JPH04319643A - Method and device for measuring eccentricity of coating - Google Patents

Method and device for measuring eccentricity of coating

Info

Publication number
JPH04319643A
JPH04319643A JP8671991A JP8671991A JPH04319643A JP H04319643 A JPH04319643 A JP H04319643A JP 8671991 A JP8671991 A JP 8671991A JP 8671991 A JP8671991 A JP 8671991A JP H04319643 A JPH04319643 A JP H04319643A
Authority
JP
Japan
Prior art keywords
light
linear body
thickness unevenness
light beam
critical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8671991A
Other languages
Japanese (ja)
Inventor
Takehito Kobayashi
勇仁 小林
Susumu Inoue
享 井上
Hideji Shinoki
篠木 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8671991A priority Critical patent/JPH04319643A/en
Publication of JPH04319643A publication Critical patent/JPH04319643A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To accurately measure the eccentricity of the coating of a coated linear body. CONSTITUTION:A coated optical fiber 100 composed of a glass section 100a and resin section 100b is irradiated from one side face to the other side face with the parallel P-polarized light of a laser beam 113 from a laser light source 111 through a shield plate 112 after the beam 113 is P-polarized through a polarizing plate 114. When the positions of the critical reflected light and non- transmitted light of the forward scattered light of the beam 113 are received and a pattern analysis is performed by means of an image sensor 121, the extent of the eccentricity of the resin section 100b can be accurately measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、線状体に施された被覆
の偏肉(偏肉度、偏肉方向)を測定する偏肉測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring uneven thickness (degree of uneven thickness, direction of uneven thickness) of a coating applied to a linear body.

【0002】0002

【従来の技術】光ファイバは材質的な問題からそのまま
光伝送用媒体として使用するのは極めて困難であるので
、従来より光ファイバの線引き直後に樹脂被覆を施して
被覆光ファイバとし、光ファイバ製造直後の初期強度の
維持を図ると共に長期使用に耐えうるようにしている。
[Prior Art] Because it is extremely difficult to use optical fiber as it is as an optical transmission medium due to material problems, conventionally, optical fibers are coated with resin immediately after being drawn to produce coated optical fibers. We aim to maintain the initial strength immediately after use, and to ensure that it can withstand long-term use.

【0003】すなわち、図9に示すように、光ファイバ
母材1の先端を加熱炉2により加熱・溶融しつつ線引き
して形成された光ファイバ3は、一般に、第一の加圧ダ
イ4A、第一の硬化炉5A、第二の加圧ダイ4B、第二
の硬化炉5Bに順次挿通されることにより、その外表面
に二層の樹脂被覆が施された被覆光ファイバ6となって
キャプスタン7を介して巻取機8に巻取られるようにな
っている。ここで、かかる被覆光ファイバ6に使用され
ている樹脂被覆材料は、例えば、シリコーン樹脂、ウレ
タン樹脂、エポキシ樹脂などの熱硬化型樹脂や、エポキ
シアクリレート、ウレタンアクリレート、ポリエステル
アクリレートなどの紫外線硬化型樹脂、その他、放射線
硬化型樹脂などの高分子材料である。
That is, as shown in FIG. 9, an optical fiber 3 formed by drawing the tip of an optical fiber preform 1 while heating and melting it in a heating furnace 2 is generally formed by a first pressure die 4A, By being sequentially inserted into the first curing furnace 5A, the second pressure die 4B, and the second curing furnace 5B, it becomes a coated optical fiber 6 whose outer surface is coated with two layers of resin. It is adapted to be wound up by a winding machine 8 via a stun 7. Here, the resin coating material used for the coated optical fiber 6 is, for example, a thermosetting resin such as silicone resin, urethane resin, or epoxy resin, or an ultraviolet curing resin such as epoxy acrylate, urethane acrylate, or polyester acrylate. , and other polymeric materials such as radiation-curable resins.

【0004】ところで、このような被覆光ファイバ6に
おいては、その伝送特性及び機械的特性を向上するため
、光ファイバ1の周囲に施される樹脂被覆が同心円状と
なっていることが重要である。一方、光ファイバの生産
性向上のため線速を大きくすると、光ファイバ1の温度
が上昇して加圧ダイ4A,4B中での樹脂の流れが不均
一となるためか樹脂被覆に偏肉が生じ易いという問題が
ある。また、偏肉は樹脂内にゴミが混入した場合などに
生じる。そこで、光ファイバ線引きラインにおいては、
インラインで被覆光ファイバ6の偏肉を測定し、偏肉の
発生に応じて線速を小さくしたり、線引きを停止したり
する制御を行う必要がある。
By the way, in such a coated optical fiber 6, in order to improve its transmission characteristics and mechanical characteristics, it is important that the resin coating applied around the optical fiber 1 is concentric. . On the other hand, when the linear speed is increased to improve the productivity of optical fibers, the temperature of the optical fiber 1 rises and the flow of resin in the pressure dies 4A and 4B becomes uneven, resulting in uneven thickness of the resin coating. There is a problem in that it is easy to occur. In addition, uneven thickness occurs when dust gets mixed into the resin. Therefore, in the optical fiber drawing line,
It is necessary to measure the thickness deviation of the coated optical fiber 6 in-line, and perform control such as reducing the drawing speed or stopping the drawing depending on the occurrence of the thickness deviation.

【0005】ここで、従来の偏肉測定方法の一例を図1
0を参照しながら説明する。同図にすように、従来にお
いては、線引きされる被覆光ファイバ10の側面にレー
ザ光源11からのレーザビーム12を照射し、その前方
散乱光パターン13を検出することにより偏肉を測定し
ている(特開昭60−238737号公報参照)。かか
る方法の原理を図11に示す。同図に示すように、被覆
光ファイバ10を簡単のためにガラス部10aと樹脂部
10bとからなるとすると、両者の屈折率の違い(通常
、ガラス部10aの屈折率ng =1.46、樹脂部1
0bの屈折率nr =1.48〜1.51程度である)
から、前方散乱光パターン13には、樹脂部10b−ガ
ラス部10a−樹脂部10bと通過した中央部分の光束
13aと、樹脂部10bのみを通過した周辺部の光束1
3bとが存在する。したがって、前方散乱光パターン1
3の左右の対称性及び左右の受光パワーの比により偏肉
を検出することができる。
[0005] Here, an example of the conventional thickness unevenness measurement method is shown in Fig. 1.
This will be explained with reference to 0. As shown in the figure, conventionally, the thickness unevenness is measured by irradiating the side surface of the coated optical fiber 10 to be drawn with a laser beam 12 from a laser light source 11 and detecting the forward scattered light pattern 13. (Refer to Japanese Patent Application Laid-Open No. 60-238737). The principle of such a method is shown in FIG. As shown in the figure, for the sake of simplicity, the coated optical fiber 10 is made up of a glass portion 10a and a resin portion 10b. Part 1
The refractive index nr of 0b is approximately 1.48 to 1.51)
Therefore, the forward scattered light pattern 13 includes a central light beam 13a that has passed through the resin portion 10b-glass portion 10a-resin portion 10b, and a peripheral light beam 1 that has passed only through the resin portion 10b.
3b exists. Therefore, forward scattered light pattern 1
Unbalanced thickness can be detected based on the left and right symmetry of No. 3 and the ratio of the left and right received light powers.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、前方散乱光パターン13の左右側において
、樹脂部10b及びガラス部10aの両方を通過した光
と、樹脂部10bのみを通過した光とが明確に区別され
なければ偏肉を検出できないので、例えば図11に示す
ように被覆径が小さくて樹脂部10bの肉厚が小さい場
合(図12(A))、又は偏肉が大きすぎる場合(図1
2(B))には偏肉が良好には検出できない。すなわち
図12(A)の場合には、樹脂部10bの肉厚が小さす
ぎるので、樹脂部10bを通過する光が存在せず、全て
樹脂部10b及びガラス部10aの両方を通過してしま
い、偏肉が検出できない。また、図12(B)の場合に
は、図中下側において樹脂部10bが薄肉となるので、
やはり図中下側の樹脂部10bのみを通過する光が存在
しないので、偏肉が生じていることは判断できるが、ど
の程度の偏肉なのかが検出できない。
However, in the method described above, on the left and right sides of the forward scattered light pattern 13, the light that has passed through both the resin portion 10b and the glass portion 10a and the light that has passed only the resin portion 10b are separated. For example, if the coating diameter is small and the thickness of the resin part 10b is small as shown in FIG. 11 (FIG. 12(A)), or if the thickness deviation is too large, as shown in FIG. (Figure 1
2(B)), uneven thickness cannot be detected well. In other words, in the case of FIG. 12(A), since the thickness of the resin part 10b is too small, no light passes through the resin part 10b, and all of the light passes through both the resin part 10b and the glass part 10a. Uneven thickness cannot be detected. In addition, in the case of FIG. 12(B), since the resin portion 10b is thinner at the lower side in the figure,
Since there is no light that passes only through the resin portion 10b on the lower side of the figure, it can be determined that an uneven thickness has occurred, but it is not possible to detect the degree of uneven thickness.

【0007】したがって、光ファイバ生産分野において
、高性能な光ファイバを生産性よく製造するために、被
覆光ファイバの偏肉をインラインで正確に測定しうる技
術の出現が望まれている。また、かかる技術は種々の分
野に適用可能である。
[0007] Therefore, in the field of optical fiber production, in order to manufacture high-performance optical fibers with high productivity, there is a desire for a technology that can accurately measure the uneven thickness of coated optical fibers in-line. Moreover, such technology is applicable to various fields.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明に係る第一の偏肉測定方法は、表面に少なくとも一層
からなる被覆が施された線状体の側面から、該線状体の
長手方向に直交する面の一半側面に光源からの光ビーム
を照射し、その臨界反射光ならびに上記線状体を透過し
なかった非透過光の位置を検出する一方、他の半側面に
光源からの光ビームを照射し、その臨界反射光ならびに
上記線状体を透過しなかった非透過光の位置を検出し、
偏肉の度合いを測定することを特徴とする。
[Means for Solving the Problems] A first method for measuring uneven thickness according to the present invention which solves the above-mentioned problems is to measure the thickness of a linear body from the side surface of the linear body, the surface of which is coated with at least one layer. A light beam from a light source is irradiated on one half side of the surface perpendicular to the longitudinal direction, and the position of the critical reflected light and non-transmitted light that has not passed through the linear body is detected, while the other half side is irradiated with a light beam from the light source. irradiate the light beam, detect the position of the critical reflected light and the non-transmitted light that did not pass through the linear body,
It is characterized by measuring the degree of uneven thickness.

【0009】本発明に係る第一の偏肉測定装置の構成は
、表面に少なくとも一層からなる被覆が施された線状体
の側面に対向して設けられ且つ該線状体の長手方向に直
交する面内で該線状体の一半側面に光ビームを照射する
一方他の半側面に光ビームを照射する光源部と、この光
源部からの光ビームの線状体での臨界反射光及び上記線
状体を透過しなかった非透過光を受光しその受光位置を
検出する受光部と、これら受光光の検出受光位置を処理
して上記線状体の偏肉を求める処理部とを具えたことを
特徴とする。
The structure of the first thickness unevenness measuring device according to the present invention is that it is provided opposite to the side surface of a linear body whose surface is coated with at least one layer, and that is perpendicular to the longitudinal direction of the linear body. a light source unit that irradiates a light beam on one half side of the linear body while irradiating the other half side with a light beam within a plane, a critical reflection light of the light beam from this light source unit on the linear body, and the above-mentioned light beam; A light receiving unit that receives non-transmitted light that has not passed through the linear body and detects the light receiving position, and a processing unit that processes the detected light receiving position of the received light to determine the uneven thickness of the linear body. It is characterized by

【0010】また本発明に係る第二の偏肉測定方法は、
表面に少なくとも一層からなる被覆が施された線状体の
側面から、該線状体の長手方向に直交する面の一半側面
に光源からの偏光光ビームを照射し、その臨界反射光の
みを検出し、偏肉の度合いを測定することを特徴とする
A second method for measuring uneven thickness according to the present invention is as follows:
A polarized light beam from a light source is irradiated from the side surface of a linear body whose surface is coated with at least one layer to one half side of the surface perpendicular to the longitudinal direction of the linear body, and only the critical reflected light is detected. It is characterized by measuring the degree of uneven thickness.

【0011】発明に係る第二の偏肉測定装置の構成は、
表面に少なくとも一層からなる被覆が施された線状体の
側面に対向して設けられ且つ該線状体の長手方向に直交
する面内で該線状体側面からの偏光光ビームを照射する
光ビーム光源部と、この偏光光ビームの線状体での臨界
反射光を受光しその受光位置を検出する受光部と、これ
ら検出した受光光の受光位置を検出した後処理して上記
線状体の偏肉を求める処理部とを具えたことを特徴とす
る。
The configuration of the second thickness unevenness measuring device according to the invention is as follows:
Light that is provided opposite to the side surface of a linear body whose surface is coated with at least one layer and irradiates a polarized light beam from the side surface of the linear body in a plane orthogonal to the longitudinal direction of the linear body. a beam light source section, a light receiving section that receives the critical reflected light of the polarized light beam on the linear body and detects the light receiving position, and a light receiving section that detects the light receiving position of the detected light and processes it and then outputs it to the linear body. It is characterized by comprising a processing section for obtaining uneven thickness.

【0012】以下、本発明を図面を参照しながら詳細に
説明する。
The present invention will be explained in detail below with reference to the drawings.

【0013】図1には本発明方法を実施するための偏肉
測定装置の一例を概念的に示す。同図に示すように、被
検体である線状体の一例としての被覆光ファイバ100
は、ガラス部100a及び樹脂部100bからなるもの
とし、該被覆光ファイバ100の側方にはビーム走査部
110及び受光部120が配されている。ここで、ビー
ム走査部110は、被覆光ファイバ100の側面に対向
して設けられレーザ光を照射するレーザ光源111と、
このレーザ光源と線状体との間に介装され線状体の一側
面(図中、左側の照射面または右側の照射面)のみを遮
る遮閉板112とを具えており、被覆光ファイバ100
の長手方向に直交する面内の一半側面内のみをレーザビ
ーム113が照射できるようになっている。一方、受光
部120は、被覆光ファイバ100の側面に対向して配
されて該被覆光ファイバ100の前方散乱光及び臨界反
射光ならびに光ファイバ100を透過しなかった非透過
光を受光して検知する、受光器としてのイメージセンサ
121を具えている。そして、制御部130は受光部で
受光した該被覆光ファイバ100の臨界反射光及び非透
過光の受光検出位置をデータ処理することにより偏肉を
推定する働きをしている。なお、ここで本発明で臨界反
射光とは、前方散乱光のうちで特に、光ファイバなどの
線状体の被覆層と空気層との界面および該被覆層とガラ
ス部との界面にて反射された散乱光をいう。
FIG. 1 conceptually shows an example of a thickness unevenness measuring device for carrying out the method of the present invention. As shown in the figure, a coated optical fiber 100 is an example of a linear object that is a test object.
consists of a glass part 100a and a resin part 100b, and a beam scanning part 110 and a light receiving part 120 are arranged on the side of the coated optical fiber 100. Here, the beam scanning unit 110 includes a laser light source 111 that is provided facing the side surface of the coated optical fiber 100 and irradiates laser light;
A shielding plate 112 is interposed between the laser light source and the linear body and blocks only one side of the linear body (the irradiation surface on the left side or the irradiation surface on the right side in the drawing), and the shielding plate 112 100
The laser beam 113 can irradiate only one half side of the plane perpendicular to the longitudinal direction. On the other hand, the light receiving unit 120 is disposed facing the side surface of the coated optical fiber 100 and receives and detects forward scattered light and critical reflected light of the coated optical fiber 100 as well as non-transmitted light that has not passed through the optical fiber 100. It is equipped with an image sensor 121 as a light receiver. The control unit 130 functions to estimate the thickness deviation by data processing the reception detection positions of the critical reflected light and non-transmitted light of the coated optical fiber 100 received by the light receiving unit. In the present invention, critical reflected light refers to forward scattered light that is reflected at the interface between the coating layer of a linear body such as an optical fiber and an air layer, and the interface between the coating layer and the glass part. scattered light.

【0014】本発明で用いる光源は特に限定されないが
、ビームを偏光板によって偏光させた偏光ビーム(P波
)を使用することにより線状体への侵入が容易となり、
その結果、透過光の強度を上げ臨界反射光を明確にする
ので特に好ましい。図1の装置においては、光源部12
0と遮閉板112との間には偏光板114が介装されて
おりP偏光されている。
Although the light source used in the present invention is not particularly limited, by using a polarized beam (P wave) that is polarized by a polarizing plate, it becomes easier to penetrate the linear body.
As a result, the intensity of the transmitted light is increased and the critical reflected light becomes clear, which is particularly preferable. In the device of FIG. 1, the light source section 12
A polarizing plate 114 is interposed between 0 and the shielding plate 112, and the light is P-polarized.

【0015】なお、本発明でイメージセンサとは固体撮
像素子をいい、MOSトランジスタやCCDメモリの配
列上に光を受けて各セルの出力を電子的に走査すること
により光を電位信号に変換する装置をいう。また、本発
明で受光器とは、光の受光を検出してその光に応じて電
気的信号を出力する素子をいう。
[0015] In the present invention, the image sensor refers to a solid-state image sensor, which receives light on an array of MOS transistors or CCD memory and converts the light into a potential signal by electronically scanning the output of each cell. Refers to equipment. Furthermore, in the present invention, a light receiver refers to an element that detects the reception of light and outputs an electrical signal in accordance with the light.

【0016】なお、上記受光部においては、遮閉板11
2によって遮閉されなかった部分に対応する位置には、
各々受光器としてのイメージセンサ121が二台設けら
れている。
Note that in the light receiving section, the shielding plate 11
At the position corresponding to the part not blocked by 2,
Two image sensors 121 each serving as a light receiver are provided.

【0017】次に図2,図3を参照して偏肉測定の原理
を説明する。
Next, the principle of thickness unevenness measurement will be explained with reference to FIGS. 2 and 3.

【0018】図2において図示しないレーザ光源からの
レーザビーム113は、偏光板114を透過することで
P偏光となり、遮閉板112によってさえぎられないP
偏光は光ファイバ100に向かって照射される。そして
、このP偏光のうちで光ファイバのごく近傍を通過した
ものはそのまま受光部のP1 で受光される。また、樹
脂部100bに入った光は樹脂部とガラス部との臨界面
100cで反射され臨界反射光となり、P2 の位置で
受光される。更に、ガラス部100aまで入射した光は
、P3 の位置で受光される。
A laser beam 113 from a laser light source (not shown) in FIG.
The polarized light is directed toward the optical fiber 100. Of this P-polarized light, that which passes very close to the optical fiber is received as it is at P1 of the light receiving section. Further, the light that has entered the resin part 100b is reflected at the critical surface 100c between the resin part and the glass part to become critical reflected light, which is received at the position P2. Furthermore, the light that has entered the glass portion 100a is received at a position P3.

【0019】この結果、各受光部での受光強度は図3に
示すようになり、P1 の光は光ファイバ100の外側
を通過するので、照射時の強さのままで明るいが、その
後は暗くなる。これは樹脂部100bに入った光は屈折
されて図3中下方に行ってしまうからである。そしてP
2 になると、光ファイバ100のガラス部100aと
樹脂部100bとの臨界面100cで反射し、明るくな
るため受光部121ではP2 の受光位置が検出される
ことになる。
As a result, the received light intensity at each light receiving part becomes as shown in FIG. 3, and since the light P1 passes through the outside of the optical fiber 100, it remains bright at the intensity at the time of irradiation, but after that it becomes dark. Become. This is because the light entering the resin portion 100b is refracted and goes downward in FIG. 3. and P
2, the light is reflected at the critical surface 100c between the glass portion 100a and the resin portion 100b of the optical fiber 100 and becomes bright, so that the light receiving portion 121 detects the light receiving position P2.

【0020】一方図4に示すように、他の一半側面も同
様にして測定されることで、受光位置及び強度が検出さ
れる。このようにレーザビーム113を被覆光ファイバ
100の一半側面づつ平行光を照射し、その前方散乱光
を受光部121で受光することにより、受光部121で
のP1 及びP2 の位置が検出される。これらの検出
結果を合成してパターン化したのが図5に示す前方散乱
光パターンである。偏肉のない場合は、下記(1)式の
関係が成立する。(P1 +P’1 )=(P2 +P
’2 )  −(1) そして、偏肉が生じると、(1)式の右辺の値が偏肉の
度合いに比例して大小変化する。これを基にして偏心度
を検出する。
On the other hand, as shown in FIG. 4, the other half side is similarly measured to detect the light receiving position and intensity. In this manner, the laser beam 113 irradiates parallel light onto one half side of the coated optical fiber 100 at a time, and the forward scattered light is received by the light receiving section 121, thereby detecting the positions of P1 and P2 at the light receiving section 121. The forward scattered light pattern shown in FIG. 5 is a pattern obtained by combining these detection results. When there is no uneven thickness, the following relationship (1) holds true. (P1 +P'1)=(P2 +P
'2) - (1) Then, when uneven thickness occurs, the value on the right side of equation (1) changes in size in proportion to the degree of uneven thickness. Based on this, eccentricity is detected.

【0021】図6には、被覆光ファイバ100に偏光板
114によってP偏光された光を全側面に亙って照射し
てその臨界反射光のみを検光子122を介して受光する
場合を示している。すなわち、臨界面を反射した光はP
波からS波となるため、このS波のみを検光子122を
介して検出することにより、図7に示すパターンが得ら
れ、下記(2)式の関係が成立することとなる。(S1
 +S’1 )=(S2 +S’2 )  −(2)そ
して、偏肉が生じると、(2)式の右辺の値が偏肉の度
合いに比例して大小変化する。これを基にして偏心度を
検出する。
FIG. 6 shows a case where the coated optical fiber 100 is irradiated with P-polarized light by the polarizing plate 114 over all sides and only the critical reflected light is received via the analyzer 122. There is. In other words, the light reflected from the critical surface is P
Since the wave becomes an S wave, by detecting only this S wave through the analyzer 122, a pattern shown in FIG. 7 is obtained, and the relationship of equation (2) below is established. (S1
+S'1)=(S2+S'2)-(2) When uneven thickness occurs, the value on the right side of equation (2) changes in size in proportion to the degree of uneven thickness. Based on this, eccentricity is detected.

【0022】この臨界反射光のみを検出する装置を、図
8に示す。同図に示すように、全体の構成は図1に示す
測定装置とほぼ同じであるが、臨界反射光のみを受光す
るので干渉がないので遮閉板114が不用であるのと、
受光器が一台であり、検光子122を通してイメージセ
ンサ121で受光している。また、検光子122を用い
る代わりに、偏光板114を介してイメージセンサ12
1で受光するようにしてもよい。
FIG. 8 shows a device that detects only this critical reflected light. As shown in the figure, the overall configuration is almost the same as the measuring device shown in FIG. 1, but since only the critical reflected light is received, there is no interference, so the shielding plate 114 is unnecessary.
There is one light receiver, and the image sensor 121 receives light through an analyzer 122. Also, instead of using the analyzer 122, the image sensor 12 may be
1 may be used to receive light.

【0023】このように、臨界反射光のみを検光子12
2を通して受光した結果を、パターン化することにより
、光ファイバの偏肉状態を判断することができる。
In this way, only the critical reflected light is detected by the analyzer 12.
By patterning the results of light received through the optical fiber 2, it is possible to determine the uneven thickness of the optical fiber.

【0024】なお、以上の説明は簡単のため、被覆が一
層の場合を説明したが、被覆が複数層でも、前方散乱光
パターンを測定でき同様にして偏肉を知ることができる
[0024] For the sake of simplicity, the above explanation is based on the case where the coating is one layer, but even if the coating is multiple layers, the forward scattered light pattern can be measured and the unevenness in thickness can be determined in the same way.

【0025】また偏肉の状態がレーザビームが進行して
くる方向にのみ偏心している場合には、得られる前方散
乱光パターンは正常状態となるので、この場合には、被
覆光ファイバの周囲の複数方向、例えばX−Y2軸測定
を上述した方法で同様に走査することにより、偏肉を知
ることができる。
Furthermore, if the uneven thickness is eccentric only in the direction in which the laser beam advances, the obtained forward scattered light pattern will be in a normal state. Thickness unevenness can be determined by scanning in a plurality of directions, for example, by measuring two axes of X and Y in the same manner as described above.

【0026】さらに、測定の際に被覆光ファイバの被覆
層の屈折率と屈折率が近似した屈折率を有する液体を介
在させてレーザビームを照射することにより、被覆層に
おける光ビームの内方への屈折が抑えられ被覆が薄い場
合でも、ガラス部内への侵入が抑えられ、樹脂部のみを
通過する散乱光を受光することができ前方散乱光パター
ンの解析が容易となる。
Furthermore, during measurement, by irradiating the laser beam through a liquid having a refractive index similar to that of the coating layer of the coated optical fiber, the light beam can be directed inward in the coating layer. Even if the coating is thin, it is possible to prevent the light from penetrating into the glass part, and it is possible to receive the scattered light that passes only through the resin part, making it easier to analyze the forward scattered light pattern.

【0027】[0027]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be explained below based on examples.

【0028】図1に示す偏肉測定装置で偏肉を求めた。 下記に示す一層被覆の被覆光ファイバの偏肉度を求めた
。   a.測定対象       ガラス部      nD 25=1.4
583    φ=125μm      第一層被覆
部  nD 25=1.480*     φ=180
μm                       
 (*未硬化での測定値)  b.測定位置       第一層被覆樹脂硬化炉の後流側  c.測
定条件       測定領域        2mmφ   
   ファイバ移動量  max1000m/min 
     測定頻度        一回/min以上
  d.測定方式     ・レーザビーム照射し、ファイバの臨界反射光
パターン検知方法(図2, 4に示す方法)     ・XY2軸同時測定   e.光源       レーザ光   f.受光部       イメージセンサ 上記条件にて測定し合成した結果を図5に示す。これに
より線引き時の偏肉の度合をインラインで判別すること
ができる。
Thickness unevenness was determined using the thickness unevenness measuring device shown in FIG. The thickness unevenness of the single-layer coated optical fiber shown below was determined. a. Measurement target Glass part nD 25=1.4
583 φ=125 μm First layer covering part nD 25=1.480* φ=180
μm
(*Measured value before curing) b. Measurement position: Downstream side of the first layer coating resin curing furnace c. Measurement conditions Measurement area 2mmφ
Fiber movement max1000m/min
Measurement frequency: once/min or more d. Measurement method - Laser beam irradiation and critical reflected light pattern detection method of the fiber (method shown in Figures 2 and 4) - Simultaneous measurement of two XY axes e. Light source Laser light f. Light-receiving section image sensor The results of measurements and synthesis under the above conditions are shown in FIG. This makes it possible to determine in-line the degree of uneven thickness during wire drawing.

【0029】[0029]

【発明の効果】以上説明したように、本発明によると、
被覆線状体にレーザビームを走査することにより、偏肉
による前方散乱光パターンの変化をインラインで検出す
ることができる。
[Effects of the Invention] As explained above, according to the present invention,
By scanning the coated linear body with a laser beam, changes in the forward scattered light pattern due to uneven thickness can be detected in-line.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の偏肉装置の一例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a thickness unevenness device of the present invention.

【図2】本発明に係る偏肉測定を説明するための原理図
である。
FIG. 2 is a principle diagram for explaining thickness unevenness measurement according to the present invention.

【図3】前方散乱光パターンを示すグラフである。FIG. 3 is a graph showing a forward scattered light pattern.

【図4】本発明に係る偏肉測定を説明するための原理図
である。
FIG. 4 is a principle diagram for explaining thickness unevenness measurement according to the present invention.

【図5】前方散乱光パターンを示すグラフである。FIG. 5 is a graph showing a forward scattered light pattern.

【図6】本発明に係る偏肉測定を説明するための原理図
である。
FIG. 6 is a principle diagram for explaining thickness unevenness measurement according to the present invention.

【図7】前方散乱光パターンを示すグラフである。FIG. 7 is a graph showing a forward scattered light pattern.

【図8】本発明の装置の一例を示す概念図である。FIG. 8 is a conceptual diagram showing an example of the device of the present invention.

【図9】光ファイバの製造ラインの一例を示す概念図で
ある。
FIG. 9 is a conceptual diagram showing an example of an optical fiber manufacturing line.

【図10】従来技術に係る偏肉測定を説明するための原
理図である。
FIG. 10 is a principle diagram for explaining thickness unevenness measurement according to the prior art.

【図11】従来技術に係る偏肉測定の原理を説明するた
めの説明図である。
FIG. 11 is an explanatory diagram for explaining the principle of thickness unevenness measurement according to the prior art.

【図12】従来技術に係る偏肉測定の問題点を示す説明
図である。
FIG. 12 is an explanatory diagram showing a problem with thickness unevenness measurement according to the prior art.

【符号の説明】[Explanation of symbols]

100  被覆光ファイバ 100a  ガラス部 100b  樹脂部 110  ビーム走査部 111  レーザ光源 112  遮閉板 113  レーザビーム 114  偏光板 120  受光部 121  イメージセンサ 122  検光子 130  制御部 100 Coated optical fiber 100a Glass part 100b Resin part 110 Beam scanning section 111 Laser light source 112 Shielding plate 113 Laser beam 114 Polarizing plate 120 Light receiving section 121 Image sensor 122 Analyzer 130 Control section

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  表面に少なくとも一層からなる被覆が
施された線状体の側面から、該線状体の長手方向に直交
する面の一半側面に光源からの光ビームを照射し、その
臨界反射光ならびに上記線状体を透過しなかった非透過
光の位置を検出する一方、他の半側面に光源からの光ビ
ームを照射し、その臨界反射光ならびに上記線状体を透
過しなかった非透過光の位置を検出し、偏肉の度合いを
測定することを特徴とする偏肉測定方法。
Claim 1: A light beam from a light source is irradiated from a side surface of a linear body whose surface is coated with at least one layer to one half side of a surface perpendicular to the longitudinal direction of the linear body, and the critical reflection is performed. While detecting the position of the light and the non-transmitted light that did not pass through the linear body, the other half side is irradiated with a light beam from the light source, and the critical reflected light and the non-transmitted light that did not pass through the linear body are detected. A thickness unevenness measuring method characterized by detecting the position of transmitted light and measuring the degree of thickness unevenness.
【請求項2】  請求項1記載の偏肉測定方法において
、光ビームが偏光された偏光光ビーム(P波)であるこ
とを特徴とする偏肉測定方法。
2. The uneven thickness measuring method according to claim 1, wherein the light beam is a polarized light beam (P wave).
【請求項3】  表面に少なくとも一層からなる被覆が
施された線状体の側面に対向して設けられ且つ該線状体
の長手方向に直交する面内で該線状体の一半側面に光ビ
ームを照射する一方、他の半側面に光ビームを照射する
光源部と、この光源部からの光ビームの線状体での臨界
反射光及び上記線状体を透過しなかった非透過光を受光
しその受光位置を検出する受光部と、これら受光光の検
出受光位置を処理して上記線状体の偏肉を求める処理部
とを具えたことを特徴とする偏肉測定装置。
3. Provided opposite to the side surface of a linear body whose surface is coated with at least one layer, and which illuminates one half side of the linear body in a plane perpendicular to the longitudinal direction of the linear body. A light source unit that irradiates a beam while irradiating a light beam to the other half side, and a light source unit that irradiates the light beam from the light source unit with critical reflected light on the linear body and non-transmitted light that did not pass through the linear body. A thickness unevenness measuring device comprising: a light receiving section that receives light and detects the light receiving position; and a processing section that processes the detected light receiving positions of the received light to determine the thickness unevenness of the linear body.
【請求項4】  表面に少なくとも一層からなる被覆が
施された線状体の側面から、該線状体の長手方向に直交
する面の一半側面に光源からの偏光光ビームを照射し、
その臨界反射光のみを検出し、偏肉の度合いを測定する
ことを特徴とする偏肉測定方法。
4. A polarized light beam from a light source is irradiated from a side surface of a linear body whose surface is coated with at least one layer to one half side of a surface perpendicular to the longitudinal direction of the linear body,
A thickness unevenness measuring method characterized by detecting only the critical reflected light and measuring the degree of thickness unevenness.
【請求項5】  表面に少なくとも一層からなる被覆が
施された線状体の側面に対向して設けられ且つ該線状体
の長手方向に直交する面内で該線状体側面からの偏光光
ビーム(P波)を照射する光ビーム光源部と、この偏光
光ビームの線状体での臨界反射光(S波)を受光しその
受光位置を検出する受光部と、これら検出した受光光の
受光位置を検出した後処理して上記線状体の偏肉を求め
る処理部とを具えたことを特徴とする偏肉測定装置。
5. Polarized light from the side surface of the linear body in a plane that is provided opposite to the side surface of the linear body whose surface is coated with at least one layer and that is perpendicular to the longitudinal direction of the linear body. A light beam light source unit that irradiates a beam (P wave), a light receiving unit that receives critical reflected light (S wave) of this polarized light beam on a linear body and detects the position of the received light, and a light receiving unit that receives the detected light beam. 1. A thickness unevenness measuring device comprising: a processing unit that detects a light receiving position and performs post-processing to determine the thickness unevenness of the linear body.
【請求項6】  請求項1,2及び4記載の偏肉測定方
法において、光ビームを照射する際に、線状体に被覆さ
れた被覆層の屈折率と屈折率が近似する屈折率を有する
液体を介して線状体側面から照射することを特徴とする
偏肉測定方法。
6. In the thickness unevenness measuring method according to claims 1, 2, and 4, when the light beam is irradiated, the refractive index of the coating layer that is coated on the linear body is similar to the refractive index of the coating layer. A method for measuring uneven thickness characterized by irradiating from the side of a linear body through a liquid.
【請求項7】  請求項1,2,4及び6記載の偏肉測
定方法において、光ビームを照射する際、線状体の長手
方向に直交する同一面の少なくとも2以上の方向から照
射することを特徴とする偏肉測定方法。
7. In the thickness unevenness measuring method according to claims 1, 2, 4, and 6, when irradiating the light beam, irradiation is performed from at least two or more directions on the same surface perpendicular to the longitudinal direction of the linear body. A method for measuring uneven thickness.
JP8671991A 1991-04-18 1991-04-18 Method and device for measuring eccentricity of coating Withdrawn JPH04319643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8671991A JPH04319643A (en) 1991-04-18 1991-04-18 Method and device for measuring eccentricity of coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8671991A JPH04319643A (en) 1991-04-18 1991-04-18 Method and device for measuring eccentricity of coating

Publications (1)

Publication Number Publication Date
JPH04319643A true JPH04319643A (en) 1992-11-10

Family

ID=13894690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8671991A Withdrawn JPH04319643A (en) 1991-04-18 1991-04-18 Method and device for measuring eccentricity of coating

Country Status (1)

Country Link
JP (1) JPH04319643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175641A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Manufacturing method of hollow fiber membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175641A (en) * 2005-12-28 2007-07-12 Mitsubishi Rayon Co Ltd Manufacturing method of hollow fiber membrane

Similar Documents

Publication Publication Date Title
DE69214342T2 (en) Method and device for measuring the condition of the coating of an optical fiber
US4743770A (en) Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US5432605A (en) Interferometric cylinder sizing and velocimetry device
CA2034162A1 (en) Method and apparatus for measuring the thickness of a coating
JPH01305340A (en) Method and apparatus for discriminating front and back
KR910000559A (en) Optical Fiber Coating Control Method
JPH04319643A (en) Method and device for measuring eccentricity of coating
US4363827A (en) Manufacture of concentric coatings for fiber waveguides
DE3543363A1 (en) DEVICE FOR MEASURING LIGHT SCATTERING
JP4492275B2 (en) Surface inspection device
CA2127477A1 (en) Non-contact measurement of displacement and changes in dimension of elongated objects such as filaments
JP3384927B2 (en) Transparent long body defect detection device
JPH0429401Y2 (en)
JPH0227242A (en) Surface defect detector for cable
JPH04319642A (en) Method and device for measuring eccentricity of coating
CA2030302C (en) Apparatus and method for determining elastic properties of optical fiber by contact area measurement
JP4637954B2 (en) Method for producing a strip having a plurality of parallel light guides
JP2929787B2 (en) Orientation measuring device for paper, non-woven fabric, etc.
CN113518892A (en) Method for measuring core diameter of plastic optical fiber, device for measuring core diameter of plastic optical fiber used for the method, method for detecting defect of plastic optical fiber, and device for detecting defect of plastic optical fiber used for the method
KR100344344B1 (en) Potable Nondestructive and Noncontact Optical Measurement System
JP3214416B2 (en) Image processing method for multi-core tape optical fiber, relative position detection method and detection device, image acquisition device and manufacturing method
JPH05107046A (en) Method and apparatus for measuring thickness deviation
JP3189378B2 (en) Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating
JPH04319641A (en) Eccentricity of coating measuring method
JPS60238737A (en) Uneven thickness detecting method of coating of optical fiber strand

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711