JPH111340A - Detection of defect part of optical fiber - Google Patents

Detection of defect part of optical fiber

Info

Publication number
JPH111340A
JPH111340A JP15173797A JP15173797A JPH111340A JP H111340 A JPH111340 A JP H111340A JP 15173797 A JP15173797 A JP 15173797A JP 15173797 A JP15173797 A JP 15173797A JP H111340 A JPH111340 A JP H111340A
Authority
JP
Japan
Prior art keywords
optical fiber
outer diameter
outside diameter
detecting
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15173797A
Other languages
Japanese (ja)
Inventor
Keigo Maeda
恵吾 前田
Yoshihiro Inoue
善博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15173797A priority Critical patent/JPH111340A/en
Publication of JPH111340A publication Critical patent/JPH111340A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate problems in that an additional device such as a light source or a photodetector device must further be used in a method for measuring the intensity of scattered light due to a defect part in order to detect the defect part of an optical fiber and the actual defect part of the optical fiber does not accurately correspond to a part detected as the defect part in a method for detecting a change in the takeoff speed. SOLUTION: An outside diameter fluctuation pattern in which the outside diameter is increased from a prescribed outside diameter and then reduced from the prescribed outside diameter and the extent of fluctuation to the side for reducing the outside diameter is larger than that to the side for increasing the outside diameter from the prescribed outside diameter is detected from the outside diameter fluctuation patter of an optical fiber by using only an outside diameter measuring instrument conventionally installed in an apparatus for producing the optical fiber to thereby detect the presence of a cavity in the optical fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの欠陥
部分、特に光ファイバ中の空洞を検出する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a defective portion of an optical fiber, in particular, a cavity in the optical fiber.

【0002】[0002]

【従来の技術】光伝送に用いる石英系光ファイバは、融
着やコネクタ部分での接続損失を小さくするために高精
度で外径を制御することが要求され、例えば通常の光伝
送に用いる光ファイバの外径125μmに対する誤差の
許容範囲は±1μm程度となっている。この光ファイバ
の外径の誤差が許容範囲外になった部分は、公知の方法
により検出・除去されている。
2. Description of the Related Art Quartz-based optical fibers used for optical transmission are required to control the outer diameter with high precision in order to reduce fusion loss and connection loss at a connector portion. The allowable range of the error with respect to the outer diameter of the fiber of 125 μm is about ± 1 μm. The part where the error of the outer diameter of the optical fiber is out of the allowable range is detected and removed by a known method.

【0003】しかしながら、光ファイバの外径が規定の
許容範囲内で変動している場合であっても、光ファイバ
に空洞が存在すると融着接続ができなくなる問題があっ
た。これは融着接続時に、空洞部分に入った気体が膨張
し、光ファイバの溶融部分を膨張させてしまうからであ
る。コア部分に空洞が発生した場合は、OTDR等の光
学特性の検査によって、この欠陥を検出することができ
るが、クラッド部分やコアとクラッドの界面に空洞が発
生した場合は、検出・除去することは難しかった。
However, even when the outer diameter of the optical fiber fluctuates within a specified allowable range, there is a problem that fusion splicing cannot be performed if a cavity exists in the optical fiber. This is because at the time of fusion splicing, the gas entering the hollow portion expands and expands the fused portion of the optical fiber. If a cavity occurs in the core, this defect can be detected by inspection of optical characteristics such as OTDR. However, if a cavity occurs in the cladding or at the interface between the core and the cladding, it must be detected and removed. Was difficult.

【0004】従来、光ファイバのクラッド部分やコアと
クラッドの界面に発生した欠陥部分を検出することが可
能な光ファイバ欠陥部分の検出方法としては、以下に記
載のように、光ファイバの引取速度の変化を検出する方
法(特開平6−239641号公報)、および光ファイ
バの散乱光の強度を測定する方法(特開平7−2298
13号公報、特開平8−166356号公報)があっ
た。
[0004] Conventionally, as a method of detecting a defect portion of an optical fiber which can detect a cladding portion of the optical fiber or a defect portion generated at an interface between the core and the cladding, a take-up speed of the optical fiber is described as follows. (JP-A-6-239641) and a method of measuring the intensity of scattered light from an optical fiber (JP-A-7-2298).
No. 13, JP-A-8-166356).

【0005】特開平6−239641号公報に開示され
た方法を図4に示す。光ファイバの製造方法に従って説
明すると、まず光ファイバ用プリフォームロッド41を
加熱炉42で加熱溶融して線引きされた光ファイバ43
は、外径測定器45で外径が測定され、次いで塗布装置
46で樹脂を塗布された後、硬化炉47で硬化され、キ
ャプスタン44を通過して巻取装置48によって巻き取
られる。なお、外径測定器45で外径の変化が検知され
た場合には、図4に破線で表示した経路で外径測定器4
5からキャプスタン44に引取速度を制御するための制
御信号を送る。ここで、光ファイバ43の線引き中に一
定の長さにわたり気泡が発生すると、気泡がつぶれたり
気泡が小さくなったりすることがあり、このような場合
には気泡が発生していない場合に比べて光ファイバ43
の外径は細くなろうとする。そして外径が細くなると外
径測定器45から制御信号が発せられ、光ファイバ43
の外径が所定値になるようにキャプスタン44の引取速
度を遅くさせる。この公知の発明は、光ファイバの引取
速度の変化を演算処理装置49で監視することにより、
光ファイバの欠陥部分を検出しようとするものである。
FIG. 4 shows a method disclosed in Japanese Patent Application Laid-Open No. 6-239641. First, an optical fiber 43 is drawn by heating and melting a preform rod 41 for an optical fiber in a heating furnace 42.
After the outer diameter is measured by an outer diameter measuring device 45 and then the resin is applied by a coating device 46, the resin is cured by a curing furnace 47, passes through the capstan 44, and is wound by a winding device 48. When a change in the outer diameter is detected by the outer diameter measuring device 45, the outer diameter measuring device 4 is moved along a path indicated by a broken line in FIG.
5 sends a control signal to the capstan 44 for controlling the take-off speed. Here, if air bubbles are generated over a certain length during the drawing of the optical fiber 43, the air bubbles may be crushed or the air bubbles may be reduced. In such a case, compared to a case where no air bubbles are generated. Optical fiber 43
Tries to be thinner. When the outer diameter is reduced, a control signal is issued from the outer diameter measuring device 45, and the optical fiber 43
The take-up speed of the capstan 44 is reduced so that the outer diameter of the capstan 44 becomes a predetermined value. This known invention monitors the change in the take-up speed of the optical fiber with the arithmetic processing unit 49,
This is to detect a defective portion of the optical fiber.

【0006】特開平7−229813号公報に開示され
た方法を図5に示す。この方法は光ファイバ内部を進行
する光が欠陥に起因して特定の散乱パターンを示すこと
を利用するものである。具体的には、光ファイバ用プリ
フォームロッド51を加熱炉52で加熱溶融して線引き
した光ファイバ55を冷却装置53で冷却し、コーティ
ング装置(塗布装置と硬化炉)でコーティング(樹脂被
覆)を施す。ここで、冷却装置53の内部に受光素子5
4a、54bを取り付け、加熱炉52から光ファイバ5
5中を進行してくる光の光ファイバ内の気泡に起因して
発生する散乱光を検出する。この公知の発明は、この散
乱光の強度を、受光素子54a、54bのそれぞれの出
力変化の対比によって解析して、気泡による輝度変化と
他の要因による輝度変化に区別することにより、光ファ
イバ55の気泡(欠陥)部分を検出しようとするもので
ある。
FIG. 5 shows a method disclosed in Japanese Patent Laid-Open No. 7-229813. This method utilizes the fact that light traveling inside an optical fiber exhibits a specific scattering pattern due to defects. Specifically, the optical fiber 55 drawn by heating and melting the optical fiber preform rod 51 in the heating furnace 52 is cooled in the cooling device 53, and the coating (resin coating) is performed by the coating device (coating device and curing furnace). Apply. Here, the light receiving element 5 is provided inside the cooling device 53.
4a, 54b are attached, and the optical fiber 5
The scattered light generated due to the air bubbles in the optical fiber of the light traveling in 5 is detected. The known invention analyzes the intensity of the scattered light by comparing the output change of each of the light receiving elements 54a and 54b, and distinguishes between the change in brightness due to bubbles and the change in brightness due to other factors. This is to detect a bubble (defect) portion of.

【0007】特開平8−166356号公報に開示され
た方法を図6に示す。この方法は光ファイバの側面から
照射した光が欠陥に起因して特定の散乱パターンを示す
ことを利用するものである。具体的には、光ファイバ用
プリフォームロッド61を線引きした直後の光ファイバ
62に、側方から平行光線63を連続して照射して、そ
の前方散乱光64を検出器65により連続的に検出す
る。この公知の発明は、検出された散乱光のパターン光
量を信号処理部66で処理することにより、光ファイバ
62の欠陥部分を検出しようとするものである。
FIG. 6 shows a method disclosed in Japanese Patent Application Laid-Open No. 8-166356. This method utilizes the fact that light irradiated from the side of an optical fiber exhibits a specific scattering pattern due to defects. Specifically, the optical fiber 62 immediately after drawing the optical fiber preform rod 61 is continuously irradiated with the parallel light beam 63 from the side, and the forward scattered light 64 is continuously detected by the detector 65. I do. In this known invention, a signal processing unit 66 processes the detected pattern light amount of the scattered light to detect a defective portion of the optical fiber 62.

【0008】[0008]

【発明が解決しようとする課題】ところが、引取速度の
変化を検出して光ファイバの欠陥部分を検出する方法
は、引取速度の制御が光ファイバの外径の変化に追いつ
かない場合があり、また、引取速度が変化した箇所と光
ファイバの欠陥部分が対応しない場合があった。
However, in the method of detecting a defect in the optical fiber by detecting a change in the take-up speed, the control of the take-up speed may not catch up with a change in the outer diameter of the optical fiber. In some cases, the portion where the take-up speed has changed does not correspond to the defective portion of the optical fiber.

【0009】また、光ファイバの散乱光の強度を測定し
て欠陥部分を検出する方法は、光源や受光装置などの付
加装置が必要であり、それらを製造装置に組み込む必要
があった。
Further, the method of measuring the intensity of scattered light of an optical fiber to detect a defective portion requires additional devices such as a light source and a light receiving device, which need to be incorporated in a manufacturing apparatus.

【0010】[0010]

【課題を解決するための手段】本発明は、光ファイバの
製造装置に、さらに光源や受光装置などの付加装置を加
えることなく、従来より光ファイバの製造装置に設置さ
れている外径測定器のみを用いて、光ファイバの実際の
欠陥部分と、欠陥部分として検出された部分とが正確に
対応する光ファイバの欠陥部分の検出方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an outer diameter measuring device conventionally installed in an optical fiber manufacturing apparatus without adding an additional device such as a light source and a light receiving device to the optical fiber manufacturing apparatus. It is an object of the present invention to provide a method of detecting a defective portion of an optical fiber in which an actual defective portion of the optical fiber and a portion detected as the defective portion exactly correspond to each other using only the defective portion.

【0011】本発明は、光ファイバ用プリフォームロッ
ドを加熱溶融して線引きした光ファイバの外径を測定し
て得られた外径変動パターンから光ファイバの欠陥部分
を検出する方法であって、得られた外径変動パターンか
ら、所定の外径より大きくなった後に所定の外径より小
さくなり、かつ、所定の外径より大きくなる側への変動
量と比較して所定の外径より小さくなる側への変動量が
大きい外径変動パターンを検出することにより、光ファ
イバ内に空洞が存在することを検出することを特徴とす
る。
The present invention is a method for detecting a defect portion of an optical fiber from an outer diameter variation pattern obtained by measuring the outer diameter of an optical fiber drawn by heating and melting a preform rod for an optical fiber, From the obtained outer diameter variation pattern, becomes smaller than the predetermined outer diameter after being larger than the predetermined outer diameter, and is smaller than the predetermined outer diameter compared to the amount of fluctuation to the side larger than the predetermined outer diameter. The method is characterized in that the presence of a cavity in the optical fiber is detected by detecting an outer diameter fluctuation pattern having a large amount of fluctuation to a certain side.

【0012】また、前記解決手段において、前記外径変
動パターンの所定の外径より小さくなる側への変動量が
0.4μm以上であることを特徴とする。
Further, in the above-mentioned solving means, a variation amount of the outer diameter variation pattern to a side smaller than a predetermined outer diameter is 0.4 μm or more.

【0013】なお、変動量とは、光ファイバの外径の測
定値が、あらかじめ定められた一定の値、すなわち所定
の値に対し、どの程度ずれているかを示す値である。本
発明では、光ファイバの外径の測定結果の時系列的な変
動パターンに注目し、空洞部分に相当する箇所で特定の
変動パターンを見出したことに特徴がある。
The variation is a value indicating the degree of deviation of the measured value of the outer diameter of the optical fiber from a predetermined constant value, that is, a predetermined value. The present invention is characterized in that a time-series variation pattern of the measurement result of the outer diameter of the optical fiber is noticed, and a specific variation pattern is found in a portion corresponding to a hollow portion.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。図1に、本発明が適用され
る光ファイバ製造装置の構成図の一例を示し、その主な
構成要素を光ファイバの製造工程に沿って説明する。光
ファイバ用プリフォームロッド1を加熱炉2で加熱・溶
融・線引きされた光ファイバ5の外径を外径測定器3で
測定し、冷却装置4で冷却する。次いで図示しないコー
ティング装置で樹脂被覆し、図示しない巻取装置で巻き
取る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a configuration diagram of an optical fiber manufacturing apparatus to which the present invention is applied, and its main components will be described along an optical fiber manufacturing process. The outer diameter of the optical fiber 5 obtained by heating, melting and drawing the optical fiber preform rod 1 in the heating furnace 2 is measured by the outer diameter measuring device 3 and cooled by the cooling device 4. Next, it is coated with a resin by a coating device (not shown) and wound up by a winding device (not shown).

【0015】ここで、図1に示された装置を用いて光フ
ァイバを製造した際に生じる空洞に起因する外径変動を
検出する機構を以下に説明する。光ファイバ用プリフォ
ームロッド1が加熱炉2で加熱されると、光ファイバ用
プリフォームロッド1の内部に、コアとクラッドの界面
などのような光ファイバ用プリフォームロッド1の製造
時に形成される界面に微小な気泡が析出する場合があ
る。そして、前記微小な気泡内の気体は高温となり膨張
する。
Here, a mechanism for detecting an outer diameter variation caused by a cavity generated when an optical fiber is manufactured by using the apparatus shown in FIG. 1 will be described below. When the optical fiber preform rod 1 is heated in the heating furnace 2, the optical fiber preform rod 1 is formed inside the optical fiber preform rod 1 at the time of manufacturing the optical fiber preform rod 1 such as an interface between a core and a clad. Fine bubbles may precipitate at the interface. Then, the gas in the minute bubbles becomes hot and expands.

【0016】次に光ファイバ5に引き延ばされる過程
で、膨張した気泡は細長い空洞となるとともに、光ファ
イバ5の外径を大きくする。そして空洞の先端部が外径
測定器3を通過することにより、前記空洞内の気体によ
って光ファイバ5の外径が大きくなったことが外径測定
器3によって検知される。外径変動パターンのうち、こ
の部分を検出することは重要であり、過去には利用され
ていなかったものである。
Next, in the process of being stretched into the optical fiber 5, the expanded bubbles become elongated cavities and increase the outer diameter of the optical fiber 5. When the tip of the cavity passes through the outer diameter measuring device 3, the outer diameter measuring device 3 detects that the outer diameter of the optical fiber 5 is increased by the gas in the cavity. It is important to detect this portion of the outer diameter variation pattern, and it has not been used in the past.

【0017】その後、空洞の先端部が冷却装置4を通過
すると、空洞内の気体が急激に冷却され、その結果空洞
内の気体の圧力が低下し、光ファイバ5の外部からの圧
力によって加熱炉2から冷却装置4の区間にある光ファ
イバ5の溶融部分では外径が小さくなる。外径が小さく
なるときの変動量は、外径が大きくなるときの変動量よ
り大きい。そして空洞部分がすべて外径測定器3を通過
すると、外径は所定の値に戻る。
Thereafter, when the tip of the cavity passes through the cooling device 4, the gas in the cavity is rapidly cooled, and as a result, the pressure of the gas in the cavity decreases, and the pressure from the outside of the optical fiber 5 causes the heating furnace to cool. The outer diameter of the melted portion of the optical fiber 5 in the section from 2 to the cooling device 4 becomes smaller. The variation when the outer diameter becomes smaller is larger than the variation when the outer diameter becomes larger. When all the hollow portions pass through the outer diameter measuring device 3, the outer diameter returns to a predetermined value.

【0018】また、本発明の光ファイバの空洞等の欠陥
の検出方法は、外径の変動パターンが、まず所定の外径
より、線引長さ1m当たり0.02μm以上の割合で大
きくなり、その後、線引長さ1m当たり0.06μm以
上の割合で、かつ、変化量が所定の値より0.4μm以
上小さくなった場合で、さらに、変動パターンが、外径
が大きくなる側の変化量より外径が小さくなる側の変化
量の方が大きい特徴を持った場合に一層信頼性が高く検
出できる。
In the method for detecting a defect such as a cavity in an optical fiber according to the present invention, the variation pattern of the outer diameter becomes larger than a predetermined outer diameter at a rate of 0.02 μm or more per 1 m of drawing length. Thereafter, at a rate of 0.06 μm or more per 1 m of the drawn length and when the variation becomes 0.4 μm or less smaller than a predetermined value, the variation pattern further shows the variation on the side where the outer diameter becomes larger. If the variation amount on the side where the outer diameter is smaller is larger, the detection can be performed with higher reliability.

【0019】[0019]

【実施例】外径の変動パターンの例を、特性図を参照し
て説明する。なお、特性図は外径の変動パターンのうち
の400mを示し、変動パターンは図面の左側から図面
の右側に向かって記録されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an outer diameter variation pattern will be described with reference to a characteristic diagram. The characteristic diagram shows 400 m of the variation pattern of the outer diameter, and the variation pattern is recorded from the left side of the drawing to the right side of the drawing.

【0020】図2に、本発明の特徴を示す光ファイバの
外径変動パターンの一例を示す。図2では、光ファイバ
の外径が、まず所定の外径より大きくなり、次に所定の
外径より小さくなり、その外径の変動量は、外径の大き
くなる側に0.3μm、外径の小さくなる側に0.7μ
mで、外径の小さくなる側の方が変動量が大きい。図2
の変動パターンを示した光ファイバを検査した結果、図
2の太線部の箇所で、約20mの空洞の発生が認められ
た。また、図2と同様の変動パターン(ただし変動量の
絶対値は異なる)を示した光ファイバを検査した結果、
外径変動箇所では、7個のサンプルすべてに空洞の発生
が認められた。なお、空洞の長さは、最小で4m、最大
で70mであった。
FIG. 2 shows an example of an outer diameter variation pattern of an optical fiber showing the features of the present invention. In FIG. 2, the outer diameter of the optical fiber first becomes larger than the predetermined outer diameter, then becomes smaller than the predetermined outer diameter, and the fluctuation amount of the outer diameter is 0.3 μm on the side where the outer diameter becomes larger. 0.7μ on the side with smaller diameter
m, the fluctuation amount is larger on the side where the outer diameter is smaller. FIG.
As a result of inspection of the optical fiber showing the fluctuation pattern of the above, generation of a cavity of about 20 m was observed at the portion indicated by the thick line in FIG. Also, as a result of inspecting an optical fiber showing the same fluctuation pattern as in FIG. 2 (however, the absolute value of the fluctuation amount is different),
At the location where the outer diameter fluctuated, cavities were observed in all seven samples. The length of the cavity was 4 m at the minimum and 70 m at the maximum.

【0021】図3に、本発明の特徴を示さない光ファイ
バの外径変動パターンの一例を示す。図3では、光ファ
イバの外径の変動量は、外径の大きくなる側に0.7μ
m、外径の小さくなる側に0.1μmで、外径の大きく
なる側の方が変動量が大きい。図3と同様の変動パター
ンを示した光ファイバを検査した結果、外径変動箇所で
は、本サンプルを含む5個のサンプルのすべてに空洞の
発生は認められなかった。
FIG. 3 shows an example of an outer diameter variation pattern of an optical fiber which does not exhibit the features of the present invention. In FIG. 3, the variation of the outer diameter of the optical fiber is 0.7 μm on the side where the outer diameter increases.
m is 0.1 μm on the side where the outer diameter is smaller, and the fluctuation amount is larger on the side where the outer diameter is larger. As a result of inspection of the optical fiber having the same variation pattern as that shown in FIG. 3, no cavity was found in any of the five samples including the present sample at the outer diameter variation portion.

【0022】[0022]

【発明の効果】以上説明したとおり、本発明によれば、
光ファイバの製造装置に、さらに光源や受光装置などの
付加装置を加えることなく、従来より光ファイバの製造
装置に設置されている外径測定器のみを用いて、光ファ
イバの実際の欠陥部分と、欠陥部分として検出された部
分とが正確に対応する光ファイバ欠陥部分の検出方法を
提供することが可能となり、光ファイバの品質を向上さ
せることができる。
As described above, according to the present invention,
Without adding additional equipment such as a light source and a light receiving device to the optical fiber manufacturing equipment, only the outer diameter measuring instrument conventionally installed in the optical fiber manufacturing equipment is used to determine the actual defect portion of the optical fiber. In addition, it is possible to provide a method for detecting an optical fiber defective portion that accurately corresponds to a portion detected as a defective portion, and to improve the quality of an optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される光ファイバ製造装置の一例
を示す構成図である。
FIG. 1 is a configuration diagram illustrating an example of an optical fiber manufacturing apparatus to which the present invention is applied.

【図2】光ファイバに空洞がある場合の外径変動の一例
を示す外径変動特性図である。
FIG. 2 is an outer diameter fluctuation characteristic diagram showing an example of outer diameter fluctuation when a cavity is present in an optical fiber.

【図3】光ファイバに空洞がない場合の外径変動の一例
を示す外径変動特性図である。
FIG. 3 is an outer diameter fluctuation characteristic diagram showing an example of outer diameter fluctuation when there is no cavity in an optical fiber.

【図4】従来の光ファイバの欠陥部分の検出方法の説明
図である。
FIG. 4 is an explanatory diagram of a conventional method for detecting a defective portion of an optical fiber.

【図5】図4と異なる、従来の光ファイバの欠陥部分の
検出方法の説明図である。
FIG. 5 is an explanatory diagram of a conventional method for detecting a defective portion of an optical fiber, which is different from FIG.

【図6】図4、図5と異なる、従来の光ファイバの欠陥
部分の検出方法の説明図である。
FIG. 6 is an explanatory diagram of a conventional method for detecting a defective portion of an optical fiber, which is different from FIGS. 4 and 5;

【符号の説明】[Explanation of symbols]

1、41、51、61 光ファイバ用プリフォームロッ
ド 2、42、52 加熱炉 3、45 外径測定器 4、53 冷却装置 5、43、55、62 光ファイバ(被覆なし) 44 キャプスタン 46 塗布装置 47 硬化炉(硬化装置) 48 巻取装置 49 演算処理装置 54a、54b 受光素子 63 平行光線 64 前方散乱光 65 検出器 66 信号処理部
1, 41, 51, 61 Preform rod for optical fiber 2, 42, 52 Furnace 3, 45 Outer diameter measuring instrument 4, 53 Cooling device 5, 43, 55, 62 Optical fiber (uncoated) 44 Capstan 46 Coating Device 47 Curing furnace (curing device) 48 Winding device 49 Arithmetic processing device 54a, 54b Light receiving element 63 Parallel light beam 64 Forward scattered light 65 Detector 66 Signal processing unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ用プリフォームロッドを加熱
溶融して線引きした光ファイバの外径を測定して得られ
た外径変動パターンから光ファイバの欠陥部分を検出す
る方法であって、 得られた外径変動パターンから、所定の外径より大きく
なった後に所定の外径より小さくなり、かつ、所定の外
径より大きくなる側への変動量と比較して所定の外径よ
り小さくなる側への変動量が大きい外径変動パターンを
検出することにより、光ファイバ内に空洞が存在するこ
とを検出することを特徴とする光ファイバ欠陥部分の検
出方法。
1. A method for detecting a defect portion of an optical fiber from an outer diameter variation pattern obtained by measuring an outer diameter of an optical fiber drawn by heating and melting a preform rod for an optical fiber. From the outer diameter variation pattern, the side that becomes smaller than the predetermined outer diameter after becoming larger than the predetermined outer diameter, and that becomes smaller than the predetermined outer diameter in comparison with the fluctuation amount to the side that becomes larger than the predetermined outer diameter. A method for detecting a defect in an optical fiber, comprising detecting an existence of a cavity in an optical fiber by detecting an outer diameter fluctuation pattern having a large amount of fluctuation.
【請求項2】 前記外径変動パターンの所定の外径より
小さくなる側への変動量が0.4μm以上であることを
特徴とする請求項1記載の光ファイバ欠陥部分の検出方
法。
2. The optical fiber defect detecting method according to claim 1, wherein an amount of variation of the outer diameter variation pattern to a side smaller than a predetermined outer diameter is 0.4 μm or more.
JP15173797A 1997-06-10 1997-06-10 Detection of defect part of optical fiber Pending JPH111340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15173797A JPH111340A (en) 1997-06-10 1997-06-10 Detection of defect part of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15173797A JPH111340A (en) 1997-06-10 1997-06-10 Detection of defect part of optical fiber

Publications (1)

Publication Number Publication Date
JPH111340A true JPH111340A (en) 1999-01-06

Family

ID=15525197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15173797A Pending JPH111340A (en) 1997-06-10 1997-06-10 Detection of defect part of optical fiber

Country Status (1)

Country Link
JP (1) JPH111340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200270A (en) * 2004-01-15 2005-07-28 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200270A (en) * 2004-01-15 2005-07-28 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber

Similar Documents

Publication Publication Date Title
US4042723A (en) Method for monitoring the properties of plastic coatings on optical fibers
JP4844484B2 (en) Optical fiber manufacturing method and manufacturing apparatus
CA1071858A (en) Method for monitoring the concentricity of plastic coatings on optical fibers
US20020066292A1 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JPS61204535A (en) Inspecting device for optical fiber
US4662743A (en) Method of measuring the geometry of optical fibers
JPH111340A (en) Detection of defect part of optical fiber
JP5017456B2 (en) Method for measuring hole diameter of optical fiber with hole and method for manufacturing optical fiber with hole
US5880825A (en) Method and apparatus for detecting defects in an optical fiber
JP2016085138A (en) Coating abnormal part detection method and device
US20040042747A1 (en) Method for monitoring spin imparted on optical fiber and method for making optical fiber by using the same
US5841524A (en) Compact device for monitoring the coating of a moving filamentary product
JPH07229813A (en) Method and apparatus for detecting bubble in optical fiber
JP2946651B2 (en) Anomaly point detection method for cladding for optical fiber coating
Yamada et al. Arc fusion splicer with profile alignment system for high-strength low-loss optical submarine cable
JPH05272920A (en) Optical-fiber displacement gage
JP4234280B2 (en) Stretching method and stretching apparatus for translucent object
JP2004524561A (en) Attenuator
KR100357620B1 (en) Monitoring system for ultra violet lamp
JP2024027044A (en) Method for manufacturing optical fiber
JPH07244002A (en) Monitor and monitoring method for optical fiber, and manufacturing method for the same fiber
JP2719050B2 (en) Method for monitoring carbon coating of optical fiber
JP6500364B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP5274634B2 (en) Optical fiber spinning nozzle and optical fiber inspection method using the same
JPH06148478A (en) Method for controlling shape of optical fiber tape