JPS59218749A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59218749A
JPS59218749A JP9372583A JP9372583A JPS59218749A JP S59218749 A JPS59218749 A JP S59218749A JP 9372583 A JP9372583 A JP 9372583A JP 9372583 A JP9372583 A JP 9372583A JP S59218749 A JPS59218749 A JP S59218749A
Authority
JP
Japan
Prior art keywords
wavelength
substrate
semiconductor
irradiation
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9372583A
Other languages
Japanese (ja)
Other versions
JPH0793351B2 (en
Inventor
Kensho Ito
憲昭 伊藤
Takeyoshi Nakayama
中山 斌義
Tatsuhiko Niina
新名 達彦
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9372583A priority Critical patent/JPH0793351B2/en
Publication of JPS59218749A publication Critical patent/JPS59218749A/en
Publication of JPH0793351B2 publication Critical patent/JPH0793351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to utilize for an electric isolation or an optical isolation by emitting a laser light having dosage of the degree which is equal to or shorter than the absorption end wavelength of a compound semiconductor in the wavelength and does not anneal the surface. CONSTITUTION:A P-N junction 2 is formed, for example, in the vicinity of the surface of a GaP crystalline substrate 1, a photoresist film 3 is covered on the surface of the substrate 1, and holes 4,... of the desired pattern are formed thereat. A pulse laser light 5 of 440nm of wavelength having, for example, 0.6mum of pulse width is emitted to the surface of the substrate 1 through the holes 4, and segregated layers 6,... of phosphorus are formed in the vicinity of the surface of the substrate 1 at this time. Such segregated layers of the P are near insulator and near black in color, the junction 2 is electrically isolated by the layers, and a light generated near the P-N junction is isolated.

Description

【発明の詳細な説明】 (イ〉 産業上の利用分野 本発明は、化合物半導体を用いたIC作製での電気的素
子分離やあるいはオブトエレクトロニクステハイス作製
での光のアイソレーション技術トして応用が可能である
[Detailed Description of the Invention] (A) Industrial Field of Application The present invention is applicable to electrical element isolation in the production of ICs using compound semiconductors or optical isolation technology in the production of electronic technology. Application is possible.

(U)従来技術 最近半導体テハイス作製のプロセス技術としてのレーザ
光を利用する傾向かたかまっている。即ち、81半導体
では、IC+LSI作製にイオン注入法を用いるが、イ
オン注入法により打込んだ不純物を活性化きせることを
目的とし、さらに打込んだ場合に発生ずる損傷層をアニ
ールして結晶性の回復を目的とする利用や、物理的、化
学的に発生した表面の欠陥を回復させることを目的とし
たり、あるいは、半導体表面に形成した非晶質をレーサ
アニールにより結晶化することを目的とし工レーザ光を
利用しようとする試みが進めしれている。これらは主に
レーザ光のもつ熱エネルギーを利用してアニール効果を
もたらし、デバイスに適用できる半導体表面を作製しよ
うとするのがねらいである。
(U) Prior Art Recently, there has been a growing trend to utilize laser light as a process technology for manufacturing semiconductor technology. That is, in 81 semiconductors, ion implantation is used to fabricate IC+LSI, but the purpose is to activate the impurities implanted by the ion implantation method, and to anneal the damaged layer that occurs during implantation to improve crystallinity. It is used for the purpose of recovery, for the purpose of recovering physically or chemically generated surface defects, or for the purpose of crystallizing amorphous formed on the semiconductor surface by laser annealing. Attempts are underway to utilize laser light. These methods mainly utilize the thermal energy of laser light to produce an annealing effect, with the aim of producing semiconductor surfaces that can be used in devices.

しかしなから、最近では、レーザ光のアニール効果の利
用だけでなく、レーザ光照射によって起る特殊な現象を
積極的に利用して行こうとする試みも進められている。
Recently, however, attempts have been made not only to utilize the annealing effect of laser light, but also to actively utilize special phenomena caused by laser light irradiation.

たとえは半導体表面にその半導体の吸収端エネルギーに
相当するエネルギー(波長)をもつレーザ光を照射し、
通常照射により起るアニール効果を生むに必要なジュー
ル熱量よ杓はるかに小さな熱量でも、レーザ光照射を受
けた半導体表面から母体材料元素がスパッタリングされ
る現象がみつけ出され、この現象を利用して半導体表面
の元素の検定をイjなったり、ヘデロ接合での接合近傍
に混晶層を形成しょうきする試みがなされている。この
様に半導体へのレーザ光の照射により、従来では考えら
れない様な新らしい現象が見い出され、その現象を利用
したデバイス作製が行なわれようとしている。
For example, a semiconductor surface is irradiated with a laser beam with an energy (wavelength) corresponding to the absorption edge energy of the semiconductor,
It has been discovered that the host material element is sputtered from the semiconductor surface irradiated with laser light even with a much smaller amount of Joule heat than the amount of Joule heat required to produce the annealing effect that occurs with normal irradiation. Attempts have been made to improve the detection of elements on the semiconductor surface and to form a mixed crystal layer near the hederojunction. As described above, by irradiating semiconductors with laser light, new phenomena that were previously unimaginable have been discovered, and devices that utilize these phenomena are being manufactured.

(ハ)発明の目的 本発明はレーザ光照射による新たな現象の発見により、
この現象を利用した新たなデバイス作製技術の発明に係
るもので、IC作製での電気的素子分離や、オプトエレ
クトロニクスデバイスへの光のアイソし一ンヨンなどに
利用しようとするものである。
(c) Purpose of the invention The present invention is based on the discovery of a new phenomenon caused by laser beam irradiation.
This invention involves the invention of a new device manufacturing technique that utilizes this phenomenon, and is intended to be used for electrical element isolation in IC manufacturing and for isolating light to optoelectronic devices.

く二)発明の構成 本発明による半導体装置の製造方法は、波長が化合物半
導体の吸収端波長に等しいか、又はそれより短かく、か
つ上記半導体表面をアニールしない程度の線量をもっし
〜ザ光を、上記半導体表面に照射することにより、上記
半導体のN材となる元素の1′)で構成される偏析層を
上記半導体表面付近に形成側ることを特徴とする。
2) Structure of the Invention The method for manufacturing a semiconductor device according to the present invention is characterized in that the wavelength is equal to or shorter than the absorption edge wavelength of a compound semiconductor, and the radiation dose is such that the semiconductor surface is not annealed. By irradiating the surface of the semiconductor, a segregation layer composed of 1'), an element that becomes the N material of the semiconductor, is formed near the surface of the semiconductor.

本発明の基礎となる新規な現象につき以ト説明する。The novel phenomenon that forms the basis of the present invention will now be explained.

第1図はGaP(燐化カリウム)表面にパルスレーザ光
を照射した場合の、レーザ光の/ζルス幅のちがいによ
るGaP表面に形成される偏析層をバックスキャタリン
グ法をもちいて調−・たものである。パルスレーザ光の
照射方法として、同図(a)はレーザ光波長が440n
mで、パルス幅が0.6〃s、同図(b)はレーザ光波
長は同じでパルス幅を15n sと変えたものである。
Figure 1 shows that when a GaP (potassium phosphide) surface is irradiated with pulsed laser light, the segregation layer formed on the GaP surface due to the difference in the /ζ las width of the laser light is investigated using the backscattering method. It is something that As for the pulsed laser beam irradiation method, the laser beam wavelength is 440n in the figure (a).
m, the pulse width is 0.6 s, and in the same figure (b), the laser beam wavelength is the same but the pulse width is changed to 15 ns.

レーザ光照射での全熱量は1.8J cm−”であると
して、パルス幅を変えるには尖頭値つまりピークパワー
を変えている。単純に考えると、0.6μSと15ns
ではビークパワーは15r1gの場合は0.6μsのも
のにくらべて40倍程度大きい。
Assuming that the total heat amount in laser beam irradiation is 1.8 J cm-'', the peak value, or peak power, is changed to change the pulse width.If you think about it simply, it is 0.6 μS and 15 ns.
In the case of 15r1g, the beak power is about 40 times larger than that of 0.6 μs.

この様な条件の下で、GaP表面にレーザ光を照射する
前と後とでの固体表面のちがいをハンクスキャタリング
法を用いと調べると第1図(a)での実線及び破線は照
射ITijのランダムスペクトル及びチヘ・ンネリング
スベクトルくアラインドスベクトルンを示し、白丸及び
黒丸は照射後のランダムスペクト几及びチャンネリング
スペクトルを示し−〔いる。まずう/クムスペクトルに
ついて注目してみると、照射前のランダムスペクトルで
はGa元素によ−っ−C敗散乱れ生じるGaスペクトル
の位置(J約1.2MeVで、P元素によって散乱され
生じるPスペクトルの位置は約1.05MeVであるが
、レーづ光照射後にはGaスペクトルの位置は低エネル
キーイ則へのンノトがみられるのに対し、Pスペクトル
の位置は変化していない。Gaスペクトル、Pスペクト
ルいずれもGaP表面近傍では照射前に比へてピークの
存在がみられる。これらのことより、レーザ光照射によ
りGaP表面のごく表面近傍てはPか過剰な層が形成さ
れ、さらにその奥−(2はGaか過剰な層が形成されて
いることが分かる。−方チャンネリングスペクトルをみ
ると、レーザ光照射後のチャンネリングスペクトルの高
さは照射前にくらべてかなり高くなっている。これはG
aP表面層に形成された濾過剰層、Ga過剰層はレーザ
光照射により損傷を受(す結晶性が乱れていることを示
している。
Under these conditions, the difference in the solid surface before and after irradiating the GaP surface with laser light was investigated using the Hanks scattering method. The random spectrum and aligned vector are shown, and the white and black circles represent the random spectrum and channeling spectrum after irradiation. First, if we pay attention to the Kumu/Kum spectrum, in the random spectrum before irradiation, the position of the Ga spectrum caused by -C loss scattering by the Ga element (J is approximately 1.2 MeV, and the P spectrum caused by scattering by the P element The position of is approximately 1.05 MeV, but after laser irradiation, the position of the Ga spectrum shifts to the low-energy Keyey law, whereas the position of the P spectrum remains unchanged.Ga spectrum, P spectrum In both cases, a peak is seen near the GaP surface compared to before irradiation.From these results, an excessive P layer is formed near the very surface of the GaP surface due to laser light irradiation, and further below - ( It can be seen that an excessive Ga layer is formed in No. 2. Looking at the - side channeling spectrum, the height of the channeling spectrum after laser beam irradiation is considerably higher than before irradiation. G
The excessive filtration layer and the excessive Ga layer formed on the aP surface layer are damaged by laser light irradiation, indicating that their crystallinity is disturbed.

これに対し、第1図(b)における、15nsのパルス
幅をもつレーザ光照射の場合は、ランダムスペクトルは
照射前(実線)と照射後〈白丸)とては変化はみられな
い。チャンネリングスペクトルは照射前(破線)に比べ
て照射後(黒丸〉は少し高くなっている。これはレーザ
光照射により多少損傷を受は結晶性が十分に回復される
に至っていないことを示しているものの、0.6μsの
パルスレーザ光j(θ射に比へ、結晶がアニールされて
いることは明らかである。この様にレーザ光を照射する
場合、ビークパワーの大きなレーザ光で固体表面を照射
針ると照射による損傷の発生と同時にアニールが生し結
晶性の回復がもたらされるが、ピークパワーの小さな比
較的パルス幅の大きいレーザ光を照射すると固体表面に
は母体材料元素の偏析が生じる。Gap、GaAs(砒
化ガリウム)、Ink<燐化インジウム〉等の■−■化
合物半導体において、上記偏析か生じるためのレーザ照
射線量は09〜2、OJcm−”か適当である。又レー
ザ光の波長は、化合物半導体の吸収端波長に等しいり)
、それより短かくなければならず、そうでなげれはレー
デ光は半導体中を吸収されずに透過丈る。
On the other hand, in the case of laser beam irradiation with a pulse width of 15 ns in FIG. 1(b), no change is observed in the random spectrum between before irradiation (solid line) and after irradiation (white circles). The channeling spectrum is slightly higher after irradiation (black circle) than before irradiation (dashed line). This indicates that the crystallinity has not been fully recovered even though it has been slightly damaged by laser light irradiation. However, it is clear that the crystal is annealed compared to the 0.6 μs pulsed laser beam j (θ radiation).When irradiating laser beams in this way, the solid surface is When the irradiation needle is damaged by irradiation, annealing occurs and crystallinity is restored at the same time, but when irradiated with a laser beam with a small peak power and a relatively large pulse width, segregation of host material elements occurs on the solid surface. In ■-■ compound semiconductors such as Gap, GaAs (gallium arsenide), and Ink (indium phosphide), the laser irradiation dose to cause the above segregation is 09 to 2, OJcm-'' or an appropriate amount. The wavelength is equal to the absorption edge wavelength of the compound semiconductor)
, it must be shorter than that, so that the Rede light can pass through the semiconductor without being absorbed.

(ポ)実施例 第2図乃至第4図は、本発明を用いて、電気的及び光学
的分離をなす実施例を工程別に示している。第2図の工
程では、GaP結晶基板(1)の表面(−1近にP N
接合く2〉が形成きれる。この接合は、例えは発光機能
等、半導体装置の機能」−必要なものであり、その表面
からの深きは数千人〜1μmである。第3図の工程では
、基板〈1)の表面にフォトレジスト膜(3)を被着し
、それに所望パターンの開口(4ン(4)・・が形成さ
れる。第4図の工程では、上記開口(4>(4)・を介
して基板(1)の表面に0.6μsのパルス幅をもつ4
40nm波長のパルスレーザ光(5)が1回照射され、
このとき、基板(1)の表面近くに、P(燐)の偏析、
i#(6)(6)・ ができる。斯るPの偏析層は絶縁
体に近く、又黒色に近いものであり、よって、偏析層(
6)、、(6)  によりPN接合(2)か電気的に分
離され、又PN接合近傍で発生4゛る光も分離される。
(P) Embodiment FIGS. 2 to 4 show an embodiment in which electrical and optical separation is achieved using the present invention, step by step. In the process shown in Fig. 2, P N
The joint 2〉 is completed. This junction is necessary for a semiconductor device's function, such as a light emitting function, and its depth from the surface is several thousand to 1 μm. In the step shown in FIG. 3, a photoresist film (3) is deposited on the surface of the substrate (1), and openings (4) in a desired pattern are formed therein.In the step shown in FIG. 4 with a pulse width of 0.6 μs to the surface of the substrate (1) through the above opening (4>(4)).
A pulsed laser beam (5) with a wavelength of 40 nm is irradiated once,
At this time, near the surface of the substrate (1), segregation of P (phosphorus),
i#(6)(6)・ Can be done. This P segregation layer is close to an insulator and is close to black in color, so the segregation layer (
6), (6) electrically isolates the PN junction (2), and also isolates the light generated near the PN junction.

L記実施例では、偏析層(6)は電気的分離と光学的分
離の両方に利用されたか、場合により、何れか−フjの
みが利用される。
In the example L, the segregation layer (6) was used for both electrical isolation and optical isolation, or in some cases only one or the other was used.

(へ)発明の効果 本発明によれは、レーザ照射により′11fI屯に、半
導体装置における電気的分離や、光学的分離を行なうこ
とができる。
(f) Effects of the Invention According to the present invention, electrical isolation and optical isolation in a semiconductor device can be performed to a high degree by laser irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザ照射効果を示す曲線図、第2図乃至第4
図は本発明実施例を示す製造T程別団面図である。 (1)・ GaP結晶基板、(6)・・偏析層。 第1図 C)9    1.Ot+     12energy
/ Mev ((1) 1.0     1112 energy/ tvleV (b)
Figure 1 is a curve diagram showing the laser irradiation effect, Figures 2 to 4
The figure is a group view of a manufacturing process showing an embodiment of the present invention. (1)・GaP crystal substrate, (6)・・Segregation layer. Figure 1 C) 9 1. Ot+ 12 energy
/ Mev ((1) 1.0 1112 energy/ tvleV (b)

Claims (1)

【特許請求の範囲】[Claims] (1)波長が化合物半導体の吸収端波長に等しいか、又
はそれより短かく、かつ上記半導体表面をアニールしな
い程度の線量をもっレーザ光を、上記半導体表面に照射
することにより、上記半導体のN材となる元素の1つで
構成きれる偏析層を上記半導体表面付近に形成すること
を特徴とする半導体装置の製造方法。
(1) By irradiating the semiconductor surface with a laser beam whose wavelength is equal to or shorter than the absorption edge wavelength of the compound semiconductor and with a dose that does not anneal the semiconductor surface, A method for manufacturing a semiconductor device, characterized in that a segregation layer made of one of the elements serving as a material is formed near the surface of the semiconductor.
JP9372583A 1983-05-26 1983-05-26 Method for manufacturing semiconductor device Expired - Lifetime JPH0793351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9372583A JPH0793351B2 (en) 1983-05-26 1983-05-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9372583A JPH0793351B2 (en) 1983-05-26 1983-05-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS59218749A true JPS59218749A (en) 1984-12-10
JPH0793351B2 JPH0793351B2 (en) 1995-10-09

Family

ID=14090384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9372583A Expired - Lifetime JPH0793351B2 (en) 1983-05-26 1983-05-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0793351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187838A (en) * 1988-01-22 1989-07-27 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187838A (en) * 1988-01-22 1989-07-27 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH0793351B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
Woerdman Formation of a transient free carrier hologram in Si
US7390689B2 (en) Systems and methods for light absorption and field emission using microstructured silicon
CN103843147B (en) High-throughput laser ablation methods and structure for forming contact hole in solar cells
JPS5823479A (en) Manufacture of semiconductor device
CN103476555A (en) A method of generating a high quality hole or recess or well in a substrate
US4319119A (en) Process for gettering semiconductor components and integrated semiconductor circuits
EP0207528B1 (en) Process of producing a photomask
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
JPS5935489A (en) Manufacture of photo semiconductor device
JPS59218749A (en) Manufacture of semiconductor device
KR101162444B1 (en) Method for heating a plate with a light stream
JPS5856481A (en) Germanium photodetector
JPS6018913A (en) Manufacture of semiconductor device
FR2784794A1 (en) Electronic structure, especially an IC chip, has an insulating support formed by particle irradiation of a semiconductor wafer
JP2000077350A (en) Power semiconductor device and manufacture thereof
JPS5833822A (en) Preparation of semiconductor substrate
JPS582449B2 (en) Control method for minority carrier diffusion length
JPS60182132A (en) Manufacture of semiconductor device
JP6922851B2 (en) How to form a gettering layer
JPH0376169A (en) Manufacture of electronic device using diamond
JPS5897837A (en) Light irradiation annealing method and device therefor
JPH0425116A (en) Manufacture of semiconductor device
JPS5835931A (en) Manufacture of wafer and semiconductor device
JPH0541359A (en) Removal method of ion shock damage
JPS61163635A (en) Semiconductor impurity doping device