JPS5922120Y2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPS5922120Y2
JPS5922120Y2 JP12191479U JP12191479U JPS5922120Y2 JP S5922120 Y2 JPS5922120 Y2 JP S5922120Y2 JP 12191479 U JP12191479 U JP 12191479U JP 12191479 U JP12191479 U JP 12191479U JP S5922120 Y2 JPS5922120 Y2 JP S5922120Y2
Authority
JP
Japan
Prior art keywords
gas
concentration
vapor phase
raw material
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12191479U
Other languages
Japanese (ja)
Other versions
JPS5642979U (en
Inventor
裕 小林
誉也 鈴木
洋典 井上
隆 青山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP12191479U priority Critical patent/JPS5922120Y2/en
Publication of JPS5642979U publication Critical patent/JPS5642979U/ja
Application granted granted Critical
Publication of JPS5922120Y2 publication Critical patent/JPS5922120Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【考案の詳細な説明】 本案はlll−■放間化合物、II −VI族間化合物
および混晶の気相成長装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a vapor phase growth apparatus for Ill-■ intergroup compounds, II-VI intergroup compounds, and mixed crystals.

前記化合物、混晶等の気相成長において、成長領域のガ
ス中の構成成分の濃度分布は構成成分が基板上に沈着す
るためガス流方向に分布を持つ。
In the vapor phase growth of the compound, mixed crystal, etc., the concentration distribution of the constituent components in the gas in the growth region has a distribution in the gas flow direction because the constituent components are deposited on the substrate.

しかも、一般に行われている気相成長においては反応管
に流入した時のガス中の構成成分の比(例えばAs/G
a)が、成長させる化合物の比と大きくずれた状態で成
長を行っている。
Moreover, in the commonly performed vapor phase growth, the ratio of constituent components in the gas when it flows into the reaction tube (for example, As/G
In a), the growth is performed in a state that is greatly different from the ratio of the compound to be grown.

したがって、成長領域において化合物の組成で成長が行
われて行くため気相中の構成成分の濃度はもちはん、濃
度比もガス流方向で大きく変化してくる。
Therefore, since growth is performed depending on the composition of the compound in the growth region, not only the concentration of the constituent components in the gas phase but also the concentration ratio changes greatly in the gas flow direction.

したがって従来の方法で成長を行うと、ウェハー内での
成長層の厚さ分布を均一にするのは困難であり、多数の
ウェハーを同時に成長させるのも困難である。
Therefore, when growth is performed using conventional methods, it is difficult to make the thickness distribution of the grown layer uniform within the wafer, and it is also difficult to grow a large number of wafers at the same time.

そして上述したように、ガス中の構成成分の濃度が一定
でないため、ウェハー内あるいは、ウェハー間での結晶
性がいちじるしく異なる。
As described above, since the concentration of the constituent components in the gas is not constant, the crystallinity within a wafer or between wafers differs significantly.

本案はかかる気相成長の欠点を補正するものである。The present invention is intended to correct such drawbacks of vapor phase growth.

図を使用し以上のことを詳細に説明する。The above will be explained in detail using figures.

第1図はGaAs気相成長を例にとり、従来行われて来
たトリメチルガリウム(以下TMG)3、アルシン(以
下ASH3)4の原材料を使用した系の成長装置を示し
たものである。
Taking GaAs vapor phase growth as an example, FIG. 1 shows a conventional growth apparatus using trimethyl gallium (hereinafter referred to as TMG) 3 and arsine (hereinafter referred to as ASH 3) as raw materials.

図1bは前記系における反応管1中のガス中に含まれた
Ga濃度6、As濃度5、As濃度とGS濃度の比(A
s/Ga) 7をガス流方向に対して示したものであ
る。
Figure 1b shows the Ga concentration 6, As concentration 5, and the ratio of As concentration to GS concentration (A
s/Ga) 7 is shown with respect to the gas flow direction.

反応管1に入れた時のガス中のAs/Gaは2〜10の
範囲で行われている。
The As/Ga ratio in the gas when introduced into the reaction tube 1 is in the range of 2 to 10.

この適度のTMG、 AsH3を含んだN2ガス又はN
2ガス(不活性ガスなら何でもよい)かGaAs基板上
に来る。
This moderate TMG, N2 gas containing AsH3 or N
2 gas (any inert gas will do) or on the GaAs substrate.

この時GaAs基板を600’ C〜900°Cに保て
ばGaおよびAsが1:1の割合でGaAs基板2上に
沈着する。
At this time, if the GaAs substrate is maintained at 600'C to 900C, Ga and As will be deposited on the GaAs substrate 2 at a ratio of 1:1.

したがってガス中のGaとAsの濃度は第1図すに示し
たように減少して行く。
Therefore, the concentrations of Ga and As in the gas decrease as shown in FIG.

又ガス中でAs濃度5>Ga濃度6であるため、ガス中
のAs/Ga7はGaAsが基板上に沈着するにつれて
上昇する。
Furthermore, since the As concentration 5 in the gas is greater than the Ga concentration 6, As/Ga 7 in the gas increases as GaAs is deposited on the substrate.

前記したように、ガス中のAs、 Ga濃度がガス流方
向に対して減少するため、GaAsの成長速度はガス流
方向に対して減少する。
As described above, since the As and Ga concentrations in the gas decrease in the gas flow direction, the growth rate of GaAs decreases in the gas flow direction.

又ガス流方向に対してガス中のAs/Ga7が上昇する
ため成長層の結晶性(キャリアの移動度、アンドープで
成長させた時のキャリア密度、化学量論的組成からの偏
差等)が変化して来る。
Also, as As/Ga7 in the gas increases in the gas flow direction, the crystallinity of the grown layer (carrier mobility, carrier density when grown undoped, deviation from stoichiometric composition, etc.) changes. I'll come.

本案は上記したガス流方向のガス中のAs、 Gaの濃
度が成長領域で変化するのを防ぐものである。
This proposal is intended to prevent the concentration of As and Ga in the gas in the gas flow direction from changing in the growth region.

すなわち、成長領域のガスの一部を取り出し又は成長領
域のガスを直接、赤外分光あるいは質量分析等によりガ
ス中のGaやAsあるいは両者の濃度を測定し、成長領
域にそう人した補給管より、Ga又はAs、あるいは両
者を補給し、成長領域での気相中のGa、 Asの濃度
を一定とすることを特徴としている。
In other words, a part of the gas in the growth region is extracted or the gas in the growth region is directly measured by infrared spectroscopy or mass spectrometry to measure the concentration of Ga, As, or both in the gas, and then a supply pipe placed in the growth region is used. , Ga, As, or both are supplied to keep the concentrations of Ga and As in the gas phase constant in the growth region.

次に図を使用し、TMG−AsH3−N2系ノGaAs
気相成長を例にとり、実施例を示す。
Next, using the diagram, TMG-AsH3-N2 system GaAs
An example will be shown using vapor phase growth as an example.

第2図aに示すように、成長装置は従来のTMG−As
H3系の成長装置の成長領域にガス検出装置とガス補給
装置とを加えたものである。
As shown in Figure 2a, the growth apparatus is a conventional TMG-As
This is an H3-based growth apparatus with a gas detection device and a gas replenishment device added to the growth region.

ガスの主流入口23より従米行われている組成化でTM
GとAsH3を含んだガス3,4を成長領域8に流す。
TM due to the composition carried out from the main stream inlet 23 of the gas.
Gases 3 and 4 containing G and AsH3 are flowed into the growth region 8.

この場合前記した通り、GaAsが成長するため気相中
のGa、 Asの濃度17.19が減少する。
In this case, as described above, since GaAs grows, the concentration 17.19 of Ga and As in the gas phase decreases.

この減少分を補給するため、反応原料ガスの各構成成分
ガスをキャピラノ(1)、 11および(2)、 (
12で取り出し測定し、その結果を帰還し、各構e、戊
分ガス源につながった補給管に設けられた補給用キャピ
ラリ用バルブ(1)。
In order to replenish this decreased amount, each component gas of the reaction raw material gas is added to Capilano (1), 11 and (2), (
12 for measurement, and the results are returned to each structure e, a replenishment capillary valve (1) installed in the replenishment pipe connected to the gas source.

(2)、 (3)、 (4)(13,14,15,16
)を自動調節し、Ga。
(2), (3), (4) (13, 14, 15, 16
) and automatically adjust Ga.

Asの濃度17.19を増加させる。Increase the concentration of As 17.19.

この例の場合、第1図に記載された如< 、Ga、 A
sの濃度17.19が゛減少するにつれて、As/Ga
濃度比21は、高くなるので、この濃度比を一定とする
にはTMGを調節する補給用キャピラリ用バルブ13.
15とAsH3を調節する補給用キャピラリ用バルブ1
4.16を、上記の検出結果に基づいて各機rf7:、
rfi、9毎に別々に調節し、As、 Gsの各濃度及
び、As/Ga濃度比を一定としている。
In this example, as shown in FIG.
As the concentration of s 17.19 decreases, As/Ga
Since the concentration ratio 21 becomes high, in order to keep this concentration ratio constant, the replenishment capillary valve 13. which adjusts the TMG is required.
Supply capillary valve 1 to adjust 15 and AsH3
4.16 for each machine rf7 based on the above detection results:
The rfi was adjusted separately for every 9, and each concentration of As and Gs and the As/Ga concentration ratio were kept constant.

従来の気相成長装置を使用してGaAsを成長させると
ガス流方向にウェハーを並べて成長を行うことができず
、又ウェハー内の厚さ分布もせいぜい±10%であった
When GaAs is grown using a conventional vapor phase growth apparatus, the wafers cannot be grown side by side in the gas flow direction, and the thickness distribution within the wafer is at most ±10%.

本案の成長装置を使用することによりアンドープのGa
Asを成長させ、成長層の厚さで1ウエハー内で±4%
、ウェハー間で±5%で制御することができた。
By using the growth apparatus of the present invention, undoped Ga
Growing As, the thickness of the grown layer is ±4% within one wafer.
, it was possible to control within ±5% between wafers.

又結晶性を示すキャリア移動度はウェハー間で±5%で
制御できた。
Furthermore, the carrier mobility, which indicates crystallinity, could be controlled within ±5% between wafers.

本案による気相成長装置はGa−AsC1□−N2系あ
るいはGa−AsCl2−N2系に適用できる。
The vapor phase growth apparatus according to the present invention can be applied to the Ga-AsC1□-N2 system or the Ga-AsCl2-N2 system.

又成長させる結晶も、GaP、InP等のすべてのII
I−V放間化合物結晶および、それらの間の混晶および
ZeSe、 ZeTe等のすべての■■−vI族間化合
輪間化合物結晶それら間の混晶の気相成長において均一
度のすぐれた結晶を多量に成長させることができる。
Also, the crystals to be grown are all II such as GaP and InP.
Crystals with excellent uniformity in the vapor phase growth of IV intercalary compound crystals, mixed crystals between them, and all ■■-v I group intercycle compound crystals such as ZeSe, ZeTe, etc. can be grown in large quantities.

又IV族元素同志間、例えば5i−Ge等の混晶系にお
いても同様である。
The same applies to mixed crystal systems of group IV elements, such as 5i-Ge.

特に全組成領域で混晶可能な混晶には特に有効であるこ
とは明らかである。
It is clear that this method is particularly effective for mixed crystals that can be mixed in the entire composition range.

ガス中の構成成分の検出および補給の方法も第3図に示
すように多種の応用例で行うことが゛できる。
The method of detecting and replenishing components in the gas can also be performed in a variety of applications, as shown in FIG.

第3図aは検出用キャピラリと補給用キャピラリを近づ
け補給の応答を早くしたものである。
In FIG. 3a, the detection capillary and the replenishment capillary are brought closer together to speed up the replenishment response.

第3図すは補給用のキャピラリの出口を水平方向に向け
、補給したガスを早く均一にさせるようにした。
In Figure 3, the outlet of the replenishment capillary was oriented horizontally, so that the replenished gas could be quickly uniformized.

第3図Cは補給用キャピラリに多数の穴をもうけ、ガス
流方向に対しても横方向に対しても均一性を保つように
したものである。
FIG. 3C shows a replenishment capillary with a large number of holes so as to maintain uniformity both in the gas flow direction and in the lateral direction.

又検出用キャピラリ、補給用キャピラリは何本使用して
も良く、本数が多けれは゛多いほどよい。
Further, any number of detection capillaries and supply capillaries may be used, and the larger the number, the better.

本案は、高周波誘導加熱方式、抵抗加熱方式ランプ加熱
方式のすべての加熱方式を使用した炉に適用できる。
This proposal can be applied to furnaces using all heating methods, including high-frequency induction heating, resistance heating, and lamp heating.

【図面の簡単な説明】 第1図aは、従来使用されているGaAsの気相成長装
置の概略図、第1図すは、従来の気相成長装置を使用し
た時の反応管内ガス中のGa、 Asの濃度およびそれ
らの比のガス流方向分布図、第2図aは、本案の気相成
長装置の概略図、第2図すは、本案の気相成長装置を使
用した時の反応管内ガス中のGa、 Asの濃度および
、それらの比のガス流方向分布図、第3図a、 l)
、 c、 dは、検出用キャピラリ、補給用キャピ
ラリの応用例を示す図である。 1・・・反応管、2・・・基板、3・・・トリメチルガ
リウム、4・・・アルシン 5・・・As、6・・・G
a、7・・・As/Ga。 8・・・成長領域。
[Brief Description of the Drawings] Figure 1a is a schematic diagram of a conventionally used GaAs vapor phase growth apparatus. A distribution diagram of the concentration of Ga and As and their ratio in the gas flow direction. Figure 2a is a schematic diagram of the vapor phase growth apparatus of the present invention. Figure 2 shows the reaction when using the vapor phase growth apparatus of the present invention. Distribution diagram of the concentration of Ga and As in the pipe gas and their ratio in the gas flow direction, Figure 3 a, l)
, c, and d are diagrams showing application examples of a detection capillary and a replenishment capillary. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Substrate, 3... Trimethyl gallium, 4... Arsine 5... As, 6... G
a, 7...As/Ga. 8...Growth area.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反応原料ガスの流れ方向に沿って半導体基板を配置した
反応容器内に反応原料ガスを導入し、半導体基板上にI
II−V放間化合物結晶、II −VI族間化合物結晶
又は混晶を気相成長させるものにおいて、一端が複数に
分かれ、それぞれ反応原料ガス中の各構成成分ガス源に
個別の流量調節手段を介して連らなり、他端が反応容器
内の反応原料ガスの流れ方向の任意の個所に開口する補
給管と、反応容器内の補給管の開口部近傍に設けられた
反応原料ガス中の各構e、戊分ガス濃度を検出する手段
と、検出結果により、反応容器内の各構成成分ガス濃度
を所定の濃度に保つために補給管の中を流れる各構成成
分ガスの流量を調節する手段とを有することを特徴とす
る気相成長装置。
A reaction raw material gas is introduced into a reaction vessel in which a semiconductor substrate is arranged along the flow direction of the reaction raw material gas, and an I
In a method for growing II-V intergroup compound crystals, II-VI intergroup compound crystals, or mixed crystals in a vapor phase, one end is divided into a plurality of parts, each of which has a separate flow rate adjustment means for each component gas source in the reaction raw material gas. A supply pipe that is connected to the supply pipe and whose other end opens at any point in the flow direction of the reaction raw material gas in the reaction vessel, and a supply pipe that is connected to each other in the reaction raw material gas provided near the opening of the supply pipe in the reaction vessel. Structure e, means for detecting the concentration of the component gas, and means for adjusting the flow rate of each component gas flowing through the supply pipe in order to maintain the concentration of each component gas in the reaction vessel at a predetermined concentration based on the detection result. A vapor phase growth apparatus comprising:
JP12191479U 1979-09-05 1979-09-05 Vapor phase growth equipment Expired JPS5922120Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12191479U JPS5922120Y2 (en) 1979-09-05 1979-09-05 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12191479U JPS5922120Y2 (en) 1979-09-05 1979-09-05 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS5642979U JPS5642979U (en) 1981-04-18
JPS5922120Y2 true JPS5922120Y2 (en) 1984-07-02

Family

ID=29354023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12191479U Expired JPS5922120Y2 (en) 1979-09-05 1979-09-05 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPS5922120Y2 (en)

Also Published As

Publication number Publication date
JPS5642979U (en) 1981-04-18

Similar Documents

Publication Publication Date Title
US10364509B2 (en) Alkyl push flow for vertical flow rotating disk reactors
EP0837495B1 (en) Vapor phase growth apparatus
GB2273391A (en) Apparatus for growing compound semiconductor layers
GB2212173A (en) Heated reactor for vapor-phase growth of films
JPS5922120Y2 (en) Vapor phase growth equipment
KR920009652B1 (en) Compound semiconductor manufacturing apparatus
JPH0817158B2 (en) Semiconductor manufacturing equipment by vapor phase growth
JPH04338636A (en) Semiconductor vapor growth device
JP3252644B2 (en) Vapor phase growth method and apparatus
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPH05121336A (en) Metal organic gaseous phase growth system
JPS6122621A (en) Vapor-phase growing method
JPH0665209B2 (en) Semiconductor manufacturing equipment by vapor phase growth
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPH0318016A (en) Vapor growth apparatus for iii-v compound semiconductor crystal
JPS60182722A (en) Decompression cvd device
JPS6343333A (en) Vapor-phase epitaxial growth process
JPH01301585A (en) Apparatus for growing semiconductor crystal
JPS61229321A (en) Vapor growth method
JPS6163599A (en) System for vapor growth
JPH08148438A (en) Method and device for vapor growth of compound semiconductor thin film crystal
JPH0434293B2 (en)
JPS6389492A (en) Semiconductor crystal growth device
JPS625634A (en) Vapor growth method for compound semiconductor
JPH01239086A (en) Organometallic chemical vapor-phase reaction apparatus