサの機械的振動や発信センサから受信センサ
に直接入り込む超音波周波数成分はノイズとなって受信
回路6にとり込まれる。このノイズは得べき超音波信号
に近いレベルを持つためにノイズか否かを判別する手段
が必要になる。
On the other hand, mechanical vibrations of the sensor and ultrasonic frequency components directly entering the receiving sensor from the transmitting sensor become noise and are taken into the receiving circuit 6. Since this noise has a level close to the ultrasonic signal to be obtained, a means for determining whether it is noise or not is required.

従来では、信号かノイズかの判別は第5図に示スように
スレッシュホルドレベルVTHを設定し、比較器9によ
って増幅器8の出力とスレッシュホルドレベルVTRと
を単に比較して犬/J)4!41定でのみ行なっていた
。かかる場合、遠距離の被測定物を測定するためにたと
えば増幅器8のアンプゲインを第5図(A)の如く大き
く取ったとき、超音波周波数成分のノイズまでも大きく
増幅してしまい、七のノイズがスレッシュホルドレベル
を越えると、比較器9の出力は誤信号となり、トリガラ
ッチ回路11にて第5図CB)に示すパルスが出て誤測
定となる。また、上述の誤測定を防止するため増幅器8
のアンプゲインを第5図(C)の如く小さくしかも被測
定物までの距離が大きくなると、受信センナの出力レベ
ルが低下し、増幅器8の出力レベルが第5図CD)のよ
うにスレッシュホルドレベルVrnヲMえられず、距離
測定が不可能になる。
Conventionally, a signal or noise is determined by setting a threshold level VTH as shown in FIG. 5, and simply comparing the output of the amplifier 8 with the threshold level VTR using a comparator 9. !It was only done at 41 fixed. In such a case, when the amplifier gain of the amplifier 8 is increased as shown in FIG. 5(A) in order to measure a long-distance object, even the noise of the ultrasonic frequency component will be greatly amplified, resulting in the seventh problem. When the noise exceeds the threshold level, the output of the comparator 9 becomes an erroneous signal, and the trigger latch circuit 11 outputs a pulse as shown in FIG. 5 CB), resulting in erroneous measurement. In addition, in order to prevent the above-mentioned erroneous measurements, the amplifier 8
When the amplifier gain of the amplifier 8 becomes small as shown in Figure 5 (C) and the distance to the object to be measured increases, the output level of the receiving sensor decreases, and the output level of the amplifier 8 reaches the threshold level as shown in Figure 5 (CD). VrnwoM cannot be obtained and distance measurement becomes impossible.

そこで、本発明は上述の欠点に鑑み、距離測定が不可能
になったシノイズによる誤測定を防止するために新たな
超音波距離測定装置の提供を目的とする。
Therefore, in view of the above-mentioned drawbacks, the present invention aims to provide a new ultrasonic distance measuring device in order to prevent erroneous measurements due to noise that makes distance measurement impossible.

かかる目的を達成する本発明はCPUの指令により発信
回路を制御して発信センサから超音波パルスを発射し、
一方杖測定物からの反射波を受信センナで検出し受信回
路で受信して、被測定物までの距離を測定する超音波距
離測定装置において、上記受信回路では、上記受信セン
サの出力波形から所定の周波数成分波形だけを取フ出す
バンドパスフィルタと、このバンドパスフィルタの出力
を可変ゲインをもって増幅する可変ゲインアンプと、こ
の可変ゲインアンプの出カドスレッシュホルドレベルと
を比較して小信号成分を除去する比較器と、この比較器
の出力をラッチするトリガラッチ回路と、上記CPUか
らの信号で上記可変ゲインアンプのゲインを変換するゲ
イン変換回路とを有し、上記ゲイン変換@路により上記
可変ゲインアンプのゲインを最小値から徐々に増加し最
適ゲインを自動的に選択して上記被測定物までの距離を
測定したことを特徴とする。
The present invention achieves the above object by controlling a transmitting circuit according to a command from a CPU to emit an ultrasonic pulse from a transmitting sensor,
On the other hand, in an ultrasonic distance measuring device that measures the distance to the object by detecting the reflected wave from the object to be measured by a receiving sensor and receiving it by a receiving circuit, the receiving circuit uses a predetermined waveform from the output waveform of the receiving sensor to measure the distance to the object. A bandpass filter that extracts only the frequency component waveform of It has a comparator to remove, a trigger latch circuit to latch the output of this comparator, and a gain conversion circuit to convert the gain of the variable gain amplifier using a signal from the CPU, and the variable gain is changed by the gain conversion@path. The present invention is characterized in that the distance to the object to be measured is measured by gradually increasing the gain of the amplifier from the minimum value and automatically selecting the optimum gain.

ここでJ6図以下を参照して本発明の詳細な説明する。The present invention will now be described in detail with reference to Figure J6 and subsequent figures.

なお、第6図において第3図と同一部分には同一符号を
付す。受信回路6は受信センサからの超音波受信信号が
入力され、まずバンドパスフィルタ7にて所定の超音波
周波数成分のみを取り出す。つぎに、このバンドパスフ
ィルタ7の出力を可変ゲインアンプ12に入力させる。
In FIG. 6, the same parts as in FIG. 3 are given the same reference numerals. The receiving circuit 6 receives an ultrasonic reception signal from the receiving sensor, and first extracts only a predetermined ultrasonic frequency component using a bandpass filter 7. Next, the output of the bandpass filter 7 is input to the variable gain amplifier 12.

可変ゲインアンプ12でにゲイン変換回路13からの信
号によジグインが変化される。この可変ゲインアンプ1
2とグ、イン変換回路13との具体的回路を第7図およ
び第8図に示す。
In the variable gain amplifier 12, the jig-in is changed by a signal from the gain conversion circuit 13. This variable gain amplifier 1
7 and 8 show specific circuits of the input conversion circuit 13 and the input conversion circuit 13.

第7図(A)は可変ゲインアンプでちゃ、演算増幅器1
4を係数回路として用い抵抗器R8とRfとの比により
増幅度を変える回路を示す。この回路では帰還抵抗器R
fと並列にFBT15を接続し、FB715のゲート電
圧によタチャンネルを制御して抵抗値を変化させている
。したがって、帰還合成抵抗がゲート電圧で制御され、
増幅率を変化させている。
Figure 7 (A) is a variable gain amplifier, operational amplifier 1.
4 as a coefficient circuit and changes the amplification degree by the ratio of resistors R8 and Rf. In this circuit, the feedback resistor R
An FBT 15 is connected in parallel with f, and the gate voltage of FB 715 controls the main channel to change the resistance value. Therefore, the feedback composite resistance is controlled by the gate voltage,
The amplification rate is changed.

第7図(B)は第7図(A)に示す回路にゲート電圧を
加えるためのゲイン変換回路13である。
FIG. 7(B) shows a gain conversion circuit 13 for applying a gate voltage to the circuit shown in FIG. 7(A).

ゲイン変換回路13の入力はCPU(第1図参照)から
の指令であハこの指令はディジタル・アナログ変換器1
6に入力されて、ディジタル信号に応じたアナログ信号
としている。このアナログ信号は演算増幅器17に入力
されここでは前述したのと同様のRf/R8による増幅
が行なわれる。ついで、演算増幅器17の次段ではイン
バータ18が配置される。したがって、この回路ではC
PUの出方に応じ次アナログ電圧が出力される。
The input to the gain conversion circuit 13 is a command from the CPU (see Figure 1).This command is sent to the digital-to-analog converter 1.
6, and it becomes an analog signal corresponding to the digital signal. This analog signal is input to the operational amplifier 17, where it is amplified by Rf/R8 similar to that described above. Next, an inverter 18 is arranged at the next stage of the operational amplifier 17. Therefore, in this circuit, C
The next analog voltage is output depending on the output of the PU.

第8図(A)は第7図(A)の変形例で演算増幅器14
の帰還抵抗器としては、抵抗器RとスイッチGとの直列
体t−2個並死に接続し、しかも更に並列に短絡スイッ
チG、を接続したものである。このスイッチG、 、 
G、 、 G、の適宜な組合せの開閉制御で帰還抵抗値
を変化でき、増幅率を変えることができる。この場合、
スイッチGと抵抗器Rは2個備えたが、その個数は特に
問題はない。
FIG. 8(A) is a modification of FIG. 7(A) and shows an operational amplifier 14.
As the feedback resistor, t-2 series bodies of resistors R and switches G are connected in parallel, and a shorting switch G is further connected in parallel. This switch G, ,
The feedback resistance value can be changed by controlling the opening and closing of an appropriate combination of G, , G, and the amplification factor can be changed. in this case,
Although two switches G and two resistors R are provided, there is no particular problem with their number.

第8図CB)は第8図(A)に示す回路のスイッチを制
御するゲイン変換回路13であって、CPUからの指令
を入力としてロジック回路19にてこの指令信号が解読
されスイッチの開閉指令信号が作られる。ロジック回路
19の次段にはそれぞれのスイッチGt、 G、 、 
G4に対応してバッファ20 a * 20 b e 
20 cが配置され記憶されスイッチGt、 G8. 
G4が制御される〇第6図に戻り比較器9、波形整形回
路lOおよびトリガラッチ回路lOは前述と同じである
からその説明を省略する。
FIG. 8CB) shows a gain conversion circuit 13 that controls the switch of the circuit shown in FIG. A signal is created. At the next stage of the logic circuit 19 are respective switches Gt, G, ,
Buffer 20 a * 20 b e corresponding to G4
20c are arranged and stored and the switches Gt, G8.
G4 is controlled Returning to FIG. 6, the comparator 9, waveform shaping circuit 1O, and trigger latch circuit 1O are the same as described above, so their explanation will be omitted.

つぎに、動作を説明する。まず、CPUの指令によジグ
イン変換回路13にて可変ゲインアンプ12のゲインを
最小にセットしてお(、CPUによ夕第1回目の計測指
令が第9図(B)のように出力されると超音波が第9図
(C)のように発射される。この超音波が被測定物に反
射し、受信センサで検出され、バンドパスフィルタ7に
よって超音波周波数成分のみ通され、可変ゲインアンプ
12にて増幅される。このとき、アンプ出力が比較器9
で設定されているスレッシュホルドレベルに第9図(D
)の如く到達しない場合、比較器9からCPUK信号X
、として第9図(E)の如き計測不能フラグが立ち、C
PU″′cはカウンタをクリアし、ゲイン変換回路13
への人力Xlの指令にてアンプゲインを少し増加させた
後、再度CPUからの計測指令が第9図CF)のように
出力される。この一連の動作は受信波によるアンプ出力
がスレッシュホルドレベルを越え、トリガラッチ回w5
11から計測終了の出力が出るまで繰返される。なお、
第′9図CG)から(K)までの波形の説明は第2図(
C)からCG)までの説明内容と重複するので省略する
Next, the operation will be explained. First, the gain of the variable gain amplifier 12 is set to the minimum in the jig-in conversion circuit 13 according to a command from the CPU. Then, an ultrasonic wave is emitted as shown in Fig. 9 (C).This ultrasonic wave is reflected by the object to be measured and detected by the receiving sensor, and only the ultrasonic frequency component is passed through the bandpass filter 7, and the variable gain It is amplified by the amplifier 12.At this time, the amplifier output is amplified by the comparator 9.
Figure 9 (D
), the CPUK signal X from the comparator 9
, the unmeasurable flag as shown in Figure 9(E) is set, and C
PU″′c clears the counter and converts the gain conversion circuit 13.
After the amplifier gain is slightly increased by a manual command of Xl, a measurement command from the CPU is outputted again as shown in FIG. 9 (CF). This series of operations occurs when the amplifier output due to the received wave exceeds the threshold level and the trigger latch time w5
The process is repeated from 11 until an output indicating the end of measurement is output. In addition,
The explanation of the waveforms from Figure '9 CG) to (K) is shown in Figure 2 (
The explanations from C) to CG) will be omitted since they overlap.

以上の結果、受信回路のアンプゲインを最適に設定でき
、受信波の信号レベルに適合した増幅が可能となる。
As a result of the above, the amplifier gain of the receiving circuit can be set optimally, and amplification matching the signal level of the received wave can be performed.

以上説明したように本発明によれば、受信波に最適なア
ンプゲインを選定することができ、不必要にアンプゲイ
ンを上げてノイズを検出したり、不足による測定不能を
回避することができ、該測定が防止できて距離測定レン
ジを大きくできる。本方式では反射波による受信レベル
がノイズレベルとほぼ同等になるまで測定可能となる。
As explained above, according to the present invention, it is possible to select the optimum amplifier gain for the received wave, and it is possible to avoid detecting noise by unnecessarily increasing the amplifier gain or inability to measure due to insufficient. This measurement can be prevented and the distance measurement range can be increased. With this method, it is possible to measure until the reception level due to reflected waves becomes almost equal to the noise level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は従来の超音波距離測定装置の一例
で、第1図は全体のブロック図、第2図はタイムチャー
ト、第3図は受信回路のブロック図、第4図は出力レベ
ル−・距離特性線図、第5図は受信波とラッチの波形囚
、第6図ないし第9図は本発明による超音波距離測定装
置の実施例で、第6図は受信回路のブロック図、第7図
(A)および第8図(A)は可変ゲインアンプの二つの
例の回路図、第7図CB)および第8図(B)はゲイン
変換回路の二つの例の回路図、第9図はタイムチャート
でちる。 図  面  中、 lはCPU。 3は発信回路、 4は発信上ンサ、 5は受信センサ、 6は受信回路、 7はバンドパスフィルタ、 9は比較器、 11はトリガラッチ回路、 12は可変ゲインアンプ、 13はゲイン変換回路、 14.17.18は演算増幅器、 15はFET。 19はロジック回路、 20a、20b、20cはバッファでおる。 第1図 第2図 (B) (G) 第3図 ? 第4図
Figures 1 to 5 are examples of conventional ultrasonic distance measuring devices, with Figure 1 being an overall block diagram, Figure 2 being a time chart, Figure 3 being a block diagram of the receiving circuit, and Figure 4 being the output. Level-distance characteristic diagram; Fig. 5 shows the waveforms of the received wave and latch; Figs. 6 to 9 show examples of the ultrasonic distance measuring device according to the present invention; Fig. 6 is a block diagram of the receiving circuit. , FIG. 7(A) and FIG. 8(A) are circuit diagrams of two examples of a variable gain amplifier, FIG. 7(CB) and FIG. 8(B) are circuit diagrams of two examples of a gain conversion circuit, Figure 9 is a time chart. In the figure, l is the CPU. 3 is a transmitter circuit, 4 is a transmitter, 5 is a receiver sensor, 6 is a receiver circuit, 7 is a band pass filter, 9 is a comparator, 11 is a trigger latch circuit, 12 is a variable gain amplifier, 13 is a gain conversion circuit, 14 .17.18 is an operational amplifier, 15 is an FET. 19 is a logic circuit, and 20a, 20b, and 20c are buffers. Figure 1 Figure 2 (B) (G) Figure 3? Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)CPUの指令によ多発倍回路を制御して発信セン
サから超音波パルスを発射し、一方杖測定物からの反射
波′fI:受信センサで検出し受信回路で受信して、被
測定物までの距離を測定する超音波距離測定装置におい
て、上記受信回路では、上記受信センナの出力波形から
所定の周波数成分波形だけを取シ出すバンドパスフィル
タと、このバンドパスフィルタの出力を可変ケインをも
って増幅する可変ゲインアンプと、この可変ゲインアン
プの出力とスレッシュホルドレベルとを比較して小信号
成分を除去する比較器と、この比較器の出力をラッチす
るトリガラッチ回路と、上記CPUかもの信号で上記可
変ゲインアンプのゲインを変換するゲイン変換回路とt
Vし、上記ゲイン変換回路により上記可変ゲインアンプ
のゲインt−最小値から途々に増加し最適ゲインを自動
的に選択して、上記被測定物までの距離を測定したこと
を特徴とする超音波距離測定装置。
(1) The multiplier circuit is controlled by the CPU command to emit an ultrasonic pulse from the transmitting sensor, while the reflected wave 'fI' from the measuring object is detected by the receiving sensor, received by the receiving circuit, and then In an ultrasonic distance measuring device that measures the distance to an object, the receiving circuit includes a bandpass filter that extracts only a predetermined frequency component waveform from the output waveform of the receiving sensor, and a variable channel that controls the output of this bandpass filter. a variable gain amplifier that amplifies the output of the variable gain amplifier, a comparator that compares the output of the variable gain amplifier with a threshold level and removes small signal components, a trigger latch circuit that latches the output of the comparator, and the CPU signal a gain conversion circuit that converts the gain of the variable gain amplifier and t
The distance to the object to be measured is measured by increasing the gain t of the variable gain amplifier gradually from the minimum value and automatically selecting the optimum gain by the gain conversion circuit. Sonic distance measuring device.
(2)  可変ゲインアンプとしては演算増幅器の帰還
抵抗器と並列にFETを接続した上記特許請求の範囲第
1項記載の超音波距離測定装置。
(2) The ultrasonic distance measuring device according to claim 1, wherein an FET is connected in parallel with the feedback resistor of the operational amplifier as the variable gain amplifier.
(3)  可変ゲインアンプとしては演算増幅器の帰還
抵抗器と並列にスイッチと抵抗器とからなる直列体を複
数個備えた特許請求の範囲第1項記載の超音波距離測定
装置。
(3) The ultrasonic distance measuring device according to claim 1, wherein the variable gain amplifier includes a plurality of series bodies each consisting of a switch and a resistor in parallel with a feedback resistor of an operational amplifier.
(4) ゲイン変換回路としてはCPUからの信号全デ
ィジタル・アナログ変換し、このアナログ信号音所定の
増幅率の演算増幅器に入力し、ついでこの演算増幅器の
出力を反転させた回路とした特許請求の範囲第1項記載
の超音波距離測定装置。
(4) The gain conversion circuit is a circuit that converts all the signals from the CPU into digital/analog, inputs this analog signal sound to an operational amplifier with a predetermined amplification factor, and then inverts the output of this operational amplifier. The ultrasonic distance measuring device according to scope 1.
(5)  ゲイン変換回路とし1はCPUからの信号を
複数個のスイッチの複数組の開閉に対応して判別し、こ
の判別したデータ全一時記憶させるようにした特許請求
の範囲第1項記載の超音波距離測定装置。
(5) The gain conversion circuit 1 discriminates the signal from the CPU in response to the opening/closing of a plurality of sets of a plurality of switches, and temporarily stores all of the discriminated data. Ultrasonic distance measuring device.
JP9495383A 1983-05-31 1983-05-31 Ultrasonic distance measuring device Pending JPS59221684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9495383A JPS59221684A (en) 1983-05-31 1983-05-31 Ultrasonic distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9495383A JPS59221684A (en) 1983-05-31 1983-05-31 Ultrasonic distance measuring device

Publications (1)

Publication Number Publication Date
JPS59221684A true JPS59221684A (en) 1984-12-13

Family

ID=14124301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9495383A Pending JPS59221684A (en) 1983-05-31 1983-05-31 Ultrasonic distance measuring device

Country Status (1)

Country Link
JP (1) JPS59221684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198910A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Distance measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198910A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Distance measuring instrument

Similar Documents

Publication Publication Date Title
US7106657B2 (en) Digital sounder module and method for detecting
JP2774270B2 (en) Method and apparatus for suppressing fixed target echoes in distance measurements according to the pulse transit time principle
US6614719B1 (en) Ultrasonic doppler effect speed measurement
US4139834A (en) Ultrasonic wave transmitter/receiver
JPS59221684A (en) Ultrasonic distance measuring device
EP0147208A2 (en) Improvements relating to electrical circuits for timing signals
CN108254001B (en) Ultrasonic sensor and method for measuring precision thereof
US4364114A (en) Method and apparatus for determining the acoustic velocity of a workpiece
JP3709751B2 (en) Ultrasonic level meter
JP2001108750A (en) Radiation pulse transmitter
JPS6310793B2 (en)
SU1064171A1 (en) Meter of liquid pressure in pipe
SU1043489A1 (en) Ultrasonic device for measuring distances in gaseous atmosphere
RU2032154C1 (en) Ultrasonic level meter
SU1133544A1 (en) Device for ultrasonic material quality control
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
CA1240031A (en) Electrical circuits for timing signals
JPH1164493A (en) Doppler sodar system
KR980010455A (en) Apparatus and method for measuring ultrasonic distance using phase compensation circuit
JPH08285937A (en) Underwater acoustic response apparatus
JP2646944B2 (en) Partial discharge determination method
CN115694385A (en) Ultrasonic compensation method, ultrasonic compensation device and ultrasonic transmission/reception device
JPH03113388A (en) Ultrasonic measuring instrument
RU2027978C1 (en) Multichannel ultrasonic level gauge
JPS6398579A (en) Driving of vibrator of ultrasonic sensor