JPH1131525A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1131525A
JPH1131525A JP9183450A JP18345097A JPH1131525A JP H1131525 A JPH1131525 A JP H1131525A JP 9183450 A JP9183450 A JP 9183450A JP 18345097 A JP18345097 A JP 18345097A JP H1131525 A JPH1131525 A JP H1131525A
Authority
JP
Japan
Prior art keywords
organic solvent
graphite
lithium secondary
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183450A
Other languages
Japanese (ja)
Inventor
Yasuji Igawa
泰爾 井川
Toru Shiga
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9183450A priority Critical patent/JPH1131525A/en
Publication of JPH1131525A publication Critical patent/JPH1131525A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To heighten the dielectric constant of an EV battery using carbon material for a negative electrode, and suppress the increase of an irreversible capacity without spoiling cold resistance by causing the solvent of organic electrolyte to contain γ-butyro-lactone as a main component and at least ethylene carbonate as an accessory component. SOLUTION: Besides ethylene carbonate, other organic solvent may be allowed to be contained as an accessory component. A composition ratio of γ- butyro-lactone as a main component in organic solvent is decided based on the relative relationship with ethylene carbonate and the other accessory components, as long as the organic solvent can effectively maintain high electric conductivity and a non-coagulation property, it is not always required to occupy the major amount or more of the whole organic solvent. The lower limit of the ethylene carbonate in the organic solvent is required to have at least such amount as the decomposing reaction of the γ-butyro-lactone and graphite at a charging time can be avoided. According to an experimental sample, the amount is 15 vol.% or more and less than 35 vol.% of the whole organic solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関し、更に詳しくは、電気自動車(以下、本明細書にお
いて「EV」と言う。)用のバッテリーに特に好適に利
用され得るリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery which can be particularly suitably used as a battery for an electric vehicle (hereinafter referred to as "EV"). About.

【0002】EV用バッテリーに用いる有機電解液につ
いては、−30°C〜60°Cの広い温度範囲の使用に
安定的に耐え、しかも高い電導度が求められる、と言う
厳しい要求がある。また、EV用バッテリーの負極とし
ては、電圧平坦性や大電流性能の良好さから,黒鉛系材
料が望ましいと考えられる。
There is a strict requirement for an organic electrolyte used for an EV battery to stably withstand use in a wide temperature range of -30 ° C. to 60 ° C. and to have high conductivity. Further, it is considered that a graphite-based material is desirable for the negative electrode of the EV battery because of its good voltage flatness and high current performance.

【0003】[0003]

【従来の技術】従来、リチウム二次電池の特性評価に
は、エチレンカーボネート(以下、本明細書において
「EC」と言う。)とジエチルカーボネート(以下、本
明細書において「DEC」と言う。)の混合溶媒を使用
した有機電解液が広く用いられている。その理由とし
て、この有機電解液は、黒鉛系材料、非黒鉛系材料のい
ずれを負極とする電池にも適用可能であることや、不可
逆容量が低く充・放電効率も高いことが挙げられる。
2. Description of the Related Art Conventionally, characteristics of a lithium secondary battery have been evaluated by using ethylene carbonate (hereinafter referred to as "EC") and diethyl carbonate (hereinafter referred to as "DEC"). An organic electrolyte using a mixed solvent of (1) and (2) is widely used. The reason is that this organic electrolytic solution can be applied to a battery using either a graphite-based material or a non-graphite-based material as a negative electrode, or has a low irreversible capacity and a high charge / discharge efficiency.

【0004】しかしながら、この有機電解液をEV用バ
ッテリーに適用するに当たっては、前記したEV用バッ
テリーに対する厳しい要求がネックになる。
However, in applying this organic electrolytic solution to an EV battery, the strict requirements for the EV battery described above are a bottleneck.

【0005】即ち、例えばEC:DECの組成比が1:
1の場合には、電導度が良好であるものの、−10°C
付近の温度で早くも凝固するため使用に耐えない。しか
るに、DECの組成比を高めると凝固点が降下するの
で、例えばEC:DECの組成比を1:4とすると、−
30°Cでも凝固しない電解液が得られるものの、この
場合には電導度が極めて低くなって、これまた使用に耐
えない。言い換えれば、EC:DECの組成比を種々変
更してみても、優れた耐寒性(非凝固性)と高電導度と
は両立し得ないトレード・オフの関係に立つのである。
That is, for example, when the composition ratio of EC: DEC is 1:
In the case of 1, the conductivity is good, but -10 ° C
It does not withstand use because it solidifies as soon as possible at a nearby temperature. However, when the composition ratio of DEC is increased, the freezing point decreases. For example, when the composition ratio of EC: DEC is 1: 4, −
Although an electrolyte solution that does not coagulate even at 30 ° C. is obtained, in this case, the conductivity is extremely low, and it is not usable. In other words, even if the composition ratio of EC: DEC is variously changed, there is a trade-off relationship in which excellent cold resistance (non-solidification) and high conductivity are incompatible.

【0006】このため、ECとDECの混合溶媒を使用
した有機電解液は、一般論としては優れた有機電解液と
されながら、EV用バッテリーへの使用については、過
酷な使用条件を想定せねばならない点から、適用が困難
である、とされている。
[0006] For this reason, an organic electrolyte using a mixed solvent of EC and DEC is considered to be an excellent organic electrolyte in general, but severe use conditions must be assumed for use in an EV battery. It is said that it is difficult to apply it.

【0007】一方、γ−ブチロラクトン(以下、本明細
書において「GBL」と言う。)を溶媒とする有機電解
液は、例えば−30°Cでも比較的高い電導度を有し、
かつ凝固しないことが知られている。従って、これをE
V用バッテリーの有機電解液に用いればどうか、と言う
考慮も可能である。
On the other hand, an organic electrolyte using γ-butyrolactone (hereinafter referred to as “GBL” in the present specification) as a solvent has a relatively high conductivity even at −30 ° C., for example.
It is known that it does not solidify. Therefore, this is
It is also possible to consider whether to use it for the organic electrolyte of the V battery.

【0008】ところが、黒鉛系材料を負極とする二次電
池にGBL系の有機電解液を適用すると、充電時にGB
Lと黒鉛が反応して分解し、結果的に不可逆容量が大き
くなって充・放電効率が悪化する、と指摘されている
(例えば1995年に丸善が発行した「電池便覧−増補
版」の第541頁の記載)。
However, when a GBL-based organic electrolytic solution is applied to a secondary battery using a graphite-based material as a negative electrode, the GBB is charged during charging.
It has been pointed out that L and graphite react and decompose, resulting in an increase in irreversible capacity and deterioration in charge / discharge efficiency (for example, the “Battery Handbook-Supplemented Edition” published by Maruzen in 1995) Description on page 541).

【0009】このため、従来のGBL系の有機電解液を
用いた電池は、いずれも黒鉛系材料を電極としていない
ものばかりである。例えば、特開平3−110765号
公報にかかる有機電解液電池の発明では、LiCoO2
/金属Li,Li合金の電極構成であるし、また、特開
平5−217602号公報にかかる非水電解液電池の発
明では、Li遷移金属酸化物/ハードカーボン(非黒鉛
系炭素材料)の電極構成である。
For this reason, any conventional battery using a GBL-based organic electrolytic solution does not use a graphite-based material as an electrode. For example, in the invention of the organic electrolyte battery according to JP-A-3-110765, LiCoO 2
And a non-aqueous electrolyte battery according to Japanese Patent Application Laid-Open No. 5-217602 discloses an electrode of Li transition metal oxide / hard carbon (non-graphite carbon material). Configuration.

【0010】[0010]

【発明が解決しようとする課題】そこで本発明は、負極
に黒鉛系材料を用いることを前提として、EV用バッテ
リーに対する前記の厳しい要求をクリアできるリチウム
二次電池を提供することを、その解決すべき技術的課題
とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lithium secondary battery capable of satisfying the above strict requirements for an EV battery on the premise that a graphite-based material is used for the negative electrode. Should be technical issues.

【0011】[0011]

【着眼点】本願発明者は、上記課題の解決手段を研究す
るなかで、前記したGBL系有機電解液と負極黒鉛系材
料との反応による不可逆容量の増大に関連して、次のよ
うな知見を得た。
The present inventor studied the means for solving the above-mentioned problems, and found the following findings in connection with the increase in the irreversible capacity due to the reaction between the GBL-based organic electrolyte and the negative electrode graphite-based material. I got

【0012】即ち、GBL系有機電解液と黒鉛系材料の
負極とを用いたリチウム二次電池においては、充電時に
GBLで溶媒和されたLiイオンが負極へ移動し、これ
に伴い負極黒鉛系材料の表面でGBLと黒鉛との前記分
解反応が起こって、不可逆容量が増大する。
That is, in a lithium secondary battery using a GBL-based organic electrolyte and a graphite-based negative electrode, Li ions solvated by GBL move to the negative electrode during charging, and accordingly, the negative-graphite-based material The decomposition reaction between GBL and graphite takes place on the surface of, and the irreversible capacity increases.

【0013】ところが、有機電解液中に、GBLの他
に、これよりも誘電率の高い有機溶媒Aが含まれている
と、充電時に有機溶媒Aで溶媒和されたLiイオンの方
が先に負極へ移動し、有機溶媒Aと黒鉛とが優先的に反
応する。従ってこの場合、不可逆容量の増大幅は、GB
Lではなく有機溶媒Aによって決定される。
However, if the organic electrolyte contains an organic solvent A having a higher dielectric constant in addition to GBL, the Li ions solvated with the organic solvent A during charging first It moves to the negative electrode, and the organic solvent A and graphite react preferentially. Therefore, in this case, the increasing range of the irreversible capacity is GB
It is determined not by L but by the organic solvent A.

【0014】本願発明者は、以上の知見から、次の各条
件を備えた有機溶媒を探索する事が課題解決手段を導
く、と言うことに想到し、これに該当する有機溶媒がE
Cであることを知って、本発明を完成した。 (1)GBLよりも誘電率が高く、(2)黒鉛との反応
による不可逆容量の増大幅がGBLよりも有効に小さ
く、(3)前記GBLの耐寒性を損なわない比率でGB
Lとの組成が可能である。
From the above findings, the inventor of the present application has conceived that searching for an organic solvent satisfying the following conditions leads to means for solving the problem.
Knowing that it was C, the present invention was completed. (1) The dielectric constant is higher than GBL, (2) the increase in the irreversible capacity due to the reaction with graphite is smaller than GBL, and (3) GB is a ratio that does not impair the cold resistance of the GBL.
Compositions with L are possible.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
の本発明(請求項に記載の発明)の構成は、正極にリチ
ウム遷移金属酸化物、負極に黒鉛系材料を用い、電解液
がリチウム塩を溶解した有機電解液であるリチウム二次
電池において、前記有機電解液の溶媒が、GBL(γ−
ブチロラクトン)を主成分とし、副成分として少なくと
もEC(エチレンカーボネート)を含む組成であるリチ
ウム二次電池である。
Means for Solving the Problems According to the present invention (the invention described in the claims) for solving the above problems, a lithium transition metal oxide is used for a positive electrode, a graphite-based material is used for a negative electrode, and an electrolyte is lithium. In a lithium secondary battery that is an organic electrolyte in which a salt is dissolved, a solvent of the organic electrolyte is GBL (γ-
This is a lithium secondary battery having a composition containing (butyrolactone) as a main component and at least EC (ethylene carbonate) as a subcomponent.

【0016】[0016]

【発明の作用・効果】ECは上記(1)〜(3)の条件
を備えた有機溶媒である。このため、本発明のリチウム
二次電池においては、充電時に、GBLで溶媒和された
Liイオンも負極へ移動するが、GBLよりも誘電率が
高いECで溶媒和されたLiイオンがより早く負極へ移
動するため、負極黒鉛系材料の表面でECと黒鉛との分
解反応が優先的に起こり、GBLと黒鉛との分解反応が
実質的に回避される。
EC is an organic solvent satisfying the above conditions (1) to (3). For this reason, in the lithium secondary battery of the present invention, during charging, Li ions solvated by GBL also move to the negative electrode, but Li ions solvated by EC having a dielectric constant higher than that of GBL quickly shift to the negative electrode. Therefore, the decomposition reaction between EC and graphite occurs preferentially on the surface of the negative electrode graphite-based material, and the decomposition reaction between GBL and graphite is substantially avoided.

【0017】このことから、有機溶媒と黒鉛との分解反
応による不可逆容量はECによって決定され、GBLが
反応に関与する場合に比較して、その増大幅が有効に低
減される。
Accordingly, the irreversible capacity due to the decomposition reaction between the organic solvent and graphite is determined by EC, and the increase in the irreversible capacity is effectively reduced as compared with the case where GBL is involved in the reaction.

【0018】従って、不可逆容量を大幅に低減させるこ
となく、黒鉛系材料を負極とする二次電池にGBL系の
有機電解液を適用することができる。
Therefore, a GBL-based organic electrolyte can be applied to a secondary battery using a graphite-based material as a negative electrode without greatly reducing the irreversible capacity.

【0019】一方、有機電解液の組成において、ECが
主成分であると見なされるような極端な組成比を採用し
ない限り、前記したGBLの優れた耐寒性と高電導度が
維持される。
On the other hand, as long as the composition of the organic electrolyte does not employ an extreme composition ratio such that EC is considered to be the main component, the excellent cold resistance and high conductivity of the above-described GBL are maintained.

【0020】従って、本発明のリチウム二次電池は、E
V用バッテリーに対する厳しい使用条件をクリアするこ
とができる。
Therefore, the lithium secondary battery of the present invention has
Strict use conditions for the V battery can be satisfied.

【0021】[0021]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。
Next, an embodiment of the present invention will be described.

【0022】〔リチウム二次電池〕本発明のリチウム二
次電池は、EV用バッテリーに特に好適な作用・効果を
伴うとは言え、その用途あるいは使用方法がEV用バッ
テリーに限定されないことは言うまでもなく、任意の用
途のリチウム二次電池として使用できる。
[Lithium Secondary Battery] Although the lithium secondary battery of the present invention has an action and effect particularly suitable for an EV battery, it goes without saying that its use or method of use is not limited to an EV battery. It can be used as a lithium secondary battery for any purpose.

【0023】従って、二次電池としての物理的な構成
も、EV用バッテリーのようなものに限らず、各種電気
製品等に組み込み可能な小型あるいは携帯用電池として
構成することができる。
Therefore, the physical configuration of the secondary battery is not limited to that of an EV battery, but can be configured as a small or portable battery that can be incorporated into various electric appliances and the like.

【0024】〔リチウム二次電池の正極〕リチウム二次
電池の正極にはリチウム遷移金属酸化物を用いる。その
種類については特段の限定がなく、要するにリチウムイ
オンを可逆的に電気的に出し入れできるものであれば良
い。代表的なものとして、LiCoO2、LiNiO2
LiMn24等を例示することができる。
[Positive electrode of lithium secondary battery] A lithium transition metal oxide is used for a positive electrode of a lithium secondary battery. There is no particular limitation on the type, and in short, any type can be used as long as lithium ions can be reversibly and electrically inserted and removed. Representative examples include LiCoO 2 , LiNiO 2 ,
LiMn 2 O 4 and the like can be exemplified.

【0025】電極としての正極の形状や形態、その製造
方法等も、何ら限定されるものではない。
The shape and form of the positive electrode as an electrode, the method of manufacturing the same, and the like are not limited at all.

【0026】〔リチウム二次電池の負極〕リチウム二次
電池の負極には黒鉛系材料を用いる。ここに「黒鉛系材
料」とは、人造黒鉛、天然黒鉛その他の電極として用い
られることがある黒鉛材料だけでなく、ハードカーボン
や熱処理コークス等の非黒鉛系材料がブレンドされた黒
鉛材料をも含む概念である。
[Negative electrode of lithium secondary battery] A graphite material is used for the negative electrode of the lithium secondary battery. The term "graphite-based material" used herein includes not only artificial graphite, natural graphite and other graphite materials that may be used as electrodes, but also graphite materials blended with non-graphite-based materials such as hard carbon and heat-treated coke. It is a concept.

【0027】〔有機電解液〕有機電解液は、少なくとも
有機溶媒と支持電解質とを含み、有機溶媒は、GBLを
主成分とし、副成分として少なくともECを含む組成で
ある。副成分として更に他の有機溶媒を含むことも許さ
れる。
[Organic Electrolyte] The organic electrolyte contains at least an organic solvent and a supporting electrolyte, and the organic solvent has a composition containing GBL as a main component and at least EC as a subcomponent. It is permissible to include further organic solvents as accessory components.

【0028】主成分としてのGBLの有機溶媒中での組
成比は、有機溶媒が−30°Cでも有効に高い電導度と
非凝固性とを維持できる限りにおいて、ECやその他の
副成分との相対関係で決定されることであって、必ずし
も有機溶媒全体の過半量以上を占める必要はない。
The composition ratio of GBL as a main component in an organic solvent is such that ECB and other subcomponents can be used as long as the organic solvent can effectively maintain high conductivity and non-coagulability even at −30 ° C. It is determined by a relative relationship, and does not necessarily have to account for a majority or more of the entire organic solvent.

【0029】副成分としてのECの有機溶媒中での組成
比の下限については、「発明の作用・効果」の項で説明
したように、少なくとも充電時におけるGBLと黒鉛と
の分解反応を実質的に回避させ得る量であることが要求
される。その具体的な数値は、他の副成分の種類及び組
成比によっても変動する可能性があって一律には決定し
難いが、一実験例によれば有機溶媒全体の15体積%以
上である。ECの組成比の上限は、有機溶媒全体の35
体積%未満である。なぜなら、ECが35体積%以上を
占めると、−30°Cあるいはこれより高い温度におい
てECの凝固が起こり、有機電解液の電導度が低くなっ
て好ましくない。
Regarding the lower limit of the composition ratio of EC as an auxiliary component in an organic solvent, as described in the section of “Functions and Effects of the Invention”, at least the decomposition reaction between GBL and graphite at the time of charging is substantially reduced. It is required that the amount be avoided. The specific numerical value may vary depending on the type and composition ratio of the other subcomponents, and it is difficult to determine uniformly. However, according to one experimental example, the specific numerical value is 15% by volume or more of the entire organic solvent. The upper limit of the composition ratio of EC is 35% of the entire organic solvent.
% By volume. This is because if EC occupies 35% by volume or more, solidification of EC occurs at a temperature of -30 ° C or higher, and the electric conductivity of the organic electrolyte solution is not preferable.

【0030】有機電解液の支持電解質としては、この種
の用途に用いられることがある周知又は公知の各種リチ
ウム化合物の1種類あるいは2種類以上を任意に使用す
れば良い。その代表的な例として、LiPF6、LiB
4、LiClO4、LiAsF6、LiCF3SO3等が
挙げられるが、これらに限定されない。
As the supporting electrolyte for the organic electrolyte, one or more of various well-known or known lithium compounds which may be used for this kind of application may be arbitrarily used. Typical examples are LiPF 6 , LiB
F 4, LiClO 4, LiAsF 6 , but LiCF 3 SO 3 and the like, without limitation.

【0031】[0031]

【実施例】次に、本発明の実施例について説明する。Next, an embodiment of the present invention will be described.

【0032】〔実施例1〕GBLの混合比が0〜100
%で、残部がECである20種類の混合溶媒を準備し、
これらに富山薬品工業製の高純度LiBF4を濃度が1
モル/リットルとなるように溶解して、20種類の有機
電解液を調製した。
Example 1 The mixing ratio of GBL was 0 to 100.
%, 20 kinds of mixed solvents with the balance being EC are prepared,
High purity LiBF 4 manufactured by Toyama Pharmaceutical Co., Ltd.
By dissolving them in a mole / liter, 20 kinds of organic electrolytes were prepared.

【0033】次に、2枚の白金電極を備えたガラスセル
を用いて、上記各有機電解液の−30°Cでの電導度
(10kHzにて計測)と凝固の有無を調べた。電導度
はインピーダンスアナライザー(ヒューレットパッカー
ド社 4192A)により計測した。
Next, using a glass cell provided with two platinum electrodes, the conductivity (measured at 10 kHz) of each of the above-mentioned organic electrolytes at −30 ° C. and the presence or absence of solidification were examined. The conductivity was measured with an impedance analyzer (4192A, Hewlett-Packard Company).

【0034】その結果、ECの割合が35%未満の有機
電解液ではいずれも、−30°Cでの電導度が実用的な
程度に高く、かつ凝固しなかった。
As a result, in each of the organic electrolytes having an EC ratio of less than 35%, the conductivity at -30 ° C. was practically high and did not solidify.

【0035】〔実施例2〕本荘ケミカル工業製のLiM
24を18.5部、東海カーボン製のアセチレンブラ
ックを1.5部、クレハ化学製のポリフッ化ビニリデン
(以下、本明細書において「PVDF」と言う。)粉末
を8部、和光純薬製のN−メチルピロリドンを72部、
十分に混合してスラリーを得た。このスラリーを厚さ2
0μmのアルミ箔上に塗布して正極材料を得た。
[Example 2] LiM manufactured by Honjo Chemical Industry
n 2 O 4 18.5 parts, 1.5 parts of acetylene black manufactured by Tokai Carbon, Kureha Chemical Co. of polyvinylidene fluoride (hereinafter, referred to herein as "PVDF".) 8 parts of the powder, pure Wako 72 parts of medicinal N-methylpyrrolidone,
Mix well to obtain a slurry. Thick this slurry 2
A positive electrode material was obtained by coating on a 0 μm aluminum foil.

【0036】一方、中国産の生コークスを900°Cで
熱処理した後、その熱処理物65部に対して中越製の天
然黒鉛35部を混合し、この混合物100部を同上のP
VDF10部と共に同上のN−メチルピロリドン100
部に溶解させてスラリーを得た。このスラリーを銅箔上
に塗布して負極材料を得た。
On the other hand, raw coke produced in China was heat-treated at 900 ° C., and 65 parts of the heat-treated product was mixed with 35 parts of Chuetsu natural graphite, and 100 parts of the mixture was mixed with P
N-methylpyrrolidone 100 as above with 10 parts of VDF
To obtain a slurry. This slurry was applied on a copper foil to obtain a negative electrode material.

【0037】次に、上記の正極材料及び負極材料をそれ
ぞれ直径17mmの円盤形に打ち抜いた。
Next, each of the positive electrode material and the negative electrode material was punched into a disk having a diameter of 17 mm.

【0038】そして別途、体積比でGBL:EC:DE
C=4:1:1の混合溶液(ECの組成比が16体積%
である)に同上のLiBF4を濃度が1モル/リットル
となるように溶解した有機電解液を、直径19mmの東
燃化学製ポリエチレン製セパレータに含浸させ、前記円
盤形の両電極の間にこのセパレータを挟んで、本実施例
にかかるリチウム二次電池を構成した。
Separately, GBL: EC: DE by volume ratio
C = 4: 1: 1 mixed solution (EC composition ratio is 16% by volume)
An organic electrolyte solution obtained by dissolving LiBF 4 in the same manner as described above to a concentration of 1 mol / liter is impregnated in a polyethylene separator made by Tonen Chemical Co., Ltd. having a diameter of 19 mm, and this separator is placed between the disc-shaped electrodes. The lithium secondary battery according to the present example was configured with the.

【0039】本例の電池について1mA/cm2の定電
流で4.2Vまで充電し、その後、4.2Vの定電圧の
まま更に充電を続けた。充電した電池を0.5mA/c
2の定電流で放電し、初期放電容量、不可逆容量を求
めた。それらの評価結果を、文末の表1に示す。
The battery of this example was charged to 4.2 V at a constant current of 1 mA / cm 2 , and then further charged at a constant voltage of 4.2 V. Charged battery is 0.5mA / c
The battery was discharged at a constant current of m 2 , and the initial discharge capacity and irreversible capacity were determined. The evaluation results are shown in Table 1 at the end of the sentence.

【0040】〔実施例3〕有機電解液の溶媒の組成比
を、体積比でGBL:EC:DEC=2:1:1(EC
の組成比が25体積%である)にした点以外は全て実施
例2と同じに実施し、評価した。評価結果を文末の表1
に示す。
Example 3 The composition ratio of the solvent of the organic electrolyte was GBL: EC: DEC = 2: 1: 1 (EC
Was carried out in the same manner as in Example 2 except that the composition ratio was 25% by volume. Table 1 at the end of the sentence
Shown in

【0041】〔実施例4〕有機電解液の溶媒の組成比
を、体積比でGBL:EC:DEC=1:1:1(EC
の組成比が33体積%である)にした点以外は全て実施
例2と同じに実施し、評価した。評価結果を文末の表1
に示す。
Example 4 The composition ratio of the solvent of the organic electrolyte was GBL: EC: DEC = 1: 1: 1 (EC
Was carried out in the same manner as in Example 2, except that the composition ratio was 33% by volume. Table 1 at the end of the sentence
Shown in

【0042】〔比較例1〕有機電解液の溶媒の組成比
を、体積比でEC:DEC=1:1(GBLを含まな
い)にした点以外は全て実施例2と同じに実施し、評価
した。評価結果を文末の表1に示す。
Comparative Example 1 Evaluation was performed in the same manner as in Example 2 except that the composition ratio of the solvent in the organic electrolyte was EC: DEC = 1: 1 (excluding GBL) by volume. did. The evaluation results are shown in Table 1 at the end of the sentence.

【0043】〔比較例2〕有機電解液の溶媒をGBLの
みで構成した点以外は全て実施例2と同じに実施し、評
価した。評価結果を文末の表1に示す。
Comparative Example 2 The same procedure as in Example 2 was carried out except that the solvent of the organic electrolyte was composed of only GBL, and the evaluation was performed. The evaluation results are shown in Table 1 at the end of the sentence.

【0044】〔実施例2〜4、比較例1〜2の評価〕表
1より明らかなように、各実施例のリチウム二次電池
は、その有機電解液が−30°Cで凝固せず、高い電導
度を示し、かつ電池の充・放電効率が優れている。比較
例1では有機電解液が凝固してしまった。比較例2では
不可逆容量がかなり大きかった。
[Evaluation of Examples 2 to 4 and Comparative Examples 1 and 2] As is apparent from Table 1, the lithium secondary batteries of the respective examples did not solidify their organic electrolytes at -30 ° C. It shows high conductivity and has excellent charge / discharge efficiency of the battery. In Comparative Example 1, the organic electrolyte solution solidified. In Comparative Example 2, the irreversible capacity was considerably large.

【0045】〔実施例5〕負極材料として大阪ガス製の
黒鉛MCMB25−28を用いた点以外は全て実施例2
と同じに実施し、評価した。評価結果を文末の表2に示
す。
Example 5 Example 2 was repeated except that graphite MCMB25-28 manufactured by Osaka Gas was used as the negative electrode material.
The same was performed and evaluated. The evaluation results are shown in Table 2 at the end of the sentence.

【0046】なお、本例のリチウム二次電池で充・放電
を繰り返した時の充電時における電流密度−時間曲線を
図1に示す。図1において実線が1回目、点線が2回
目、一点鎖線が4回目の充電時の曲線である。図1の結
果から、後述の図2と図3に比べて、1回目の充電はE
Cで溶媒和されたLiイオンで、2回目と4回目ではG
BLで溶媒和されたLiイオンでそれぞれ行われている
ことが分かる。
FIG. 1 shows a current density-time curve at the time of charging when charging / discharging is repeated in the lithium secondary battery of this example. In FIG. 1, the solid line is the curve at the first charge, the dotted line is the curve at the second charge, and the dashed line is the curve at the time of the fourth charge. From the results of FIG. 1, the first charge is E compared to FIGS. 2 and 3 described below.
Li ion solvated with C, G in the second and fourth
It can be seen that this is done with Li ions solvated in BL respectively.

【0047】〔実施例6〕実施例5と同じ負極を用いた
点以外は全て実施例3と同じに実施し、評価した。評価
結果を文末の表2に示す。
Example 6 The same procedure as in Example 3 was carried out except that the same negative electrode as in Example 5 was used, and the evaluation was performed. The evaluation results are shown in Table 2 at the end of the sentence.

【0048】〔比較例3〕実施例5と同じ負極を用いた
点以外は全て比較例2と同じに実施し、評価した。評価
結果を文末の表2に示す。
Comparative Example 3 The same operation as in Comparative Example 2 was performed except that the same negative electrode as in Example 5 was used. The evaluation results are shown in Table 2 at the end of the sentence.

【0049】なお、本例のリチウム二次電池で充・放電
を繰り返した時の充電時における電流密度−時間曲線を
図2に示す。図2において実線が1回目、点線が2回
目、一点鎖線が4回目の充電時の曲線である。図2の結
果から、GBLを用いた電解液では、4.2Vの定電圧
下の電流密度の時間減衰がゆっくりと生じていることが
分かる。
FIG. 2 shows a current density-time curve at the time of charging when charging / discharging is repeated in the lithium secondary battery of this example. In FIG. 2, the solid line is the curve at the first charge, the dotted line is the curve at the second charge, and the dashed line is the curve at the time of the fourth charge. From the results shown in FIG. 2, it can be seen that, in the electrolytic solution using GBL, the time decay of the current density under a constant voltage of 4.2 V occurs slowly.

【0050】〔比較例4〕実施例5と同じ負極を用いた
点以外は全て比較例1と同じに実施し、評価した。評価
結果を文末の表2に示す。
Comparative Example 4 The same operation as in Comparative Example 1 was performed except that the same negative electrode as in Example 5 was used. The evaluation results are shown in Table 2 at the end of the sentence.

【0051】なお、本例のリチウム二次電池で充・放電
を繰り返した時の充電時における電流密度−時間曲線を
図3に示す。図3において実線が1回目、点線が2回
目、一点鎖線が4回目の充電時の曲線である。図3の結
果から、EC/DECを用いた電解液では、4.2Vの
定電圧下の電流密度の時間減衰が急であることが分か
る。
FIG. 3 shows a current density-time curve at the time of charging when charging / discharging is repeated in the lithium secondary battery of this example. In FIG. 3, the solid line is the curve at the time of the first charge, the dotted line is the curve at the second time, and the chain line is the curve at the time of the fourth charge. From the results in FIG. 3, it can be seen that in the electrolytic solution using EC / DEC, the time decay of the current density under a constant voltage of 4.2 V is sharp.

【0052】〔実施例5〜6、比較例3〜4の評価〕表
2より明らかなように、各実施例のリチウム二次電池
は、その有機電解液が−30°Cで凝固せず、高い電導
度を示し、かつ電池の充・放電効率が優れている。比較
例3では不可逆容量がかなり大きく、初期放電容量が低
かった。比較例4では有機電解液が凝固してしまった。
[Evaluation of Examples 5 to 6 and Comparative Examples 3 and 4] As is clear from Table 2, the lithium secondary batteries of the respective examples did not solidify at -30 ° C in their organic electrolytes. It shows high conductivity and has excellent charge / discharge efficiency of the battery. In Comparative Example 3, the irreversible capacity was considerably large, and the initial discharge capacity was low. In Comparative Example 4, the organic electrolyte was solidified.

【0053】なお、図4に、実施例5、実施例6、比較
例3及び比較例4のリチウム二次電池の充・放電サイク
ル特性をまとめた。
FIG. 4 summarizes the charge / discharge cycle characteristics of the lithium secondary batteries of Example 5, Example 6, Comparative Example 3 and Comparative Example 4.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例5のリチウム二次電池の電流密度−時間
曲線を示す図である。
FIG. 1 is a diagram showing a current density-time curve of a lithium secondary battery of Example 5.

【図2】比較例3のリチウム二次電池の電流密度−時間
曲線を示す図である。
FIG. 2 is a diagram showing a current density-time curve of a lithium secondary battery of Comparative Example 3.

【図3】比較例4のリチウム二次電池の電流密度−時間
曲線を示す図である。
FIG. 3 is a diagram showing a current density-time curve of a lithium secondary battery of Comparative Example 4.

【図4】実施例5、実施例6、比較例3及び比較例4の
リチウム二次電池の充・放電サイクル特性を示す図であ
る。
FIG. 4 is a diagram showing charge / discharge cycle characteristics of lithium secondary batteries of Example 5, Example 6, Comparative Example 3 and Comparative Example 4.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極にリチウム遷移金属酸化物、負極に
黒鉛系材料を用い、電解液がリチウム塩を溶解した有機
電解液であるリチウム二次電池において、前記有機電解
液の溶媒が、γ−ブチロラクトンを主成分とし、副成分
として少なくともエチレンカーボネートを含む組成であ
ることを特徴とするリチウム二次電池。
1. A lithium secondary battery in which a lithium transition metal oxide is used for a positive electrode and a graphite-based material is used for a negative electrode, and an electrolytic solution is an organic electrolytic solution in which a lithium salt is dissolved. A lithium secondary battery comprising butyrolactone as a main component and at least ethylene carbonate as an auxiliary component.
JP9183450A 1997-07-09 1997-07-09 Lithium secondary battery Pending JPH1131525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183450A JPH1131525A (en) 1997-07-09 1997-07-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183450A JPH1131525A (en) 1997-07-09 1997-07-09 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1131525A true JPH1131525A (en) 1999-02-02

Family

ID=16135999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183450A Pending JPH1131525A (en) 1997-07-09 1997-07-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1131525A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154148A (en) * 1997-08-05 1999-02-26 Denso Corp Lithium secondary battery
WO2001003228A1 (en) 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2002008715A (en) * 2000-06-21 2002-01-11 Yuasa Corp Nonaqueous electrolyte battery
JP2002042865A (en) * 2000-07-31 2002-02-08 At Battery:Kk Thin-type nonaqueous electrolyte secondary battery
JP2003007333A (en) * 2001-06-26 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
JP2005209394A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
WO2019078043A1 (en) * 2017-10-17 2019-04-25 日本碍子株式会社 Lithium secondary battery and method for manufacturing battery-incorporating device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154148A (en) * 1997-08-05 1999-02-26 Denso Corp Lithium secondary battery
WO2001003228A1 (en) 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2002008715A (en) * 2000-06-21 2002-01-11 Yuasa Corp Nonaqueous electrolyte battery
JP2002042865A (en) * 2000-07-31 2002-02-08 At Battery:Kk Thin-type nonaqueous electrolyte secondary battery
JP2003007333A (en) * 2001-06-26 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
JP2005209394A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
JP4543831B2 (en) * 2004-08-27 2010-09-15 トヨタ自動車株式会社 Lithium secondary battery
WO2019078043A1 (en) * 2017-10-17 2019-04-25 日本碍子株式会社 Lithium secondary battery and method for manufacturing battery-incorporating device
KR20200053584A (en) * 2017-10-17 2020-05-18 엔지케이 인슐레이터 엘티디 Method for manufacturing lithium secondary battery and battery embedded device
CN111194503A (en) * 2017-10-17 2020-05-22 日本碍子株式会社 Lithium secondary battery and method for manufacturing device with built-in battery
JPWO2019078043A1 (en) * 2017-10-17 2020-10-01 日本碍子株式会社 Manufacturing method for lithium secondary batteries and devices with built-in batteries
US11757134B2 (en) 2017-10-17 2023-09-12 Ngk Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
KR101798259B1 (en) Lithium secondary battery using ionic liquid
KR100439448B1 (en) Aqueous electrolyte and a lithium secondary battery using the same
KR20020002200A (en) Charging method for charging nonaqueous electrolyte secondary battery
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JPH11339850A (en) Lithium-ion secondary battery
JP2008097879A (en) Lithium ion secondary battery
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP2008140683A (en) Battery
JPH1131525A (en) Lithium secondary battery
JPH09161778A (en) Organic electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
EP3567668A1 (en) Non-aqueous electrolyte for secondary battery and secondary battery having the same
JP2002117832A (en) Lithium secondary battery
JP2011198637A (en) Nonaqueous electrolyte secondary battery module
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2003151622A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP3831599B2 (en) Lithium secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery
EP4078711B1 (en) Electrolyte for li secondary batteries
US20230395853A1 (en) Electrolyte for lithium secondary batteries