JPH04319641A - Eccentricity of coating measuring method - Google Patents

Eccentricity of coating measuring method

Info

Publication number
JPH04319641A
JPH04319641A JP8671791A JP8671791A JPH04319641A JP H04319641 A JPH04319641 A JP H04319641A JP 8671791 A JP8671791 A JP 8671791A JP 8671791 A JP8671791 A JP 8671791A JP H04319641 A JPH04319641 A JP H04319641A
Authority
JP
Japan
Prior art keywords
linear body
optical fiber
coating
uneven thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8671791A
Other languages
Japanese (ja)
Inventor
Takehito Kobayashi
勇仁 小林
Susumu Inoue
享 井上
Hideji Shinoki
篠木 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8671791A priority Critical patent/JPH04319641A/en
Publication of JPH04319641A publication Critical patent/JPH04319641A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To accurately measure the eccentricity of the coating of a coated linear body. CONSTITUTION:The refraction of a laser beam 44 is suppressed at the time of making the beam 44 incident to a resin section 10b coated with a coated optical fiber 10 by irradiating the side face of a coated optical fiber 10 with the beam 44 through a liquid 49 having a refractive index which is close to that of the section 10b. Therefore, even when the thickness of the section 10b is thin, the eccentricity of coating of the section 10b can be discriminated by detecting a forward scattered light pattern.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、線状体に施された被覆
の偏肉(偏肉度、偏肉方向)を測定する偏肉測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring uneven thickness (degree of uneven thickness, direction of uneven thickness) of a coating applied to a linear body.

【0002】0002

【従来の技術】光ファイバは材質的な問題からそのまま
光伝送用媒体として使用するのは極めて困難であるので
、従来より光ファイバの線引き直後に樹脂被覆を施して
被覆光ファイバとし、光ファイバ製造直後の初期強度の
維持を図ると共に長期使用に耐えうるようにしている。
[Prior Art] Because it is extremely difficult to use optical fiber as it is as an optical transmission medium due to material problems, conventionally, optical fibers are coated with resin immediately after being drawn to produce coated optical fibers. We aim to maintain the initial strength immediately after use, and to ensure that it can withstand long-term use.

【0003】すなわち、図7に示すように、光ファイバ
母材1の先端を加熱炉2により加熱・溶融しつつ線引き
して形成された光ファイバ3は、一般に、第一の加圧ダ
イ4A、第一の硬化炉5A、第二の加圧ダイ4B、第二
の硬化炉5Bに順次挿通されることにより、その外表面
に二層の樹脂被覆が施された被覆光ファイバ6となって
キャプスタン7を介して巻取機8に巻取られるようにな
っている。ここで、かかる被覆光ファイバ6に使用され
ている樹脂被覆材料は、例えば、シリコーン樹脂、ウレ
タン樹脂、エポキシ樹脂などの熱硬化型樹脂や、エポキ
シアクリレート、ウレタンアクリレート、ポリエステル
アクリレートなどの紫外線硬化型樹脂、その他、放射線
硬化型樹脂などの高分子材料である。
That is, as shown in FIG. 7, an optical fiber 3 formed by drawing the tip of an optical fiber preform 1 while heating and melting it in a heating furnace 2 is generally formed by a first pressure die 4A, By being sequentially inserted into the first curing furnace 5A, the second pressure die 4B, and the second curing furnace 5B, it becomes a coated optical fiber 6 whose outer surface is coated with two layers of resin. It is adapted to be wound up by a winding machine 8 via a stun 7. Here, the resin coating material used for the coated optical fiber 6 is, for example, a thermosetting resin such as silicone resin, urethane resin, or epoxy resin, or an ultraviolet curing resin such as epoxy acrylate, urethane acrylate, or polyester acrylate. , and other polymeric materials such as radiation-curable resins.

【0004】ところで、このような被覆光ファイバ6に
おいては、その伝送特性及び機械的特性を向上するため
、光ファイバ1の周囲に施される樹脂被覆が同心円状と
なっていることが重要である。一方、光ファイバの生産
性向上のため線速を大きくすると、光ファイバ1の温度
が上昇して加圧ダイ4A,4B中での樹脂の流れが不均
一となるためか樹脂被覆に偏肉が生じ易いという問題が
ある。また、偏肉は樹脂内にゴミが混入した場合などに
生じる。そこで、光ファイバ線引きラインにおいては、
インラインで被覆光ファイバ6の偏肉を測定し、偏肉の
発生に応じて線速を小さくしたり、線引きを停止したり
する制御を行う必要がある。
By the way, in such a coated optical fiber 6, in order to improve its transmission characteristics and mechanical characteristics, it is important that the resin coating applied around the optical fiber 1 is concentric. . On the other hand, when the linear speed is increased to improve the productivity of optical fibers, the temperature of the optical fiber 1 rises and the flow of resin in the pressure dies 4A and 4B becomes uneven, resulting in uneven thickness of the resin coating. There is a problem in that it is easy to occur. In addition, uneven thickness occurs when dust gets mixed into the resin. Therefore, in the optical fiber drawing line,
It is necessary to measure the thickness deviation of the coated optical fiber 6 in-line, and perform control such as reducing the drawing speed or stopping the drawing depending on the occurrence of the thickness deviation.

【0005】ここで、従来の偏肉測定方法の一例を図6
を参照しながら説明する。同図に示すように、従来にお
いては、線引きされる被覆光ファイバ10の側面にレー
ザ光源11からのレーザビーム12を照射し、その前方
散乱光パターン13を検出することにより偏肉を測定し
ている(特開昭60−238737号公報参照)。かか
る方法の原理を図7に示す。同図に示すように、被覆光
ファイバ10を簡単のためにガラス部10aと樹脂部1
0bとからなるとすると、両者の屈折率の違い(通常、
ガラス部10aの屈折率ng =1.46、樹脂部10
bの屈折率nr =1.48〜1.51程度である)か
ら、前方散乱光パターン13には、樹脂部10b−ガラ
ス部10a−樹脂部10bと通過した中央部分の光束1
3aと、樹脂部10bのみを通過した周辺部の光束13
bとが存在する。したがって、前方散乱光パターン13
の左右の対称性及び左右の受光パワーの比により偏肉を
検出することができる。
[0005] Here, an example of the conventional thickness unevenness measurement method is shown in FIG.
This will be explained with reference to. As shown in the figure, conventionally, thickness unevenness is measured by irradiating the side surface of a coated optical fiber 10 to be drawn with a laser beam 12 from a laser light source 11 and detecting the forward scattered light pattern 13. (Refer to Japanese Patent Application Laid-Open No. 60-238737). The principle of such a method is shown in FIG. As shown in the figure, for simplicity, the coated optical fiber 10 has a glass portion 10a and a resin portion 1.
0b, the difference in refractive index between the two (usually,
Refractive index ng of glass portion 10a = 1.46, resin portion 10
(refractive index nr of b is approximately 1.48 to 1.51), the forward scattered light pattern 13 includes a central portion of the light beam 1 that has passed through the resin portion 10b-glass portion 10a-resin portion 10b.
3a and the peripheral light beam 13 that has passed only through the resin portion 10b.
b exists. Therefore, the forward scattered light pattern 13
Unbalanced thickness can be detected based on the symmetry of the left and right sides and the ratio of the left and right received light powers.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、前方散乱光パターン13の左右側において
、樹脂部10b及びガラス部10aの両方を通過した光
と、樹脂部10bのみを通過した光とが明確に区別され
なければ偏肉を検出できないので、例えば図10に示す
ように被覆径が小さくて樹脂部10bの肉厚が小さい場
合(図8(A))、又は偏肉が大きすぎる場合(図8(
B))には偏肉が良好には検出できない。すなわち、図
8(A)の場合には、樹脂部10bの肉厚が小さすぎる
ので、樹脂部10bのみを通過する光が存在せず、全て
樹脂部10b及びガラス部10aの両方を通過してしま
い、偏肉が検出できない。また、図8(B)の場合には
、図中下側において樹脂部10bが薄肉となるので、や
はり図中下側の樹脂部10bのみを通過する光が存在し
ないので、偏肉が生じていることは判断できるが、どの
程度の偏肉なのかが検出できない。
However, in the method described above, on the left and right sides of the forward scattered light pattern 13, the light that has passed through both the resin portion 10b and the glass portion 10a and the light that has passed only the resin portion 10b are separated. For example, if the coating diameter is small and the thickness of the resin part 10b is small as shown in FIG. 10 (FIG. 8(A)), or if the thickness deviation is too large, as shown in FIG. (Figure 8 (
In B)), uneven thickness cannot be detected well. That is, in the case of FIG. 8(A), since the thickness of the resin part 10b is too small, there is no light that passes only through the resin part 10b, and all of the light passes through both the resin part 10b and the glass part 10a. Because of this, uneven thickness cannot be detected. In addition, in the case of FIG. 8(B), since the resin part 10b is thinner at the lower side in the figure, there is no light that passes only through the resin part 10b at the lower side in the figure, so uneven thickness occurs. Although it can be determined that there is a difference in thickness, it is not possible to detect the degree of unevenness.

【0007】したがって、光ファイバ生産分野において
、高性能な光ファイバを生産性よく製造するために、被
覆光ファイバの偏肉をインラインで正確に測定しうる技
術の出現が望まれている。また、かかる技術は種々の分
野に適用可能である。
[0007] Therefore, in the field of optical fiber production, in order to manufacture high-performance optical fibers with high productivity, there is a desire for a technology that can accurately measure the uneven thickness of coated optical fibers in-line. Moreover, such technology is applicable to various fields.

【0008】[0008]

【課題を解決するための手段】前記目的を達成する本発
明の係る第1の偏肉測定方法は、線引きされた線状体の
表面に少なくとも一層からなる被覆を施した後、上記線
状体の最外層の被覆層の屈折率と近似する屈折率を有す
る液体を介して該線状体の側面からレーザビームを照射
し、その前方散乱光パターンを検出し、偏肉の度合いを
測定することを特徴とする。
[Means for Solving the Problems] A first method for measuring thickness unevenness according to the present invention which achieves the above-mentioned object is to apply a coating consisting of at least one layer to the surface of a drawn linear body, and then apply a coating to the surface of the drawn linear body. irradiating a laser beam from the side of the linear body through a liquid having a refractive index similar to that of the outermost coating layer, detecting the forward scattered light pattern, and measuring the degree of uneven thickness. It is characterized by

【0009】また、本発明に係る第2の偏肉測定方法は
、光ファイバ母材を線引きし、線引きされた線状体の表
面に被覆層を設けた後、線引きパスライン中で、線状体
に被覆した被覆層の屈折率と近似する屈折率を有する液
体を介してレーザビーム光を該線状体の側面から照射し
、散乱パターンを測定し偏肉の度合いを測定することを
特徴とする。
[0009] Furthermore, in the second method for measuring uneven thickness according to the present invention, after drawing an optical fiber preform and providing a coating layer on the surface of the drawn linear body, the linear body is drawn in a drawing pass line. A laser beam is irradiated from the side of the linear body through a liquid having a refractive index similar to that of a coating layer coated on the body, and the scattering pattern is measured to measure the degree of uneven thickness. do.

【0010】さらに、本発明に係る第3の偏肉測定方法
は、光ファイバ母材を線引きし、線引きされた線状体の
表面に第n層目の被覆層を設けた後、第n+1層目の被
覆を施すダイ内部において、第n+1層目の被覆用樹脂
液を介してレーザビーム光を該線状体の側面から照射し
、その散乱パターンを測定し偏肉の度合を測定すること
を特徴とする。
Furthermore, in the third method for measuring uneven thickness according to the present invention, an optical fiber base material is drawn, an nth coating layer is provided on the surface of the drawn linear body, and then an n+1th coating layer is formed on the surface of the drawn linear body. Inside the die for coating the eyes, a laser beam is irradiated from the side of the linear body through the coating resin liquid of the n+1 layer, and the scattering pattern is measured to measure the degree of uneven thickness. Features.

【0011】[0011]

【実施例】以下、本発明を図面を参照しながら詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings.

【0012】図1には本発明方法を実施するための偏肉
測定装置の一例を概念的に示す。図3は偏肉測定装置を
光ファイバの製造ラインに設けた一例を概念的に示す。
FIG. 1 conceptually shows an example of a thickness unevenness measuring device for carrying out the method of the present invention. FIG. 3 conceptually shows an example in which a thickness unevenness measuring device is installed in an optical fiber manufacturing line.

【0013】これらの図面に示すように、被検体である
線状体の一例としての被覆光ファイバ10は、ガラス部
10a及び被覆層としての樹脂部10bとからなるもの
で、図3に示す製造ラインにおいて、線引きされた後、
被覆層が設けられている。
As shown in these drawings, a coated optical fiber 10, which is an example of a linear object to be inspected, is composed of a glass portion 10a and a resin portion 10b as a coating layer, and is manufactured as shown in FIG. After the line is drawn,
A covering layer is provided.

【0014】図3の製造ラインにおいては、第二層目の
樹脂部を塗布する第二の加圧ダイ4Bに偏肉測定装置が
組み込まれている。すなわち、図3に示すように、光フ
ァイバ母材1の先端を加熱路2により線引きされた光フ
ァイバ3は、第一の加圧ダイ4A,第一の硬化炉5Aを
通過して第一の樹脂部10bがガラス部10aの表面に
形成されている。次いで、第二層目の樹脂部を被覆する
ために、第二の加圧ダイ4B,第二の硬化炉5Bへ導か
れることになるが、ここで第二の加圧ダイ4Bのファイ
バ導入側で第一の樹脂部10bの被覆に偏肉があるかど
うかが判別されている。
In the production line shown in FIG. 3, a thickness unevenness measuring device is incorporated in the second pressure die 4B that applies the second layer of resin. That is, as shown in FIG. 3, the optical fiber 3 whose tip end of the optical fiber preform 1 is drawn by the heating path 2 passes through the first pressure die 4A and the first curing furnace 5A, and then is heated to the first hardening furnace 5A. A resin portion 10b is formed on the surface of the glass portion 10a. Next, in order to coat the resin part of the second layer, it will be guided to the second pressure die 4B and the second curing furnace 5B, but here the fiber introduction side of the second pressure die 4B It is determined whether there is an uneven thickness in the coating of the first resin portion 10b.

【0015】この偏肉測定装置を図1を参照して説明す
る。図1に示すように、偏肉測定装置は、第二の加圧ダ
イ4Bのダイ本体40には、塗布用樹脂貯溜部41と連
通する測定用の樹脂貯溜部42がファイバ導入口側に一
体に形成されており、この測定用樹脂貯溜部42の一側
面にはレーザ光源43からのレーザビーム44を入射す
る入射窓45が設けられていると共に、この入射窓45
と対向する側面には被覆光ファイバ10に照射されたレ
ーザビーム44の前方散乱光46が出射するための出射
窓47が設けられている。この出射窓47からの前方散
乱光46は受光器48によって受光されることになる。
This thickness unevenness measuring device will be explained with reference to FIG. As shown in FIG. 1, the thickness unevenness measuring device includes a die body 40 of the second pressurizing die 4B, which is integrated with a measurement resin reservoir 42 on the fiber inlet side that communicates with a coating resin reservoir 41. An entrance window 45 through which a laser beam 44 from a laser light source 43 enters is provided on one side of the measurement resin reservoir 42.
An exit window 47 is provided on the side surface facing the coated optical fiber 10, through which the forward scattered light 46 of the laser beam 44 irradiated onto the coated optical fiber 10 exits. The forward scattered light 46 from the exit window 47 is received by the light receiver 48.

【0016】よって被覆光ファイバ10の外周には、樹
脂部10bの屈折率と屈折率が近似している液体(すな
わち第二層目の樹脂)49が貯溜されることとなり、こ
の液体49を介してレーザ光源43からのレーザビーム
44を線状体である被覆光ファイバ10の側面から照射
し、その前方散乱光46を受光器48で検出することに
よって前方散乱光パターンを得、偏肉の状態を確認する
ことができる。
Therefore, a liquid 49 whose refractive index is similar to that of the resin portion 10b (ie, the second layer resin) is stored on the outer periphery of the coated optical fiber 10, and the liquid 49 is The laser beam 44 from the laser light source 43 is irradiated from the side surface of the coated optical fiber 10, which is a linear body, and the forward scattered light 46 is detected by the receiver 48, thereby obtaining a forward scattered light pattern and detecting the state of uneven thickness. can be confirmed.

【0017】このように線状体の被覆層の屈折率と近似
する屈折率を有する液体を介してレーザビームを線状体
の側面から照射することにより、従来に比べてレーザビ
ームの被覆層への入射の際の内方への屈折が抑えられ、
その前方散乱光パターンの情報量が増大する。これによ
り、線状体の被覆層が極めてうすい場合に、従来技術で
述べたような全てビームがガラス部を通過し、偏肉が検
出できないという不具悪が解消され、樹脂部における前
方散乱光パターンを検出することができる。
By irradiating the laser beam from the side surface of the linear body through the liquid having a refractive index close to that of the coating layer of the linear body, the laser beam reaches the coating layer more easily than in the past. Inward refraction when incident is suppressed,
The amount of information of the forward scattered light pattern increases. As a result, when the coating layer of the linear object is extremely thin, the disadvantage that all the beams pass through the glass part as described in the prior art and uneven thickness cannot be detected is solved, and the forward scattered light pattern in the resin part is eliminated. can be detected.

【0018】また屈折率が被覆層の屈折率と近似する液
体は、被覆層の屈折率よりも大きいものとすれば、前方
散乱光パターンがより拡がり、パターン解析が容易とな
り偏肉状態を容易に検出することが可能となる。
Furthermore, if the liquid whose refractive index is close to that of the coating layer is larger than the refractive index of the coating layer, the forward scattered light pattern will be wider, pattern analysis will be easier, and uneven thickness will be easily corrected. It becomes possible to detect.

【0019】さらに、二層目以降のダイ内で偏肉状態を
測定しているので、ダイ内を線状体が通過する通過位置
を前方散乱光パターンによって解析することにより、二
層目の被覆状態をあらかじめ予知することができる。
Furthermore, since the state of uneven thickness is measured in the die for the second layer onwards, the passing position of the linear body inside the die is analyzed by the forward scattered light pattern, and the second layer coating is measured. The situation can be predicted in advance.

【0020】図2は散乱光パターンの測定例を示し、ピ
ークか対称形状であれば、偏肉のない正常な線引き状態
にあることが判る。
FIG. 2 shows an example of measurement of the scattered light pattern, and it can be seen that if the peak or shape is symmetrical, the line is in a normal drawing state with no uneven thickness.

【0021】また、レーザビームを照射する方向を線状
体に対して同一平面内で少なくとも二方向(X方向,Y
方向)以上から照射することにより、あらゆる偏心方向
に対しても精度よく測定できることとなる。
[0021] Furthermore, the direction in which the laser beam is irradiated is set in at least two directions (X direction, Y direction) within the same plane with respect to the linear body.
By irradiating from the above directions, it is possible to measure accurately in all eccentric directions.

【0022】図4は、偏肉測定装置を線引きのパスライ
ン中に配設した状態を示し、第一の硬化炉5Aを通過し
た後の第一層目の被覆を施した線状体6Aに、被覆層の
屈折率と近似する屈折率を有する液体塗布手段50に貯
められている液体49を介してレーザ光源43からのレ
ーザビーム44の照射を行い、受光器48にて前方散乱
光パターンを解析するようにしている。液体塗布手段5
0を通って、偏肉を測定した後の光ファイバ10はその
表面に塗布された液体49を液体除去手段51によって
ぬぐった後、第二の加圧ダイ4Bへ導くようにしている
FIG. 4 shows a state in which the thickness unevenness measuring device is installed in the pass line of wire drawing, and shows the linear body 6A coated with the first layer after passing through the first hardening furnace 5A. , a laser beam 44 from a laser light source 43 is irradiated through a liquid 49 stored in a liquid coating means 50 having a refractive index similar to that of the coating layer, and a forward scattered light pattern is detected by a light receiver 48. I'm trying to analyze it. Liquid application means 5
After passing through the optical fiber 10 and measuring the uneven thickness, the liquid 49 applied to the surface of the optical fiber 10 is wiped off by a liquid removing means 51, and then guided to the second pressurizing die 4B.

【0023】[0023]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be explained below based on examples.

【0024】図1,図3に示す偏肉測定装置で偏肉を求
めた。下記に示す二層被覆の被覆光ファイバの偏肉度を
求めた。   a.測定対象       ガラス部      nD 25=1.4
583    φ=125μm      第一層被覆
部  nD 25=1.480*     φ=180
μm      第二層被覆部  nD 25=1.4
90*     φ=250μm          
              (*未硬化での測定値)
  b.測定位置       第二層被覆樹脂加圧ダイ中  c.測定条
件       測定領域        2mmφ   
   ファイバ移動量  max1000m/min 
     測定頻度        1回/min以上
  d.測定方式     ・レーザビーム走査ファイバ透過光前方散光パ
ターン検知方法(図2に示す)     ・XY2軸同時測定   e.光源       レーザ光   f.受光部       PSD 上記条件にて測定した結果を図5に示す。これにより線
引き時の偏肉の度合をインラインで判別することができ
る。
Thickness unevenness was determined using the thickness unevenness measuring device shown in FIGS. 1 and 3. The thickness unevenness of the coated optical fiber with the two-layer coating shown below was determined. a. Measurement target Glass part nD 25=1.4
583 φ=125 μm First layer covering part nD 25=1.480* φ=180
μm Second layer covering part nD 25=1.4
90*φ=250μm
(*Measured value before curing)
b. Measurement position: Inside the second layer coating resin pressure die c. Measurement conditions Measurement area 2mmφ
Fiber movement max1000m/min
Measurement frequency: 1 time/min or more d. Measurement method - Laser beam scanning fiber transmitted light forward scattering pattern detection method (shown in Figure 2) - Simultaneous measurement of two XY axes e. Light source Laser light f. Light receiving part PSD The results measured under the above conditions are shown in FIG. This makes it possible to determine in-line the degree of uneven thickness during wire drawing.

【0025】[0025]

【発明の効果】以上説明したように、本発明によると、
被覆線状体の被覆層の屈折率と近似した屈折率を有する
液体を介して線状体にレーザビームを照射することによ
り、偏肉による前方散乱光パターンの変化を容易にイン
ラインで検出することができる。
[Effects of the Invention] As explained above, according to the present invention,
By irradiating a linear body with a laser beam through a liquid having a refractive index similar to the refractive index of the coating layer of the coated linear body, changes in the forward scattered light pattern due to uneven thickness can be easily detected in-line. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法を実施する装置の一例を示す概念図
である。
FIG. 1 is a conceptual diagram showing an example of an apparatus for implementing the method of the present invention.

【図2】前方散乱光パターンを示すグラフである。FIG. 2 is a graph showing a forward scattered light pattern.

【図3】偏肉測定装置を配した光ファイバの製造ライン
の一例を示す概念図である。
FIG. 3 is a conceptual diagram showing an example of an optical fiber manufacturing line equipped with a thickness unevenness measuring device.

【図4】偏肉測定装置を配した光ファイバの製造ライン
の他の一例を示す概念図である。
FIG. 4 is a conceptual diagram showing another example of an optical fiber manufacturing line equipped with a thickness unevenness measuring device.

【図5】光ファイバの製造ラインの一例を示す概念図で
ある。
FIG. 5 is a conceptual diagram showing an example of an optical fiber manufacturing line.

【図6】従来技術に係る偏肉測定を説明するための原理
図である。
FIG. 6 is a principle diagram for explaining thickness unevenness measurement according to the prior art.

【図7】従来技術に係る偏肉測定の原理を説明するため
の説明図である。
FIG. 7 is an explanatory diagram for explaining the principle of thickness unevenness measurement according to the prior art.

【図8】従来技術に係る偏肉測定の問題点を示す説明図
である。
FIG. 8 is an explanatory diagram showing a problem with thickness unevenness measurement according to the prior art.

【符号の説明】[Explanation of symbols]

1  光ファイバ母材 2  加熱炉 3  光ファイバ 4A  第一の加圧ダイ 4B  第二の加圧ダイ 5A  第一の硬化炉 5B  第二の硬化炉 6  被覆光ファイバ 10  被覆光ファイバ 10a  ガラス部 10b  樹脂部 40  ダイ本体 41  塗布用樹脂貯溜部 42  測定用樹脂貯溜部 43  レーザ光源 44  レーザビーム 45  入射窓 46  前方散乱光 47  出射窓 48  受光器 49  液体 50  液体塗布手段 51  液体除去手段 1 Optical fiber base material 2 Heating furnace 3 Optical fiber 4A First pressure die 4B Second pressure die 5A First hardening furnace 5B Second hardening furnace 6 Coated optical fiber 10 Coated optical fiber 10a Glass part 10b Resin part 40 Die body 41 Coating resin reservoir 42 Resin reservoir for measurement 43 Laser light source 44 Laser beam 45 Entrance window 46 Forward scattered light 47 Exit window 48 Photo receiver 49 Liquid 50 Liquid application means 51 Liquid removal means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  線引きされた線状体の表面に少なくと
も一層からなる被覆を施した後、上記線状体の最外層の
被覆層の屈折率と近似する屈折率を有する液体を介して
該線状体の側面からレーザビームを照射し、その前方散
乱光パターンを検出し、偏肉の度合いを測定することを
特徴とする偏肉測定方法。
Claim 1: After coating the surface of a drawn linear body with at least one layer, the line is coated with a liquid having a refractive index close to that of the outermost coating layer of the linear body. A method for measuring uneven thickness, characterized by irradiating a laser beam from the side of a shaped body, detecting the forward scattered light pattern, and measuring the degree of uneven thickness.
【請求項2】  光ファイバ母材を線引きし、線引きさ
れた線状体の表面に被覆層を設けた後、線引きパスライ
ン中で、線状体に被覆した被覆層の屈折率と近似する屈
折率を有する液体を介して該線状体の側面からレーザビ
ーム光を照射し、散乱パターンを測定し偏肉の度合いを
測定することを特徴とする偏肉測定方法。
2. After drawing the optical fiber base material and providing a coating layer on the surface of the drawn linear body, in the drawing pass line, a refractive index that approximates the refractive index of the coating layer coated on the linear body is obtained. 1. A method for measuring thickness unevenness, characterized in that a laser beam is irradiated from the side surface of the linear body through a liquid having a certain ratio, and a scattering pattern is measured to measure the degree of thickness unevenness.
【請求項3】  光ファイバ母材を線引きし、線引きさ
れた線状体の表面に第n層目の被覆層を設けた後、第n
+1層目の被覆を施すダイ内部において、第n+1層目
の被覆用樹脂液を介してレーザビーム光を該線状体の側
面から照射し、その散乱パターンを測定し偏肉の度合を
測定することを特徴とする偏肉測定方法。
3. After drawing the optical fiber preform and providing the nth coating layer on the surface of the drawn linear body, the nth
Inside the die to apply the +1st layer coating, a laser beam is irradiated from the side of the linear body through the n+1st layer coating resin liquid, and the scattering pattern is measured to determine the degree of uneven thickness. A method for measuring uneven thickness.
【請求項4】  請求項1〜3記載の偏肉測定方法にお
いて、レーザビームを照射する方法が同一平面内で2以
上の方向から線状体に向けて照射し、各々の前方散乱光
パターンを検出し、偏肉の度合いを測定することを特徴
とする偏肉測定方法。
4. In the thickness unevenness measuring method according to claims 1 to 3, the method of irradiating the laser beam is to irradiate the linear body from two or more directions within the same plane, and to detect each forward scattered light pattern. A method for measuring uneven thickness, which is characterized by detecting and measuring the degree of uneven thickness.
JP8671791A 1991-04-18 1991-04-18 Eccentricity of coating measuring method Withdrawn JPH04319641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8671791A JPH04319641A (en) 1991-04-18 1991-04-18 Eccentricity of coating measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8671791A JPH04319641A (en) 1991-04-18 1991-04-18 Eccentricity of coating measuring method

Publications (1)

Publication Number Publication Date
JPH04319641A true JPH04319641A (en) 1992-11-10

Family

ID=13894641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8671791A Withdrawn JPH04319641A (en) 1991-04-18 1991-04-18 Eccentricity of coating measuring method

Country Status (1)

Country Link
JP (1) JPH04319641A (en)

Similar Documents

Publication Publication Date Title
CN105800961B (en) The manufacturing method of guide reel and optical fiber
US7967663B2 (en) Process of forming a deflection mirror in a light waveguide
DE69107552T2 (en) Device for measuring and monitoring the eccentricity of the colored coating of optical fibers.
JPH04319641A (en) Eccentricity of coating measuring method
US4608273A (en) Optical fibres
KR101259542B1 (en) Method and device for measuring hole diameter of optical fiber with hole, and method and device for manufacturing optical fiber with hole
US4997276A (en) Apparatus and method for determining elastic properties of optical fibers by contact area measurement
JPH0429401Y2 (en)
JP2946651B2 (en) Anomaly point detection method for cladding for optical fiber coating
US5995693A (en) Method of making an optical fiber ribbon with improved planarity and an optical fiber ribbon with improved planarity
JPH04315939A (en) Method and device for measuring uneven thickness
JPH05107046A (en) Method and apparatus for measuring thickness deviation
JP4234280B2 (en) Stretching method and stretching apparatus for translucent object
JPH04319642A (en) Method and device for measuring eccentricity of coating
JPH04319643A (en) Method and device for measuring eccentricity of coating
JPH04318437A (en) Method and device for measuring thickness deviation
JPS60238737A (en) Uneven thickness detecting method of coating of optical fiber strand
JPH09110479A (en) Apparatus for producing coated optical fiber and apparatus for evaluating the same
JPH1039184A (en) Production of optical band-shaped conductor, and apparatus for production therefor
JPH111340A (en) Detection of defect part of optical fiber
JPH06206734A (en) Production of optical fiber and apparatus for producing optical fiber
JPH0715744U (en) Optical fiber resin coating device
JPH08261954A (en) Sheath abnormality detecting device and detecting method for optical fiber
JP2003246650A (en) Method for coating optical fiber with thin film protective layer
JPH10288726A (en) Ribbon of coated optical fiber and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711