JPS59219464A - Vapor phase chemical reaction method - Google Patents

Vapor phase chemical reaction method

Info

Publication number
JPS59219464A
JPS59219464A JP8944584A JP8944584A JPS59219464A JP S59219464 A JPS59219464 A JP S59219464A JP 8944584 A JP8944584 A JP 8944584A JP 8944584 A JP8944584 A JP 8944584A JP S59219464 A JPS59219464 A JP S59219464A
Authority
JP
Japan
Prior art keywords
gas
wafer
shower
reaction
chemical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8944584A
Other languages
Japanese (ja)
Inventor
Tatsu Ito
達 伊藤
Katsuo Sugawara
菅原 活郎
Takeo Yoshimi
吉見 武夫
Atsushi Hiraiwa
篤 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8944584A priority Critical patent/JPS59219464A/en
Publication of JPS59219464A publication Critical patent/JPS59219464A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film of a reaction product having uniform film quality and thickness on the surface of a wafer by curving the showering surface in a reaction chamber, and injecting the 2nd gas to effect reaction while subjecting the 1st gas to a plasma discharge. CONSTITUTION:The bottom surface of a showering part 4 in a reaction chamber 1 is curved in such a way that the spacing H0 in the central part between the part 4 and a wafer 5 is large and that the spacings H1, H2 in the peripheral part are small. While the 1st gas such as H2 introduced into the chamber 1 is subjected to a plasma discharge, the 2nd gas such as SiH4 introduced through an introducing pipe 3 is injected from the part 4. The 1st gas and the 2nd gas introduced below the part 4 along the circumference on the side surface of the part 4 from the inside of the chamber 1 are brought into reaction and the reaction product such as Si2Ny is deposited on the surface of the wafer 5. The nonuniformity of the film quality in the radial direction of the wafer 5 is eliminated by the above-mentioned method.

Description

【発明の詳細な説明】 この発明はプラズマ放電を利用した気相化学反応方法、
特にプラズマナイトライド生成方法に関するものである
[Detailed Description of the Invention] This invention provides a gas phase chemical reaction method using plasma discharge,
In particular, it relates to a method for producing plasma nitride.

プラズマナイトライド生成方法は、プラズマ放電を利用
してSi(シリコン)とN、(ちっ素)とを気相中で反
応させてS r x N y化合物をつ(す、Siウェ
ハ上にS t xNy (シリコンナイトラトド)膜等
を形成する装置のもので、これを実施する装置として一
般に反応室内に1枚のSiウェハのみを設置するLFE
(会社名)型と、数枚のウェハを同時に設置できるAM
T(会社名)型とがあるが、ここでは主として前者を対
象とする。このような技術はたとえば、特開昭51−8
9384号公報等に記載されている。
The plasma nitride generation method uses plasma discharge to react Si (silicon) with N and (nitrogen) in the gas phase to produce a S r x N y compound (S t ) on a Si wafer. This is a device that forms xNy (silicon nitrate) films, etc., and the device that performs this is generally an LFE in which only one Si wafer is installed in the reaction chamber.
(Company name) AM that can install molds and several wafers at the same time
Although there is a T (company name) type, we will mainly focus on the former here. For example, such technology is disclosed in Japanese Patent Application Laid-Open No. 51-8
It is described in Publication No. 9384 and the like.

LFE型プラズマナイトライド生成は、例えば第1図を
参照し、ペルジャー型の石英容器1内にウェハ載置台2
と、中央にガス導入管3を有するシャワ一部4とを対向
させ、容器周囲の高周波コイル(周波数13.56 M
Hz )により容器内でプラズマ放電を行ないシャワー
から出る5IH4(モノシラン)と周囲から導入しプラ
ズマ化しtこN2とを反応させてウェハ載置台2上のS
iウェハ5に反応物質S i 3N4を析出させるよう
になっている。
For LFE type plasma nitride generation, for example, with reference to FIG.
and a shower part 4 having a gas introduction pipe 3 in the center, and a high frequency coil (frequency 13.56 M) around the container.
Hz) to generate a plasma discharge in the container, and the 5IH4 (monosilane) discharged from the shower reacts with the N2 introduced from the surroundings and turned into plasma, causing the S on the wafer mounting table 2 to react.
The reactant S i 3N4 is deposited on the i-wafer 5 .

したがってSiとN2との反応は主としてシャワ−とウ
ェハ載置台との間の反応部6で行われる。
Therefore, the reaction between Si and N2 mainly takes place in the reaction section 6 between the shower and the wafer mounting table.

シャワーは一般に円板形の中空容器で上部中央でガス導
入管と接続し、下面に多数の小孔があけられ、この小孔
からS iH4等のガスがシャワー状に噴射するどころ
かもこの名称が付せられている。
A shower is generally a disc-shaped hollow container that is connected to a gas introduction pipe at the center of the top, and has many small holes in its bottom surface. It is attached.

従来のシャワーは第2図(a)に示すようにシャワー面
が平面状に形成されている。
A conventional shower has a flat shower surface as shown in FIG. 2(a).

ところで容器1内で励起されたちっ素N”、l’J2*
等は図面で示すようにシャワー側面より反応部に入り、
ウゴハの周辺部から接触するようになるために、ウェハ
面への反応物質の析出は半径方向に膜質の不均一を生じ
、例えば第3図に示すようにウェパ5の中心部7で周辺
よりSi成分の多い「Siリッチ」のナイ[・ライド膜
形成されることになった。
By the way, nitrogen N'', l'J2* excited in container 1
etc. enter the reaction section from the side of the shower as shown in the drawing.
Because contact begins from the periphery of the wafer, the deposition of reactants on the wafer surface causes nonuniform film quality in the radial direction. For example, as shown in FIG. A ``Si-rich'' nylide film containing many components was formed.

上述しfこように反応時においてウエノ・周辺部と中心
部とで5iHnとN2*との反応状態が変り、中心部で
のS iH4’)ツチであるため相対的にNのデプレシ
ョンが起り、一部でSi リッチのナイトライド膜が形
成される。本願発明者は上記現象はSiH4に対するN
2*、N*濃度の不均一性が原因であると考え、これを
改善するべく本発明をな[また。
As mentioned above, during the reaction, the reaction state of 5iHn and N2* changes between the Ueno/periphery and the center, and since S iH4') is present in the center, a relative depletion of N occurs. , a Si-rich nitride film is formed in some areas. The inventor of the present application believes that the above phenomenon is caused by N on SiH4.
We believe that the non-uniformity of the 2* and N* concentrations is the cause, and we have devised the present invention to improve this problem.

したがってこの発明は、LFE型のプラズマCVD装置
において、ウェハの半径方向の膜質の不均一性をな(し
、膜質、膜厚ともに−・様な被膜を生成できる方法を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for producing a film with non-uniform film quality in the radial direction of a wafer, and with varying film quality and film thickness, in an LFE type plasma CVD apparatus.

上記目的を達成するTこめ本発明は、プラズマ反応室内
にウェハ載置台とシャワ一部とを対向させ、シャワ一部
上刃の反応室内に導入(−た第1ガスに対(−プラズマ
放電を行ないながら、シャワ一部から第2ガスを噴射さ
せ、上記シャワ一部上刃の反応室内からシャワ一部側面
周囲に浴ってシャワ一部上刃に導入した第1ガスと上記
第2ガスと化学反応させてウェハ載置台上のウェノ・面
に反応物質を析出させる装置であって、上記シャワ一部
とウェハ面との間隔を中心部が遠く、周辺部が近くなる
ようにシャワー面を湾曲させて成る・=とを特徴どする
To achieve the above object, the present invention has a wafer mounting table and a part of the shower facing each other in a plasma reaction chamber, and a first gas introduced (-) into the reaction chamber of the upper blade of the shower part is connected to (-) plasma discharge. While doing so, a second gas is injected from a part of the shower, and the second gas is mixed with the first gas introduced into the upper blade of the shower part from the reaction chamber of the upper blade of the shower part and around the side of the part of the shower. This is a device that causes a chemical reaction to deposit a reactive substance on the wafer surface on the wafer mounting table, and the shower surface is curved so that the distance between the shower part and the wafer surface is far from the center and close to the periphery. It is characterized by = and consists of.

以下、実施例にそって具体的に説明する。Hereinafter, a detailed explanation will be given along with examples.

再び第1図を参照し、5iHaを導入するジャワ・一部
4のシャワー面(下面)を従来の平面から湾曲面に変更
する。すなわち、第2図(b)に示すようにシャワ一部
4とウエノ・5との間にお(・て、中心部の間隔H6を
大きく、周辺部の間隔H、H,を小さくなるようにシャ
ワ一部下面を上に凸な湾曲面を形成する。あるいは第4
図を参照し、ウエノ・面よりシャワー面までの高さHな
半径rの関数として(H(r ) )変化させるもので
ある。
Referring again to FIG. 1, the shower surface (lower surface) of the Java part 4 into which 5iHa is introduced is changed from the conventional flat surface to a curved surface. That is, as shown in FIG. 2(b), between the shower part 4 and the shower head 5, the distance H6 at the center is made larger and the distance H6 at the periphery is made smaller. A part of the bottom of the shower forms a curved surface that is convex upwards.
Referring to the figure, the height H from the shower surface to the shower surface is changed as a function of the radius r (H(r)).

このようなシャワ一部を有する本発明のプラズマCVD
装置を使用し、シャワ一部からSiH4を噴射し、プラ
ズマ反応により励起させたN” 、 N2*を導入(、
てS IH4+ N 2 *−8x N y反応ニヨリ
ウェハ面にS r x N y被膜を析出させ1こ場合
にお(・て、上記被膜中のSiの含有量は反応時のSi
H4/N2比、総圧力及びRF’(高周波)出力等によ
り変化するが、その際のシャワー面とウエノ・面との間
隔Hは重要なパラメータである。
Plasma CVD of the present invention having such a shower part
Using a device, SiH4 was injected from a part of the shower, and N'' and N2* excited by a plasma reaction were introduced (,
A S r x N y film is deposited on the wafer surface during the S IH4+ N 2 *-8x N y reaction.
Although it changes depending on the H4/N2 ratio, total pressure, RF' (high frequency) output, etc., the distance H between the shower surface and the Ueno surface is an important parameter.

一般に、S I H2/ N 2比が太き(・はど、総
圧力が低いほど、RF高出力小さいほど、そしてHカ″
−l」\さいほどSi成分が太きいと(・う関係がある
In general, the higher the S I H2/N2 ratio (the lower the total pressure, the lower the RF high output, the lower the H power)
There is a relationship that the larger the Si component is, the larger the Si component is.

これらパラメータを変更しても、一般に半径方向rのS
+分布は相対的に保存される。上記〕くラメータφ、H
は半径方向に比較的に容易に変えることができ、Hをr
の関数とすることにより、周辺から導入されるNの濃度
変化を補償できろ。すなわち、中心部でSiリッチの傾
向は、中心部のHを大とし、Nのリッチの方向をひきも
どすことにより修正される。
Even if these parameters are changed, S in the radial direction r is generally
+Distribution is relatively conserved. [Above] Parameter φ, H
can be changed relatively easily in the radial direction, and H can be changed to r
By making it a function of , it is possible to compensate for changes in the concentration of N introduced from the surroundings. That is, the tendency of Si-richness at the center is corrected by increasing H at the center and reversing the direction of N-richness.

第5図はウェハ面に析出するS i x N yにおい
て、一般的にそのx/yの割合がHが大きいほど低下す
ることを示し、第6図は中心よりの距離rが大きいほど
低下することを示す。
Figure 5 shows that in S i x N y deposited on the wafer surface, the x/y ratio generally decreases as H increases, and Figure 6 shows that it decreases as the distance r from the center increases. Show that.

第7図はHをF(r)なる関数と考えて、Fが上に凸の
場合なF、、Fが平面の場合なF2 、Fが下に凸の場
合なF3とした場合の各x / yのrに対する曲線を
それぞれ示しブこもので、Fを上に凸にした場合、すな
わちシャワー面とウエノ・面との間隔がψ心で大きく、
周辺で小さくなるようにシャワー面を形成しTこ場合に
均一なSi化合物の被膜が形成できることを示している
Figure 7 shows each x when considering H as a function F(r), F when F is upwardly convex, F2 when F is a plane, and F3 when F is downwardly convex. / The curves of y and r are shown respectively.If F is made convex upward, that is, the distance between the shower surface and the Ueno surface is large at the ψ center,
This shows that a uniform Si compound film can be formed when the shower surface is formed so that it becomes smaller at the periphery.

なお、x / yの一定値は圧力、RF出力により所望
に制御できるものである。
Note that the constant value of x/y can be controlled as desired by pressure and RF output.

本発明は前記実施例に限定されるものでなく、これ以外
に種々の実施形態が考えられる。
The present invention is not limited to the above embodiments, and various other embodiments are possible.

例えば、SiH4,5iC−L等にO7を反応させて、
5in2被膜を得る場合等高温反応物を低温プラズマを
用いて反応させる多くの場合に本発明を応用できる。
For example, by reacting O7 with SiH4,5iC-L, etc.,
The present invention can be applied to many cases where high temperature reactants are reacted using low temperature plasma, such as when obtaining a 5in2 film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理的構造を示すプラズマCVD装置
の断面図、第2図はシャワ一部の形態を示し、(a)は
従来例、(b)は本発明例のそれぞれの断面図、第3図
はウェハにおけるSiリッチ部を示す平面図、第4図は
シャワー面とウェハ面との間隔を説明するための図、第
5図、第6図はシリコン分布量とHとの関係、同じくr
との関係をそれぞれ示す曲線図、第7図はシャワー面の
形状を変えfこ場合のシリコン分布量とrとの関係を示
す曲線図である。 1・・・反応容器、2・・・ウェハ載置台、3・・・ガ
ス導−入管、4・・・シャワ一部、5・・・ウェハ、6
・・・反応部、ウェハ上に析出したシリコン化合物のシ
リコンリッチ部分。 代理人 弁理士  高 橋 明 失 策  1  図 第  2  図 第  3  図 □と
FIG. 1 is a sectional view of a plasma CVD apparatus showing the basic structure of the present invention, and FIG. 2 is a sectional view of a part of the shower. , FIG. 3 is a plan view showing the Si-rich portion of the wafer, FIG. 4 is a diagram for explaining the distance between the shower surface and the wafer surface, and FIGS. 5 and 6 are the relationship between the silicon distribution amount and H. , also r
FIG. 7 is a curve diagram showing the relationship between the silicon distribution amount and r when the shape of the shower surface is changed. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Wafer mounting stand, 3... Gas introduction pipe, 4... Part of shower, 5... Wafer, 6
...Reaction area, silicon-rich portion of silicon compounds deposited on the wafer. Agent Patent Attorney Akira Takahashi Mistake 1 Figure 2 Figure 3 Figure □ and

Claims (1)

【特許請求の範囲】 1、プラズマ反応室内にウェノ・載置台を有する気相化
学反応装置において、前記プラズマ反応室内に第1ガス
を導入し、前記第1ガスに対してプラズマ放電を行なう
とともに、上記第1のガスとは別に第2のガスをプラズ
マ反応室内に導入し、第1のガスと第2のガスとを化学
反応させてウェハ載置台上のウェハ面に反応物質を析出
させる気相化学反応方法。 2、前記第1ガスをちっ素、前記第2ガスを5iH4(
モノシラン)とし、シリコンウェノ・面にS 1xNy
なる反応物質を析出させるようにした特許請求の範囲第
1項に記載の気相化学反応方法。
[Scope of Claims] 1. In a gas phase chemical reaction apparatus having a Weno-mounting table in a plasma reaction chamber, a first gas is introduced into the plasma reaction chamber, plasma discharge is performed on the first gas, and A gas phase in which a second gas is introduced into the plasma reaction chamber separately from the first gas, and a chemical reaction is caused between the first gas and the second gas to deposit a reactant on the wafer surface on the wafer mounting table. Chemical reaction methods. 2. The first gas is nitrogen, and the second gas is 5iH4 (
monosilane) and S 1xNy on the silicon wafer surface.
The gas phase chemical reaction method according to claim 1, wherein a reactant is precipitated.
JP8944584A 1984-05-07 1984-05-07 Vapor phase chemical reaction method Pending JPS59219464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8944584A JPS59219464A (en) 1984-05-07 1984-05-07 Vapor phase chemical reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8944584A JPS59219464A (en) 1984-05-07 1984-05-07 Vapor phase chemical reaction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP592977A Division JPS5940906B2 (en) 1977-01-24 1977-01-24 Gas-phase chemical reactant precipitation device using plasma discharge

Publications (1)

Publication Number Publication Date
JPS59219464A true JPS59219464A (en) 1984-12-10

Family

ID=13970876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8944584A Pending JPS59219464A (en) 1984-05-07 1984-05-07 Vapor phase chemical reaction method

Country Status (1)

Country Link
JP (1) JPS59219464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765390B1 (en) * 2006-05-01 2007-10-10 세메스 주식회사 Apparatus for thin film vapor deposition using circularly domed showerhead
US7459098B2 (en) * 2002-08-28 2008-12-02 Kyocera Corporation Dry etching apparatus, dry etching method, and plate and tray used therein
US7556741B2 (en) 2002-08-28 2009-07-07 Kyocera Corporation Method for producing a solar cell
US7556740B2 (en) 2002-08-27 2009-07-07 Kyocera Corporation Method for producing a solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556740B2 (en) 2002-08-27 2009-07-07 Kyocera Corporation Method for producing a solar cell
US7459098B2 (en) * 2002-08-28 2008-12-02 Kyocera Corporation Dry etching apparatus, dry etching method, and plate and tray used therein
US7556741B2 (en) 2002-08-28 2009-07-07 Kyocera Corporation Method for producing a solar cell
KR100765390B1 (en) * 2006-05-01 2007-10-10 세메스 주식회사 Apparatus for thin film vapor deposition using circularly domed showerhead

Similar Documents

Publication Publication Date Title
US4539068A (en) Vapor phase growth method
KR100257302B1 (en) Film growth method
US4513021A (en) Plasma reactor with reduced chamber wall deposition
JP4281059B2 (en) Deposition method and apparatus using microwave excitation
EP1226292A1 (en) Apparatus for growing epitaxial layers on wafers
KR950002177B1 (en) Gas-phase growing method and apparatus for the method
US5045346A (en) Method of depositing fluorinated silicon nitride
JPS6054919B2 (en) low pressure reactor
JPS59219464A (en) Vapor phase chemical reaction method
JPS5940906B2 (en) Gas-phase chemical reactant precipitation device using plasma discharge
JPS6228569B2 (en)
GB2194556A (en) Plasma enhanced chemical vapour deposition of films
JPH04154117A (en) Low pressure cvd system
JP3534866B2 (en) Vapor phase growth method
JPS62252931A (en) Vapor growth apparatus for compound semiconductor
JPH049471A (en) Method for synthesizing diamond
JP3230185B2 (en) Deposition method of uniform dielectric layer
JPS58132932A (en) Plasma processing device
JP2000332012A (en) Method of forming silicon nitride film
JPH0530350Y2 (en)
JPH0945497A (en) Dielectric coupling plasma cvd method and its device
JPH09213644A (en) Chemical vapor deposition apparatus
JPS612318A (en) Semiconductor growing device
JPH02146725A (en) Organic metal vapor growth device
JPH0372080A (en) Plasma vapor phase growth device