JPS59218905A - Method and apparatus for automatic centering - Google Patents

Method and apparatus for automatic centering

Info

Publication number
JPS59218905A
JPS59218905A JP9427983A JP9427983A JPS59218905A JP S59218905 A JPS59218905 A JP S59218905A JP 9427983 A JP9427983 A JP 9427983A JP 9427983 A JP9427983 A JP 9427983A JP S59218905 A JPS59218905 A JP S59218905A
Authority
JP
Japan
Prior art keywords
wire
outline
die
immediately
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9427983A
Other languages
Japanese (ja)
Inventor
Noboru Nakakuki
中久喜 昇
Tetsuo Suzuki
哲夫 鈴木
Tsuneo Yokoyama
横山 宜夫
Keizo Abe
阿部 桂三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9427983A priority Critical patent/JPS59218905A/en
Publication of JPS59218905A publication Critical patent/JPS59218905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the outline of an electric wire without damaging the wire by measuring the outline of the wire immediately after being extruded and coated by television cameras and comparing the outline of the measured wire with the outline of a wire which has been previously recognized as a pattern. CONSTITUTION:The outline of a wire immediately after being formed with die is picked up by the television cameras arranged along the X and Y axes and these outputs are inputted to a pattern recognizing device previously storing the outline. Said device compares the input with the previously stored pattern to discriminate the shape of an extruded coat. Namely, a deviation between the normally centered wire and the input is found out, an oil pressure device is actuated through a servo amplified and centering bolts 4A, 4B of the die are adjusted to align the wire. Since the measurement itself is executed optically in this method, the measurement can be attained without damaging the wire even after being formed with the dice.

Description

【発明の詳細な説明】 本発明は押出被覆を電線に確す場合の押出ダイスの調心
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for aligning an extrusion die when applying an extrusion coating to an electric wire.

均一な肉厚を有するゴム・プラスチック被覆を電線に与
えるには通常押出ダイスを動かして手動的に調心する必
要がある。押出しは連続して行われるものであるから、
押出ダイスを動かしての手動調心は時間がかかり、その
間不拘−被覆を有する電線が製造され続け、屑線の量が
増加する。これを解決するだめに、近年、予めダイスと
ニラゾルとを機械的にセンタリングさせる無調心クロス
ヘラPが提案されているが、ヘツISO溝造4二の寸法
のずれあるいは押出材料のヘッド内での圧力不均衡等に
より長期間にわたりセンタリング機能を持続することが
困難であり、まだ1度偏肉が生じるとこれを修正する機
構を有さないためにクロスヘッド自体が使用不能になる
。このためこの無調心クロスヘツ+yh一部細物には用
いられてはいるかパその他への応用は不適当である。従
って大物、大肉厚用にはいまだに手作業による調心を使
用せざるを得ないが、その問題点はいかにして偏心を測
定するかにある。一般的には被覆材料を剥ぎ取り、その
断面の目視判定により偏心を判断している。そしてその
判断にもとづきダイスの調心ボルトを操作して調心を行
っている。前述のようにこの方法では時間的なロスが犬
であると共に判断に個人差が大きく影響する。
Providing the wire with a rubber-plastic coating having a uniform wall thickness typically requires manual alignment by moving the extrusion die. Since extrusion is continuous,
Manual alignment by moving the extrusion die is time consuming, while wire with unrestrained coating continues to be produced, increasing the amount of scrap wire. In order to solve this problem, a non-centering cross spatula P has been proposed in recent years, which mechanically centers the die and Nirasol in advance. It is difficult to maintain the centering function for a long period of time due to pressure imbalance, etc., and once thickness deviation occurs, the crosshead itself becomes unusable because there is no mechanism to correct this. For this reason, although this non-centering cross head +yh is used for some thin objects, it is inappropriate for application to other areas. Therefore, for large objects and large wall thicknesses, it is still necessary to use manual centering, but the problem lies in how to measure eccentricity. Generally, eccentricity is determined by peeling off the coating material and visually inspecting the cross section. Based on that judgment, the die is aligned by operating the alignment bolt. As mentioned above, this method involves significant time loss and individual differences greatly affect the judgment.

一方、偏心を自動的に測定する方法として超音波や静電
容量を利用する装置が%口られているが、これらの装置
を用いる場合とは測定ヘッドを電線表面に直接接してお
かなければならず、また被覆材料の中心が金属である必
要がある。従って複数の1腺心を撚合せてなるケーブル
には適用出来ない。
On the other hand, devices using ultrasonic waves or capacitance are being talked about as methods for automatically measuring eccentricity, but when using these devices, the measuring head must be in direct contact with the wire surface. First, the center of the coating material must be metal. Therefore, it cannot be applied to cables made by twisting a plurality of single cores.

まだ、直接接触であるために被覆材料自体が充分硬化し
ていなければならず、そのだめ押出直後には使用不能で
ある。また仮りにこれが可能であっテモクロスヘノドと
の間にある程度の距離をおく必要があるだめ、撚線、撚
合せ型の線では撚ぐせのだめにその間で線が捻れてしま
い偏心の有無はわかるとしてもそれがクロスヘラPのど
の位置であるかの判定が不可能である。すなわち偏心測
定はダイスから線が押し出された直後に行うべきである
However, since it is a direct contact, the coating material itself must be sufficiently cured, so it cannot be used immediately after extrusion. Also, even if this were possible, it would be necessary to keep a certain distance between the wire and the temocroshenod, and with twisted or twisted wires, the wire would be twisted between them due to the twisting, and even if the presence or absence of eccentricity could be known, it would not be possible. It is impossible to determine which position of the cross spatula P is located. That is, eccentricity measurements should be made immediately after the wire is extruded from the die.

本発明の目的は押出し直後の偏心を自動的に検知すると
同時に自動的に調心作業を行うことにより極めて短時間
且つ短尺にて心合せを行う方法およびそのだめの装置を
提供することである。
An object of the present invention is to provide a method and apparatus for performing alignment in a very short time and in a short length by automatically detecting eccentricity immediately after extrusion and automatically performing alignment work at the same time.

被覆拐料を押出す場合、ダイスの口径よりやや太目とな
るように材料の押出しを行うことにより偏心があればダ
イスの出口直後の位置で材料の盛り上り方に偏りが生じ
ること、大きく盛り上がった側の肉厚が大゛であり、他
方が小となることが判った。従ってこの現象を利用し、
盛り上りの具合を目視しつつダイスの調心iFシルトを
操作することによりほぼ確実な調心作業を行うことが出
来ることが判った。
When extruding coated material, extrude the material so that it is slightly thicker than the diameter of the die.If there is eccentricity, the material will bulge unevenly at the position immediately after the exit of the die. It was found that the wall thickness on one side was large and the thickness on the other side was small. Therefore, using this phenomenon,
It was found that almost reliable alignment work could be performed by operating the die alignment iF silt while visually observing the level of swelling.

本発明はこれら事実にもとづき、押出し直後の電線の外
形を光学的に測定して偏心を判定し、偏差分だけダイス
を自動的に調整しうるようにして上記目的を達成する。
Based on these facts, the present invention achieves the above object by optically measuring the outer shape of the wire immediately after extrusion, determining eccentricity, and automatically adjusting the die by the deviation.

以下図面に示す実施例により本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は本発明の詳細な説明する図である。す゛なわち
、前述のようにクロスヘラ11のダイス4において供給
される電線2の上に被覆材料3が押出されてケーブルを
形成する。このとき材料の押出し量をダイス口径よりや
や太目(ダイス口径の約30〜50%増)とすることに
より偏心が強調されて観測される。本発明においては第
2図に示すようにダイスli!後のケーブル外形をX軸
およびY軸に沿って配置されたテレビジョンカメラ5゜
6により撮像し、それらの出力を予め外形を記1意した
・ξターン認識装置9に人力し、この装置内で両者を比
較して押出し被覆の形状の判別を行う。
FIG. 1 is a diagram illustrating the present invention in detail. That is, as described above, the covering material 3 is extruded onto the electric wire 2 fed in the die 4 of the cross spatula 11 to form a cable. At this time, by making the extrusion amount of the material slightly larger than the die diameter (approximately 30 to 50% more than the die diameter), the eccentricity is emphasized and observed. In the present invention, as shown in FIG. 2, dice li! The outer shape of the subsequent cable is imaged by a television camera 5゜6 arranged along the X-axis and the Y-axis, and the output is manually inputted to the ξ-turn recognition device 9 whose outer shape has been marked in advance. The shape of the extrusion coating is determined by comparing the two.

すなわち正常な調ノしされたものと人力との偏差分をザ
ーゼ増幅器lOを介して油圧装置7,8を作動させてダ
イスの調心ボルト4A、4Bを調整し調心を行う。
That is, the deviation between the normal adjustment and manual power is used to operate the hydraulic devices 7 and 8 via the Sase amplifier IO to adjust the alignment bolts 4A and 4B of the die to perform alignment.

本発明の方法によれば測定自体を光学的に行うものであ
るからダイス直後においても線を傷つけることなく測定
が可能であり、被覆される線心の形状、数による制限が
なく、丑だ自動化が極めて容易である。
According to the method of the present invention, since the measurement itself is carried out optically, it is possible to measure without damaging the wire even immediately after the die, there is no restriction on the shape or number of wire cores to be coated, and automation is possible. is extremely easy.

なお、テレビジョンカメラを使用する例について述べた
が単に直交するように配;紅された2組の)′CC師部
受光部りなる元系を用いてもよく、まだ、ダイス部分に
対する制御は油圧装置の代りに調心ボルトのモータ1駆
動を用いてもよい。
Although we have described the example of using a television camera, it is also possible to use the element system consisting of the two sets of CC phloem light-receiving parts that are arranged so as to be orthogonal; however, there is still no control over the dice part. A motor 1 drive of the centering bolt may be used instead of the hydraulic system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す図、第2図は本発明の−★
施例を示す概略図である。 1・・・クロスヘラ1す、2  被覆される線心、3 
・被覆材料、4 ・ダイス、4A、4B・・・調心ボル
ト、5.6・・・テレビジョンカメラ、7,8 ・調心
油圧装置、9 ・ξターン認識装置、10 増幅器。
Figure 1 is a diagram showing the principle of the present invention, Figure 2 is a diagram showing the principle of the present invention.
It is a schematic diagram showing an example. 1...Cross spatula 1, 2 Wire core to be coated, 3
- Covering material, 4 - Dice, 4A, 4B... Aligning bolt, 5.6... Television camera, 7, 8 - Aligning hydraulic system, 9 - ξ turn recognition device, 10 Amplifier.

Claims (2)

【特許請求の範囲】[Claims] (1)押出被覆された直後の電線の外形をテレビジョン
カメラで測定し、予め・ξターンとして認識させた電線
外形とこの測定された電線の外形を比較し、これにより
電線の偏心を計測し、計測された偏心にもとづき押出ダ
イスを移動させることからなる自動調心方法。
(1) Measure the outer shape of the wire immediately after extrusion coating with a television camera, compare the outer shape of the wire that has been recognized as a ξ turn in advance, and this measured outer shape of the wire, and use this to measure the eccentricity of the wire. , a self-aligning method consisting of moving the extrusion die based on the measured eccentricity.
(2)押出被覆された直後の電線に対し直角の方向に配
置される第1の光学測定系と、上記酸線に対し上記第1
の光学測定系に直交する方向に配置される第2の光学測
定系と、予め予定の電線外形を・ξターンとに記憶する
と共に上記第1および第2の光学測定系の出力を受けて
上記パターンと比較する・々ターン認識装置と、この・
ξターン認識装置の出力に応じて押出ダイスの位置を制
御する調心、駆動装装置とから成る自動調心装置。
(2) a first optical measurement system disposed in a direction perpendicular to the electric wire immediately after being extrusion coated;
a second optical measurement system disposed in a direction perpendicular to the optical measurement system; a predetermined wire outline is stored in the ξ turn; A turn recognition device that compares with patterns and this
A self-aligning device consisting of an aligning and driving device that controls the position of the extrusion die according to the output of the ξ turn recognition device.
JP9427983A 1983-05-27 1983-05-27 Method and apparatus for automatic centering Pending JPS59218905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9427983A JPS59218905A (en) 1983-05-27 1983-05-27 Method and apparatus for automatic centering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9427983A JPS59218905A (en) 1983-05-27 1983-05-27 Method and apparatus for automatic centering

Publications (1)

Publication Number Publication Date
JPS59218905A true JPS59218905A (en) 1984-12-10

Family

ID=14105814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9427983A Pending JPS59218905A (en) 1983-05-27 1983-05-27 Method and apparatus for automatic centering

Country Status (1)

Country Link
JP (1) JPS59218905A (en)

Similar Documents

Publication Publication Date Title
US5120976A (en) Strip lay-up verification system with width and centerline skew determination
ES8609698A1 (en) Method and apparatus for checking the wall thickness of a layer
JP5066205B2 (en) Optical fiber strand tape core manufacturing method and optical fiber core tape core manufacturing apparatus
JPH0563742B2 (en)
JPS59218905A (en) Method and apparatus for automatic centering
US5596672A (en) Method and apparatus for controlling the contact of optical fibers
US4544268A (en) Method and apparatus for detecting flaw on threads of male screw
JPH0225854B2 (en)
JP4890252B2 (en) How to calibrate the center of rotation in veneer stripping
US5458830A (en) Method and apparatus of measurement of eccentricity dimension of ribbon-shaped body and apparatus for control of eccentricity dimension
JP2741452B2 (en) Measurement method of optical fiber structure
JP2000171218A (en) Instrument and method for measuring film edge thickness
DE4219694A1 (en) Quality control of rod-shaped polished or drawn material - measuring distance from automatic focus detector to surface of material rotated within laser beam
JPS60182681A (en) Method and device for press-bonding terminal of wire
CN219776673U (en) Novel sheet plane vision detection and thickness detection system
JPH0549203B2 (en)
JP2855785B2 (en) Optical connector ferrule automatic mounting method and device
JPH0915088A (en) Method and equipment for detecting defective assembly of multicore optical connector
JPH0587525A (en) Method for measuring accuracy of joint part of tire-constituting material
JPH03187111A (en) Manufacture of wire and cable
JP2607686B2 (en) Papermaking control device
CN116734791A (en) Novel sheet plane vision detection and thickness detection system
JPH03253806A (en) Method for inspecting thickness deviation of coated tape-like optical fiber
JPH04319641A (en) Eccentricity of coating measuring method
JPH1039184A (en) Production of optical band-shaped conductor, and apparatus for production therefor