JPS59219869A - Electrolyte for lithium battery - Google Patents

Electrolyte for lithium battery

Info

Publication number
JPS59219869A
JPS59219869A JP58093460A JP9346083A JPS59219869A JP S59219869 A JPS59219869 A JP S59219869A JP 58093460 A JP58093460 A JP 58093460A JP 9346083 A JP9346083 A JP 9346083A JP S59219869 A JPS59219869 A JP S59219869A
Authority
JP
Japan
Prior art keywords
solvent
dielectric constant
dibutoxyethane
charge
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58093460A
Other languages
Japanese (ja)
Other versions
JPH0652670B2 (en
Inventor
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58093460A priority Critical patent/JPH0652670B2/en
Publication of JPS59219869A publication Critical patent/JPS59219869A/en
Publication of JPH0652670B2 publication Critical patent/JPH0652670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a lithium battery in which a lithium electrode has good charge-discharge performance by using a mixed solvent of 1,2-dibutoxyethane and nonproton solvent having a high dielectric constant exceeding a specific value as organic solvent of nonaqueous electrolyte. CONSTITUTION:A mixed solvent of 1,2-dibutoxyethane and a high dielectric constant solvent having a dielectric constant of 10 or more is used as organic solvent of electrolyte prepared by dissolving lithium salt in organic solvent. One or more of propylene carbonate, gamma-butyrolactone, dimethyl sulfoxide, sulfolane, N,N- dimethylformamide, N,N-dimethylacetamide are used as nonproton polar solvent of high dielectric constant. A mixing ratio of 1,2-dibutoxyethane and nonproton polar solvent is preferable to limit to 1:9-9:1. When the mixing ratio is in the outside of this limit, charge-discharge performance is decreased.

Description

【発明の詳細な説明】 本発明はりチウム−次および二次電池に用いる一電解液
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte for use in lithium primary and secondary batteries.

リチウムを負極活物質として用いる電池は、小型・高エ
ネルギ密度を有する電池として研究されているが、その
二次化が大きな問題となっている。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、■905、V6O1
3等の金属酸化物、T i Ss 、V Sg 等+7
)層状化合物が、Liとの間でトポケミカルな反応をす
る化合物として知られており、現在までチタン、ジルコ
ニウム、ハフニウム、ニオビウム、タンタル、バナジウ
ムの硫化物、セレン化物、テルル化物を用いた電池(米
国特許第4.089,052号明細書参照)等が開示さ
れている。
■905, V6O1 as a positive electrode active material that can be secondaryized
Metal oxides such as 3, T i Ss, V Sg, etc.+7
) Layered compounds are known as compounds that undergo topochemical reactions with Li, and to date, batteries using sulfides, selenides, and tellurides of titanium, zirconium, hafnium, niobium, tantalum, and vanadium (U.S. (See Japanese Patent No. 4,089,052).

しかしながら、このような二次電池用正極活物質の研究
に比して、Li極の充放電特性に関する研究は充分とは
いえず、Li二次電池実現のためには、充放電効率及び
サイクル寿命等の充放電特性の良好な電解液の探査が重
大な問題となっている。Li極の充放電効率を向上させ
る試みとしてはLiCl0a/プロピレンカーボネイト
にニトロメタン、Sop等の添加剤を加える試み(Hl
ectrochimica、Acta、vol、22+
第75頁〜83頁(1977)〕等が行われているが必
ずしも充分とは言えず、さらに特性の優れたリチウム二
次電池用電解液が求められている。
However, compared to such research on positive electrode active materials for secondary batteries, research on the charging and discharging characteristics of Li electrodes is not sufficient, and in order to realize Li secondary batteries, charging and discharging efficiency and cycle life are The search for electrolytes with good charge-discharge characteristics has become a serious issue. In an attempt to improve the charging and discharging efficiency of Li electrodes, an attempt was made to add additives such as nitromethane and Sop to LiCl0a/propylene carbonate (Hl
electrochimica, Acta, vol, 22+
75 to 83 (1977)], but these are not necessarily sufficient, and there is a need for an electrolytic solution for lithium secondary batteries with even better characteristics.

本発明は、このような現状に鑑みてなされたものであり
、その目的はLi極の充放電特性の優れたリチウム電池
用非水電解液を提供することにある。
The present invention has been made in view of the current situation, and its purpose is to provide a non-aqueous electrolyte for lithium batteries with excellent charging and discharging characteristics of Li electrodes.

したがって、本発明によるリチウム電池用電解液は、リ
チウム塩を有機溶媒に溶解させたリチウム電池用電解液
において、前記有機溶媒として、1.2−ジブトキシエ
タンと比誘電率が10以上の高誘電率の非プロトン性極
性溶媒の混合溶媒を用いたことを特徴とするものである
Therefore, the electrolytic solution for lithium batteries according to the present invention is an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, and 1,2-dibutoxyethane is used as the organic solvent. This method is characterized by the use of a mixed solvent of aprotic polar solvents of 30% to 50%.

本発明によれば、上記非水電解液において、有機溶媒と
して、1.2−ジブトキシエタンと比誘電率が10以上
の高誘電率の非プロトン性溶媒との混合溶媒を用いるこ
とにより、Li極の充放電特性の優秀なリチウム電池を
実現しえる。
According to the present invention, Li A lithium battery with excellent charge and discharge characteristics can be realized.

本発明を更に詳しく説明する。The present invention will be explained in more detail.

リチウム電池はリチウムを負極活物質とし、電気化学的
に活性で、かつLi+イオンと可逆的な電気化学反応を
行う物質を正極活物質とする電池であるが、本発明のよ
れば、リチウム塩を有機溶媒に熔解した電解液の有機溶
媒として、1.2−ジブトキシエタンと比誘電率が10
以上の高誘電率溶媒との混合溶媒を用いる。
A lithium battery is a battery that uses lithium as a negative electrode active material and a positive electrode active material that is electrochemically active and undergoes a reversible electrochemical reaction with Li+ ions.According to the present invention, lithium salt is used as a positive electrode active material. As the organic solvent of the electrolyte dissolved in an organic solvent, 1,2-dibutoxyethane and a dielectric constant of 10
A mixed solvent with the above high dielectric constant solvent is used.

前記1.2−ジブトキシエタンと混合する高誘電率の非
プロトン性極性溶媒は、従来この種の電池に用いられる
比誘電率が10以上の高誘電率の溶媒を自由に用いるこ
とができる。たとえばプロピレンカーボネイト、γ−ブ
チロラクトン、ジメチルスルホキシド、スルホラン、N
、N−ジメチルホルムアミド、N、N−ジメチルアセト
アミドなどより選択された一種以上を用いることができ
る。
As the high dielectric constant aprotic polar solvent to be mixed with the 1,2-dibutoxyethane, any high dielectric constant solvent having a relative dielectric constant of 10 or more, which is conventionally used in this type of battery, can be freely used. For example, propylene carbonate, γ-butyrolactone, dimethyl sulfoxide, sulfolane, N
, N-dimethylformamide, N,N-dimethylacetamide, and the like can be used.

前記1.2−ジブトキシエタンと前記高誘電率の非プロ
トン性極性溶媒の混合比は1 :9〜9:1であるのが
好ましい。このような混合比範囲から逸脱すると、充放
電特性が悪化するからである。
The mixing ratio of the 1,2-dibutoxyethane and the high dielectric constant aprotic polar solvent is preferably 1:9 to 9:1. This is because if the mixture ratio deviates from this range, the charge/discharge characteristics will deteriorate.

これに溶解される溶質は従来この種の電池に用いられる
溶質を自由に用いることができる。例えば、LiClO
4、LiBF4、LiAsFe、LiP Fa 、L 
1Alc l 4等の無機塩、CF3303 Li。
As the solute dissolved in this, any solute conventionally used in this type of battery can be used. For example, LiClO
4, LiBF4, LiAsFe, LiP Fa, L
Inorganic salts such as 1Alc l 4, CF3303 Li.

CF3CO2Li等の有機塩から選択された1種以上の
ようなリチウム塩を用いることができる。
Lithium salts such as one or more selected from organic salts such as CF3CO2Li can be used.

これらの溶質は前記有機溶媒に、好ましくは0.5〜2
.5N溶解される。熔解する溶質が0.5N未満である
と充放電特性が著しく低下し、一方2.5Nを超えると
、溶質は溶媒に熔解困難となるからである。
These solutes are added to the organic solvent preferably at a concentration of 0.5 to 2
.. 5N is dissolved. This is because if the solute to be dissolved is less than 0.5N, the charge/discharge characteristics will be significantly deteriorated, while if it exceeds 2.5N, the solute will be difficult to dissolve in the solvent.

次ぎに、本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 作用極としてpt極を、対極としてLiを、さらに参照
電極としてLiを用いたセルを組み、pt極上にLiを
析出させることにより、Li極の充放電特性を測定した
Example 1 A cell was assembled using a PT electrode as a working electrode, Li as a counter electrode, and Li as a reference electrode, and Li was deposited on the PT electrode to measure the charge/discharge characteristics of the Li electrode.

電解液には、2N  LiClO4を1.2−ジブトキ
シエタンとプロピレンカーボネイトの1:1体積比混合
溶媒に溶解させたものを用いた。
The electrolytic solution used was one in which 2N LiClO4 was dissolved in a mixed solvent of 1,2-dibutoxyethane and propylene carbonate at a volume ratio of 1:1.

測定は、まず5 m A / cAの定電流で1分間、
pt極上にLiを析出させ充電した後、5mA/c+l
lの定電流で1分間pt極上に析出したLiをL 1 
+イオンとして放電するサイクル試験を行った。充放電
効率は、pt極の電位の変化より求め、pt極上に析出
したl、tをLi+イオンとして放電させるのに要した
電気量とpt極上にLiを析出させるために要した電気
量の比から算出した。
The measurement was first carried out at a constant current of 5 mA/cA for 1 minute.
After depositing Li on the PT electrode and charging, 5mA/c+l
Li deposited on the PT electrode for 1 minute at a constant current of L 1
A cycle test was conducted in which the battery was discharged as + ions. The charge/discharge efficiency is determined from the change in the potential of the PT electrode, and is the ratio of the amount of electricity required to discharge l and t deposited on the PT electrode as Li+ ions to the amount of electricity required to deposit Li on the PT electrode. Calculated from.

第1図は充放電効率とサイクル数の関係を示す図であり
、図中、(a)は本発明の溶媒を用いた場合である。ま
た、図中(b)は、参考例としてIN  LiCl0a
/プロピレンカーボネイトを用いた場合の充放電特性を
示したものである。
FIG. 1 is a diagram showing the relationship between charge/discharge efficiency and cycle number, and in the figure, (a) is the case when the solvent of the present invention is used. In addition, (b) in the figure shows IN LiCl0a as a reference example.
/ shows the charge/discharge characteristics when propylene carbonate is used.

第1図から判る様に、単独系(b)に比べて、本発明に
よる混合系(a)は明らかに、充放電特性が向上してい
る。
As can be seen from FIG. 1, the charge/discharge characteristics of the mixed system (a) according to the present invention are clearly improved compared to the single system (b).

実施例2 電解液として2N  LiCl0aを1.2−ジブトキ
シエタンとプロピレンカーボネイトの5:5体積比混合
溶媒に溶解させたものを用いて、実施例1と同様にLi
の充放電特性を測定した。
Example 2 In the same manner as in Example 1, LiCl0a was dissolved in a 5:5 volume ratio mixed solvent of 1,2-dibutoxyethane and propylene carbonate as the electrolyte.
The charge and discharge characteristics of the battery were measured.

測定は、まず0.5mA/cI!の定電流で1分間、P
t極上にLiを析出させ充電した後、5 m A / 
C1の定電流で1分間pt極上に析出したLiをLl”
イオンとして放電するサイクル試験を行った。
First, measure 0.5mA/cI! for 1 minute at a constant current of P
After depositing Li on the t electrode and charging, 5 mA/
Li deposited on the PT electrode for 1 minute with a constant current of C1 is
A cycle test was conducted in which the battery was discharged as ions.

第2図はLi極の充放電効率とサイクル数の関係を示す
図であり、図中、(a)は本実施例の2NのL iC1
04/1.2−ジブトキシエタン/プロピレンカーボネ
イト(体積混合比 5:5)を電解液として用いた場合
であり、図中(b)は参考例としてIN  LiCl0
a/プロピレンカーボネイト単独溶媒系電解液を用いた
場合のLi極の充放電特性を示したものである。
FIG. 2 is a diagram showing the relationship between the charge/discharge efficiency of Li electrodes and the number of cycles. In the figure, (a) is the 2N LiC1 of this example.
04/1.2-dibutoxyethane/propylene carbonate (volume mixing ratio 5:5) is used as the electrolyte, and (b) in the figure is a reference example of IN LiCl0.
a/Charge and discharge characteristics of a Li electrode when a propylene carbonate single solvent electrolyte is used.

第2図から判る様に、単独系(b)に比べて、混合系(
a)は明らかに充放電特性が向上している。
As can be seen from Figure 2, compared to the single system (b), the mixed system (
In case a), the charge/discharge characteristics are clearly improved.

実施例3 電解液として、I N  L i C10aをγ−ブチ
ロラクトンと1,2−ジブトキシエタンの5:5体積比
況合溶媒に溶解させたものを用いた以外は実施例2と同
様にしてLi極の充放電特性を測定した。
Example 3 The same procedure as in Example 2 was used except that I N Li C10a was dissolved in a mixed solvent of γ-butyrolactone and 1,2-dibutoxyethane at a volume ratio of 5:5. The charge/discharge characteristics of the Li electrode were measured.

第3図はLi極の充放電効率とサイクル数の関係を示す
図であり、図中、(a)は本発明のINL i CI 
Oa /1.2−ジブトキシエタン/7−ブチロラクト
ン(体積混合比 5:5)を電解液として用いた場合で
あり、図中(b)は参考例として0.75N  L i
 C104/γ−ブチロラクトン単独溶媒系電解液を用
いた場合のLi極の充放電特性を示したものである。
FIG. 3 is a diagram showing the relationship between the charging/discharging efficiency of Li electrodes and the number of cycles, in which (a) shows the INL i CI of the present invention.
This is the case where Oa/1.2-dibutoxyethane/7-butyrolactone (volume mixing ratio 5:5) is used as the electrolyte, and (b) in the figure is a reference example of 0.75N Li
This figure shows the charge/discharge characteristics of a Li electrode when using a C104/γ-butyrolactone single solvent electrolyte.

第3図から判る様に、単独系(b)に比べて、混合系(
a)は明らかに充放電特性が向上している。
As can be seen from Figure 3, compared to the single system (b), the mixed system (
In case a), the charge/discharge characteristics are clearly improved.

以上の説明から明らかなように、本発明によればリチウ
ム塩を溶質として溶媒に熔解させた非水電解液において
、前記有機溶媒として1,2−ジブトキシエタンと比誘
電率が10以上の高誘電率非プロトン性極性溶媒を用い
ることにより、Liの充放電特性がすぐれたリチウム電
池用非水電解液を提供することができる
As is clear from the above description, according to the present invention, in a non-aqueous electrolyte in which a lithium salt is dissolved in a solvent as a solute, 1,2-dibutoxyethane is used as the organic solvent and a high dielectric constant of 10 or more is used. By using a dielectric constant aprotic polar solvent, it is possible to provide a non-aqueous electrolyte for lithium batteries with excellent Li charging and discharging characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明による電解液を用いた場合のL
i極の充放電効率とサイクル数の関係をしめす図である
。 出願人代理人     雨 宮 正 季第1図 ツイクノL数 第2図 サイクル数 第3図 サイクノν牧
Figures 1 to 3 show L when using the electrolyte according to the present invention.
FIG. 3 is a diagram showing the relationship between the charging/discharging efficiency of an i-pole and the number of cycles. Applicant's agent Tadashi Amemiya Figure 1: Number of Tsuikuno L Figure 2: Number of cycles Figure 3: Cyclo ν Maki

Claims (1)

【特許請求の範囲】[Claims] リチウム塩を有機溶媒に熔解させたリチウム電池用電解
液において、前記有機溶媒として、1.2−ジブトキシ
エタンと比誘電率が10以上の高誘電率の非プロトン性
極性溶媒の混合溶媒を用いたことを特徴とするリチウム
電池用電解液。
In an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, a mixed solvent of 1,2-dibutoxyethane and an aprotic polar solvent with a high dielectric constant of 10 or more is used as the organic solvent. An electrolyte for lithium batteries characterized by:
JP58093460A 1983-05-27 1983-05-27 Lithium secondary battery electrolyte Expired - Lifetime JPH0652670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093460A JPH0652670B2 (en) 1983-05-27 1983-05-27 Lithium secondary battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093460A JPH0652670B2 (en) 1983-05-27 1983-05-27 Lithium secondary battery electrolyte

Publications (2)

Publication Number Publication Date
JPS59219869A true JPS59219869A (en) 1984-12-11
JPH0652670B2 JPH0652670B2 (en) 1994-07-06

Family

ID=14082940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093460A Expired - Lifetime JPH0652670B2 (en) 1983-05-27 1983-05-27 Lithium secondary battery electrolyte

Country Status (1)

Country Link
JP (1) JPH0652670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864768A (en) * 1981-10-14 1983-04-18 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JPS58163177A (en) * 1982-03-20 1983-09-27 Hitachi Maxell Ltd Organic electrolytic battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864768A (en) * 1981-10-14 1983-04-18 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JPS58163177A (en) * 1982-03-20 1983-09-27 Hitachi Maxell Ltd Organic electrolytic battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture

Also Published As

Publication number Publication date
JPH0652670B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP0637404A1 (en) HIGH-VOLTAGE STABLE ELECTROLYTES FOR Li 1+x?MN 2?O 4?/CARBON SECONDARY BATTERIES
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JPH11339850A (en) Lithium-ion secondary battery
JPS59134568A (en) Electrolyte for lithium battery
KR101875785B1 (en) Cathode material for rechargeable magnesium battery and its preparation method
JPH053112B2 (en)
JPS60154478A (en) Electrolyte for lithium secondary battery
JPH0351068B2 (en)
JPS6362869B2 (en)
JPH1131525A (en) Lithium secondary battery
JPS59219869A (en) Electrolyte for lithium battery
JPH0477426B2 (en)
JP3831599B2 (en) Lithium secondary battery
JPS6079677A (en) Electrolyte for lithium secondary battery
JPS5931571A (en) Electrolyte for lithium secondary battery
JPH0226345B2 (en)
JPH05307974A (en) Organic electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH0351061B2 (en)
JPS59130073A (en) Electrolyte for lithic battery
JPS58106771A (en) Nonaqueous electrolyte for lithium secondary battery
JPS6325462B2 (en)
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JPH04277469A (en) Non-aqueous electrolyte and battery containing it