JPS59217327A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59217327A
JPS59217327A JP9265783A JP9265783A JPS59217327A JP S59217327 A JPS59217327 A JP S59217327A JP 9265783 A JP9265783 A JP 9265783A JP 9265783 A JP9265783 A JP 9265783A JP S59217327 A JPS59217327 A JP S59217327A
Authority
JP
Japan
Prior art keywords
layer
film
polycrystalline silicon
wiring layer
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9265783A
Other languages
Japanese (ja)
Inventor
Akira Kurosawa
黒沢 景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9265783A priority Critical patent/JPS59217327A/en
Publication of JPS59217327A publication Critical patent/JPS59217327A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Abstract

PURPOSE:To make it feasible to obtain a reliable contact between a diffused layer and electrode or the like on one hand and a wiring layer on the other and form the wiring layer with a high reliability regarding even a minute contact hole by forming a metal wiring layer on the diffused layer and electrode layer through a polycrystalline silicon film. CONSTITUTION:A polycrystalline film 6 is deposited on the entire surface of a layer 4 including a diffused layer 3. An N type impurity is implanted into the polycrystalline silicon film 6, for instance, by an ion implantation method. Then, a heat treatment is carried out in an N2 atmosphere, whereby, at least, a part of the N type impurity existing in the polycrystalline silicon film 6 is diffused into the diffused layer 3 through a contact hole 5. In addition, a tungsten film 7 is formed, which is defined as a vapor phase growth, on the entire surface of the polycrystalline silicon 6 by employing, for example, a mixture gas of WF6 gas and H2 gas. The tungsten film 7 and polycrystalline silicon film 6 are formed into a desired pattern, thereby to form a first wiring layer. Thereafter, an insulating layer 8 is deposited on the entire surface of the tungsten film 7 and the surface thereof is flatened, thereby forming a contact hole by availing a conventional lithographic technique. A second wiring layer is formed of an A alloy film 9 on the region which includes a part of the insulating layer and the contact hole therein. With this constitution, the first wiring layer is formed of the tungsten film 7, there is therefore no occurrence of irregularities formed by hillocks on the surface thereof. Owing to this, it is made easier to level the surface of the insulating film 8, which fact contributes the high reliability of the second wiring layer.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、半導体装置の製造方法に係わり、特に金属材
料からなる配線層と拡散層や電極層等とのコンタクトの
改良をはかった半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device in which contact between a wiring layer made of a metal material and a diffusion layer, an electrode layer, etc. is improved. Regarding the manufacturing method.

[発明の技術的背景とその問題点] 従来、半導体基板表面に形成された拡散層と金属材料か
らなる配線層とを電気的に導通させるには次のようにし
ている。すなわち、上記基板上に絶縁膜を堆積し、電気
的な導通を必要とする部分の絶縁膜をエツチング除去し
て開口部(コンタクトホール)を設け、一般にはAI膜
を配線材料として配線層を形成することにより、上記コ
ンタクトホールを介して拡散層との電気的な導通を得て
いた。
[Technical Background of the Invention and Problems Therewith] Conventionally, electrical continuity between a diffusion layer formed on the surface of a semiconductor substrate and a wiring layer made of a metal material has been carried out as follows. That is, an insulating film is deposited on the substrate, and openings (contact holes) are formed by etching away parts of the insulating film that require electrical conduction, and a wiring layer is generally formed using an AI film as a wiring material. By doing so, electrical continuity with the diffusion layer was obtained through the contact hole.

しかしながら、A1膜を用いた上記配線層形成技術には
、次のような問題があった。すなわち、A1膜を上記コ
ンタクトホールを介して拡散層上に形成したのち、45
0[’C]前後の熱処理(シンター処理)を行うと、A
1が該拡散層中を拡散し、遂には拡散層の外へ出てしま
い(つきぬけ現象と呼ばれる)オーミンクなコンタクト
が得られなくなる。このつきぬけ現象は、AI中にシリ
コンを数[%]加えることにより、大幅に抑えることが
できるが、拡散層が浅くなり0.2[μm]以下になる
と、シリコン入りA1でもつきぬけ現象がみられるよう
になり、コンタクト部での歩留りが著しく低下する。さ
らに、コンタクトボールの幅が2.0[μm]以下にな
るとA1膜は十分コン、     タクトホールに入ら
ず、コンタクトホールの側面でA1膜が薄くなったり断
線してしまう虞れがある。このため、配線の信頼性が著
しく低下してしまう。
However, the above wiring layer forming technology using the A1 film has the following problems. That is, after forming the A1 film on the diffusion layer through the contact hole,
When heat treatment (sinter treatment) is performed around 0 ['C], A
1 diffuses in the diffusion layer and eventually comes out of the diffusion layer (called a penetration phenomenon), making it impossible to obtain an ohmink contact. This penetration phenomenon can be significantly suppressed by adding a few percent of silicon to AI, but when the diffusion layer becomes shallow and becomes less than 0.2 [μm], penetration phenomenon can be seen even with silicon-containing A1. As a result, the yield of the contact portion is significantly reduced. Furthermore, if the width of the contact ball is less than 2.0 [μm], the A1 film will not fit into the contact hole sufficiently, and there is a risk that the A1 film will become thin or break on the side of the contact hole. As a result, the reliability of the wiring is significantly reduced.

また、上記拡散層上に形成した絶縁膜表面に凹凸がある
と、その上に形成したA1膜は凹凸部の側面で膜厚が薄
くなったり、断線したりして、やはり配線の信頼性が低
下する。さらに、配線を高集積化するため2層以上の多
層に配線層を形成する場合、1層目にA1膜を用いると
AI膜表面にヒロックが発生し、このヒロックによるA
1膜表面の凹凸が2層目から上の配線層の信頼性を低下
させると云う問題があった。なお、上述した問題は配線
層と拡散層とのコンタクトに限らず、配線層と電極層と
のコンタクトについても同様に云えることである。
Furthermore, if the surface of the insulating film formed on the diffusion layer is uneven, the thickness of the A1 film formed thereon will become thinner or breakage will occur on the side surfaces of the uneven parts, which will also reduce the reliability of the wiring. descend. Furthermore, when forming wiring layers in multiple layers of two or more to achieve high integration, if an A1 film is used as the first layer, hillocks will occur on the surface of the AI film, and these hillocks will cause
There is a problem in that unevenness on the surface of one film reduces the reliability of the second and upper wiring layers. Note that the above-mentioned problem is not limited to the contact between the wiring layer and the diffusion layer, but also applies to the contact between the wiring layer and the electrode layer.

[発明の目的コ 本発明の目的は、拡散層や電極層等と配線層とのコンタ
クトを確実に行うことができ、微細なコンタクトホール
でも高い信頼性で配線層を形成し得る半導体装置の製造
方法を提供することにある。
[Purpose of the Invention] The purpose of the present invention is to manufacture a semiconductor device that can reliably make contact between a diffusion layer, an electrode layer, etc. and a wiring layer, and can form a wiring layer with high reliability even in a minute contact hole. The purpose is to provide a method.

[発明の概要] 本発明の骨子は、拡散層や電極層等の上に多結晶シリコ
ン膜を介して金属配線層を形成することにある。
[Summary of the Invention] The gist of the present invention is to form a metal wiring layer on a diffusion layer, an electrode layer, etc. via a polycrystalline silicon film.

すなわち本発明は、拡散層や電極層等と配線層とのコン
タクトをとって半導体装置を製造する方法において、不
純物を含んだ拡散層若しくは半導体電極層が形成された
半導体基板上に絶縁膜を堆積したのち、この絶縁膜を選
択エツチングしてコンタクトホールを形成し、次いで全
面に上記不純物と同導電形の不純物を含む多結晶シリコ
ン族を堆積し、次いで熱処理により上記多結晶シリコン
膜から上記拡散層若しくは電極層に上記不純物を拡散さ
せ、次いで上記多結晶シリコン膜の表面の一部とメタル
のハロゲン化物とを反応させ該表面上に金属膜を堆積し
、しかるのち上記金属膜及び多結晶シリコン膜をパター
ンニングするようにした方法である。
That is, the present invention provides a method for manufacturing a semiconductor device by making contact between a diffusion layer, an electrode layer, etc. and a wiring layer, in which an insulating film is deposited on a semiconductor substrate on which a diffusion layer or a semiconductor electrode layer containing impurities is formed. After that, this insulating film is selectively etched to form a contact hole, and then a polycrystalline silicon group containing an impurity of the same conductivity type as the impurity is deposited on the entire surface, and then heat treatment is performed to remove the diffusion layer from the polycrystalline silicon film. Alternatively, the impurity is diffused into the electrode layer, and then a part of the surface of the polycrystalline silicon film is reacted with a metal halide to deposit a metal film on the surface, and then the metal film and the polycrystalline silicon film are deposited on the surface. This is a method of patterning.

[発明の効果コ 本発明方法によれば、多結晶シリコン膜から拡散層や電
極層等に不純物を拡散したのち、抵抗値の低いメタル、
代表的にはタングステン(W)を気相成長@で堆積して
1層目の金属配線を形成しているので、従来問題となっ
た拡散層へのつき抜は現象は全く見られない。すなわち
、タングステン等の金属はシリコン中をほとんど拡散し
ないため、拡散層のつきぬけ現象を確実に防止すること
ができる。しかも、気相成長法で金属膜を堆積するため
シンタ一工程が不要になる。また、コンタクトホールが
拡散層上からずれて、半導体基板が露出しても、多結晶
シリコン膜からコンタクトホールを介、して不純物が拡
散されるため、配線層と拡散層とのコンタクト不良は起
こらない。さらに、タングステン等の金属膜を゛気相成
長法で堆積しているため、狭いコンタクトホールでも金
属膜が十分入り込み、コンタクトホール側面で配線層が
薄くなったり断線してしまう虞れがなく、配線の信頼性
向上をはかり得る。同様に、拡散層及び電極層上に形成
した絶縁膜表面の凹凸部でも上記金属膜は均一に堆積さ
れ、やはり、配線の信頼性を向上させることができる。
[Effects of the Invention] According to the method of the present invention, after impurities are diffused from a polycrystalline silicon film into a diffusion layer, an electrode layer, etc., a metal having a low resistance value,
Typically, tungsten (W) is deposited by vapor phase growth @ to form the first layer metal wiring, so the phenomenon of penetration into the diffusion layer, which has been a problem in the past, is not observed at all. That is, since a metal such as tungsten hardly diffuses in silicon, the penetration phenomenon of the diffusion layer can be reliably prevented. Furthermore, since the metal film is deposited using a vapor phase growth method, a sintering step is not necessary. Furthermore, even if the contact hole is shifted from above the diffusion layer and the semiconductor substrate is exposed, impurities will be diffused from the polycrystalline silicon film through the contact hole, so contact failure between the wiring layer and the diffusion layer will not occur. do not have. Furthermore, since the metal film such as tungsten is deposited using the vapor phase growth method, the metal film can fully penetrate into even narrow contact holes, eliminating the risk of thinning or disconnection of the wiring layer on the side of the contact hole. The reliability of the system can be improved. Similarly, the metal film is deposited uniformly even on the uneven portions of the surface of the insulating film formed on the diffusion layer and the electrode layer, and the reliability of the wiring can also be improved.

また、タングステン等の金属膜表面にはとOツりが発生
しないため、ヒロックによる凹凸がなく、2層目以降配
線の形成が容易になり、多層配線の信頼性向上にも有効
である。
In addition, since no warping occurs on the surface of a metal film such as tungsten, there is no unevenness due to hillocks, making it easier to form wiring in the second and subsequent layers, and is effective in improving the reliability of multilayer wiring.

[発明の実施例] 以下、本発明を図示の実施例によって詳細に説明する。[Embodiments of the invention] Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図(a )〜(f)は本発明の一実施例に係わる半
導体装置製造工程を示す断面図である。まず、第1図(
a)に示す如くp型シリコン基板1の表面の一部に厚い
酸化膜2を埋め込み、この酸化膜2で囲まれた領域にn
型不純物をドープして拡散層3を形成する。次いで、第
1図(b)に示す如<CVD酸化膜4を全面に堆積し、
通常のりソゲラフイー技術を用いてコンタクトホール5
を開口する。その後、第1図(C)に示す如く全面に1
000 [A ]程度の膜厚を持つ多結晶シリコン膜6
を堆積し、例えばイオン注入法でこの多結晶シリコン膜
6に1X10  [am  ]程度n型不純物を注入す
る。ここで、上記イオン注入の代りに、? 予めn型不純物が含まれている多結晶シリコン膜を堆積
してもよいのは勿論のことである。
FIGS. 1(a) to 1(f) are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. First, Figure 1 (
As shown in a), a thick oxide film 2 is embedded in a part of the surface of a p-type silicon substrate 1, and an n
A diffusion layer 3 is formed by doping type impurities. Next, as shown in FIG. 1(b), a CVD oxide film 4 is deposited on the entire surface.
Contact hole 5 using normal glue sogerafy technique
Open. After that, as shown in Figure 1(C),
Polycrystalline silicon film 6 having a film thickness of about 000 [A]
is deposited, and an n-type impurity of about 1×10 [am] is implanted into this polycrystalline silicon film 6 by, for example, ion implantation. Now, instead of the above ion implantation,? Of course, a polycrystalline silicon film containing n-type impurities may be deposited in advance.

次いで、例えば1000[℃]N  雰囲気中で熱処理
を施す。これによりコンタクトホール6を介して多結晶
シリコン膜6中のn型不純物は拡散層3中に少なくとも
一部が拡散する。
Next, heat treatment is performed at, for example, 1000 [° C.] in a N2 atmosphere. As a result, at least a portion of the n-type impurity in the polycrystalline silicon film 6 is diffused into the diffusion layer 3 via the contact hole 6.

次に、第1図(d )に示す如く全面に、たとえばWF
a  ガスとH2ガスとの混合ガスを用いてタングステ
ン膜(金属膜)7を気相成長させる。このとき、多結晶
シリコン膜6表面のシリコンも一部反応するため、タン
グステン膜7は全面に非常に均一性良く堆積される。ま
た、気相成長法でタングステン膜7を堆積するため、タ
ングステン膜7は狭いコンタクトホール5の中にも十分
入り込み、コンタクトホール5の側面で膜厚が薄くなっ
たり切れたりすることはない。しかも、タングステンは
、シリコン中をほとんど拡散しないので、所謂拡散層の
つきぬけ現象はみられない。また、気相成長法で堆積す
るため、その後のシンター処理も不要になる。さらに、
絶縁膜4の表面に凹凸があってもタングステン膜7は均
一に堆積するので、配線の信頼性は著しく向上する。次
に、第1図(e)に示す如くタングステン膜7及び多結
晶シリコン膜6を所望パターンにパターンニングして1
層目の配線層を形成する。次いで、第1図<f )に示
す如く全面に絶縁膜8を堆積し表面を平坦にしたのち、
通常のリソグラフィー技術を用いてコンタクトボールを
形成し、その上に2層目の配線をA1合金膜9で形成す
る。
Next, as shown in FIG. 1(d), the entire surface is coated with, for example, WF.
a. A tungsten film (metal film) 7 is grown in a vapor phase using a mixed gas of gas and H2 gas. At this time, a portion of the silicon on the surface of the polycrystalline silicon film 6 also reacts, so that the tungsten film 7 is deposited over the entire surface with very good uniformity. Further, since the tungsten film 7 is deposited by a vapor phase growth method, the tungsten film 7 fully penetrates into the narrow contact hole 5, and the film does not become thinner or break on the side surface of the contact hole 5. Moreover, since tungsten hardly diffuses in silicon, the so-called diffusion layer penetration phenomenon is not observed. Furthermore, since the film is deposited using a vapor phase growth method, subsequent sintering is not necessary. moreover,
Since the tungsten film 7 is deposited uniformly even if the surface of the insulating film 4 is uneven, the reliability of the wiring is significantly improved. Next, as shown in FIG. 1(e), the tungsten film 7 and the polycrystalline silicon film 6 are patterned into a desired pattern.
A third wiring layer is formed. Next, as shown in FIG.
A contact ball is formed using a normal lithography technique, and a second layer of wiring is formed thereon using an A1 alloy film 9.

かくして本実施例方法によれば、1層目の配線層をタン
グステン膜7で形成しているので、表面にヒロックによ
る凹凸が発生しない。このため、絶縁膜8の平坦化が容
易になり、2層目配線の信頼性が著しく向上する。本発
明者等の実験によれば、上記方法を用いて1層目の配線
でダイナミックRAMのヒラ1〜線を形成し、2層目の
配線でワード線を形成したところ、コンタクト部におけ
る配線の信頼性が著しく向上し、その結果ダイナミック
RAMの歩留りが著しく向上するのが判明しIこ 。
Thus, according to the method of this embodiment, since the first wiring layer is formed of the tungsten film 7, unevenness due to hillocks does not occur on the surface. Therefore, the insulating film 8 can be easily flattened, and the reliability of the second layer wiring is significantly improved. According to experiments conducted by the inventors, when using the above-mentioned method to form the filler 1 to lines of a dynamic RAM using the first layer of wiring and forming the word line using the second layer of wiring, it was found that the wiring at the contact portion was It has been found that the reliability is significantly improved and, as a result, the yield of dynamic RAM is significantly improved.

第2図は前記第1図(d )に示すエツチング工程にお
いて、コンタクトホール5が拡散層3からずれてしまい
分離領域の埋め込み酸化膜2を一部エッチングしてしま
った状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which the contact hole 5 is displaced from the diffusion layer 3 and the buried oxide film 2 in the isolation region is partially etched in the etching process shown in FIG. 1(d). .

この場合、従来のようにA1膜を堆積すると、Al膜は
基板1と直接接続してしまいコンタクト不良を起す。し
かし、第2図に示すように本実施例方法を用いれば多結
晶シリコン膜6から0型不純物がコンタクトホール5を
介して基板1中に再拡散されるため、基板シリコンが露
出していた領域10にも不純物が拡散される。その結果
、コンタクト不良の発生が未然に防止されるとになる。
In this case, if the Al film is deposited as in the conventional method, the Al film will be directly connected to the substrate 1, causing contact failure. However, as shown in FIG. 2, if the method of this embodiment is used, the type 0 impurity from the polycrystalline silicon film 6 is re-diffused into the substrate 1 through the contact hole 5, so the area where the substrate silicon was exposed Impurities are also diffused into 10. As a result, occurrence of contact failure can be prevented.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記多結晶シリコン膜にドーピングする不
純物はn型に限るものではなく、前記拡散層の不純物と
同導電型であればよい。さらに、前記配線層の形成材料
はタングステンに限るものではなく、モリブデンその他
の金属膜を用いることができる。また、配線層と拡散層
とのコンタクトに限らず、配線層と電極層とのコンタク
トに適用2することも可能である。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施することがで
きる。
Note that the present invention is not limited to the embodiments described above. For example, the impurity doped into the polycrystalline silicon film is not limited to n-type, but may be of the same conductivity type as the impurity of the diffusion layer. Furthermore, the material for forming the wiring layer is not limited to tungsten, and molybdenum or other metal films can be used. Further, the present invention can be applied not only to contact between a wiring layer and a diffusion layer but also to a contact between a wiring layer and an electrode layer. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f )は本発明の一実施例方法を説明
するための工程断面図、第2図は同実施例の効果を説明
するための断面図である。 1・・・p型シリコン基板、2・・・埋め込み酸化膜、
3・・・拡散層、4・・・CVD絶縁膜、5・・・コン
タクトホール、6・・・多結晶シリコン膜、7・・・タ
ングステンjl (金属膜)、8・・・絶縁膜、9・・
・AI膜。 出願人代理人 弁理士 鈴江武彦 第1図 第1図 第2図
FIGS. 1(a) to 1(f) are process cross-sectional views for explaining a method according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view for explaining the effects of the same embodiment. 1...p-type silicon substrate, 2...buried oxide film,
3... Diffusion layer, 4... CVD insulating film, 5... Contact hole, 6... Polycrystalline silicon film, 7... Tungsten jl (metal film), 8... Insulating film, 9・・・
・AI membrane. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)不純物を含んだ拡散層若しくは半導体電極層が形
成された半導体基板上に絶縁膜を堆積する工程と、上記
絶縁膜を選択エツチングしてコンタクトホールを形成す
る工程と、次いで全面に上記不純物と同導電型の不純物
を含む多結晶シリコン膜を堆積する工程と、次いで熱処
理を施し上記多結晶シリコン膜から前記拡散層若しくは
電極層に上記不純物を拡散する工程と、次いで上記多結
晶シリコン膜の表面の一部とメタルのハロゲン化物とを
反応させ該表面上に金属膜を堆積する工程と、次いで上
記金属膜及び多結晶シリコン膜をバターニングする工程
とを具備したことを特徴とする半導体装置の製造方法。
(1) A step of depositing an insulating film on a semiconductor substrate on which a diffusion layer or a semiconductor electrode layer containing impurities has been formed, a step of selectively etching the insulating film to form a contact hole, and then a step of depositing the impurity on the entire surface. a step of depositing a polycrystalline silicon film containing an impurity of the same conductivity type as the polycrystalline silicon film, a step of performing heat treatment to diffuse the impurity from the polycrystalline silicon film into the diffusion layer or the electrode layer, and a step of depositing the impurity of the polycrystalline silicon film. A semiconductor device comprising the steps of: reacting a part of the surface with a metal halide to deposit a metal film on the surface; and then buttering the metal film and polycrystalline silicon film. manufacturing method.
(2)前記金属膜は、2層配線の下層配線層をなすもの
である特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the metal film forms a lower wiring layer of a two-layer wiring.
(3)前記2層配線の下層配線層をダイナミックRAM
のビット線に用い、上層配線層をワード線に用いたこと
を特徴とする特許請求の範囲第2項記載の半導体装置の
製造方法。
(3) The lower wiring layer of the two-layer wiring is a dynamic RAM
3. The method of manufacturing a semiconductor device according to claim 2, wherein the semiconductor device is used for a bit line, and the upper wiring layer is used for a word line.
(4)前記メタルのハロゲン化物として、WF。 を用いたことを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法
(4) WF as the metal halide. A method for manufacturing a semiconductor device according to claim 1, characterized in that the method uses:
JP9265783A 1983-05-26 1983-05-26 Manufacture of semiconductor device Pending JPS59217327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9265783A JPS59217327A (en) 1983-05-26 1983-05-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9265783A JPS59217327A (en) 1983-05-26 1983-05-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59217327A true JPS59217327A (en) 1984-12-07

Family

ID=14060535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9265783A Pending JPS59217327A (en) 1983-05-26 1983-05-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59217327A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154966A (en) * 1978-05-29 1979-12-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor electron device
JPS5776833A (en) * 1980-09-04 1982-05-14 Applied Materials Inc Heat resistant metal depositing method and product thereof
JPS5738397B2 (en) * 1978-02-02 1982-08-14
JPS586151A (en) * 1981-07-02 1983-01-13 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738397B2 (en) * 1978-02-02 1982-08-14
JPS54154966A (en) * 1978-05-29 1979-12-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor electron device
JPS5776833A (en) * 1980-09-04 1982-05-14 Applied Materials Inc Heat resistant metal depositing method and product thereof
JPS586151A (en) * 1981-07-02 1983-01-13 Seiko Epson Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4874719A (en) Method for manufacturing an electrical connection between conductor levels
JP2825074B2 (en) Method for manufacturing semiconductor device
US5244835A (en) Method of making contact electrodes of polysilicon in semiconductor device
JPS61208869A (en) Semiconductor device and manufacture thereof
JPS6050920A (en) Manufacture of semiconductor device
US5192713A (en) Method of manufacturing semiconductor devices having multi-layered structure
US4888306A (en) Method of manufacturing a bipolar transistor
JP2828438B2 (en) Method for forming polycide layer in semiconductor device
JPS59217327A (en) Manufacture of semiconductor device
JPH0897172A (en) Semiconductor device
JPH065674B2 (en) Method for manufacturing semiconductor device
JPH01214137A (en) Manufacture of integrated circuit
JP2950620B2 (en) Semiconductor device
JPH01298717A (en) Manufacture of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPS62108541A (en) Manufacture of semiconductor device
JPS6120154B2 (en)
JPH06104428A (en) Semiconductor device and its manufacture
JPH03187244A (en) Semiconductor device and manufacture thereof
JPH0536625A (en) Manufacture of semiconductor device
JPH05166943A (en) Manufacture of semiconductor device
JPH04245427A (en) Manufacture of semiconductor device
JPH0964184A (en) Forming method of wiring for contact hole of semiconductor device
JPS62208669A (en) Contact structure and formation thereof
JPS63306658A (en) Semiconductor device and manufacture thereof