JPS59216403A - Controller of electric railcar - Google Patents

Controller of electric railcar

Info

Publication number
JPS59216403A
JPS59216403A JP9275283A JP9275283A JPS59216403A JP S59216403 A JPS59216403 A JP S59216403A JP 9275283 A JP9275283 A JP 9275283A JP 9275283 A JP9275283 A JP 9275283A JP S59216403 A JPS59216403 A JP S59216403A
Authority
JP
Japan
Prior art keywords
brake
current
circuit
conduction rate
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275283A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hiramatsu
平松 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9275283A priority Critical patent/JPS59216403A/en
Publication of JPS59216403A publication Critical patent/JPS59216403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To eliminate a brake force difference of the case of converting a regenerative brake to a generating brake by reducing a conduction rate at the regenerative load failure time and switching to the generating brake when becoming the prescribed state. CONSTITUTION:A comparison amplifier 12 control the conduction rate (gamma) of a chopper CH in response to a deviation between a regenerative brake force signal from a speed-brake force pattern circuit 10 for a regenerative brake and a torque signal from a torque detector 11. A comparison amplifier 15 control a field current in response to a deviation between a field current pattern and a field current If. When an overvoltage detector 17 detects a regenerative load failure by both terminal voltage EC of a filter capacitor CF, the conduction rate (gamma) is reduced by a current limiter 22 so as to become the current conduction calculated by a motor current IM0 and a motor voltage EM at that time. When the rate (gamma) becomes the prescribed state, a detector 23 operates to turn ON a generating brake thyristor BTH.

Description

【発明の詳細な説明】 本発明は電気車の制御装置に関し、特に、回生ブレーキ
から発電ブレーキに切換可能な電気車の制御載置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an electric vehicle, and more particularly to a control device for an electric vehicle capable of switching from regenerative braking to generation braking.

直流電動機な分巻電動機として使用し回生ブレーキ、発
電ブレーキの切換が可能な従来からの一般的な電気車の
制御装置として第1図に示すものがあった。第1図(a
)は斯かる電気車の制御装置の電機子回路を示し、第1
図(b)は界磁回路を示している。第1図において、P
はノくンタグラフ、LFはフィルタリアクトル、CFは
フィルタコンデンサ、Aは主電動機電機子、MSLは主
平滑リアクトル、Fは主電動機界磁巻線、CHはチョツ
ノク載置、DFは還流ダイオード、BTHは発電ブレー
キ用サイリスク、BRは発電ブレーキ抵抗、Eは交流電
源、TH,〜、はサイリスクを示す。
There is a conventional control device for general electric vehicles that is used as a DC motor or a shunt motor and is capable of switching between regenerative braking and generation braking, as shown in FIG. Figure 1 (a
) indicates the armature circuit of the control device of such an electric vehicle, and the first
Figure (b) shows the field circuit. In Figure 1, P
Hanokuntagraph, LF is the filter reactor, CF is the filter capacitor, A is the traction motor armature, MSL is the main smoothing reactor, F is the traction motor field winding, CH is the chotsunoku mounting, DF is the free-wheeling diode, BTH is the BR is a power generating brake resistance, E is an AC power source, and TH, ~, is a power risk.

この方式では第1図(a)の電機子回路はチョッパ装置
CHと並列に、発電ブレーキ用サイリスクBTH及び発
電ブレーキ用抵抗器BRの直列回路を設けている。一方
、第1図(b)の界磁回路は交流電源Eをサイリスク位
相制御することによって界磁電流工、を制御している。
In this system, the armature circuit shown in FIG. 1(a) is provided with a series circuit of a power generation brake thyrisk BTH and a power generation brake resistor BR in parallel with the chopper device CH. On the other hand, the field circuit shown in FIG. 1(b) controls the field current generator by subjecting the AC power source E to sirisk phase control.

この回路において、抑速ブレーキを使用する場合、第2
図(a)に示す発電ブレーキ特性と、第2図(b)に示
す回生ブレーキ特性と、では一般に同じチョッパ通流率
γ、及び同じ界磁電流工、に関して速度対ブレーキ力特
性が異なっている。
In this circuit, when using a restraining brake, the second
The dynamic braking characteristics shown in Fig. 2(a) and the regenerative braking characteristics shown in Fig. 2(b) generally have different speed vs. braking force characteristics with respect to the same chopper conductivity γ and the same field current. .

従って、例えば第3図で示すようにチョッパ通流率γ=
0..3 、 If=!θθAの回生ブレーキ制御特性
の(第一図(b)の右から3番目の特性)においてA点
で平衡してい゛るときに回生負荷の失効により発電ブレ
ーキに切換える場合、直接そのまま(速度一定)、チョ
ッパ装置CHをオフ、発電ブレーキ用サイリスクBTH
なオンにすることにより切換えると瞬時にB点に達して
しまい、太きフヨ衝撃が生じ、場合によっては過電流を
生じさせてしようことがある。
Therefore, for example, as shown in FIG. 3, chopper flow rate γ=
0. .. 3. If=! If the regenerative brake control characteristic of θθA (the third characteristic from the right in Figure 1 (b)) is balanced at point A, and the regenerative brake is switched to due to the expiration of the regenerative load, the regenerative brake control characteristic will remain unchanged (constant speed). , Turn off the chopper device CH, Cyrisk BTH for power generation brake
If the switch is switched by turning it on, it will reach point B instantaneously, causing a thick buoyant shock and, in some cases, causing an overcurrent.

従って、本発明は斯かる抑速ブレーキにお(1で、回生
ブレーキから発電ブレーキに切換える場合のブレーキ力
差をできるだけなくすことを目的としている。
Therefore, an object of the present invention is to eliminate as much as possible the difference in braking force when switching from regenerative braking to power generation braking in such a holding brake (1).

本発明の目的を達成するための技術的手段として本発明
に係る電気車の制御装置は、少なくとも1つ以上の直流
電動機用の電機子回路、該電機子回路を個別に通流率制
御できるチョツノく装置、該チョッパ装置に並列接続さ
れた発電ブレーキ用サイリスタと発電ブレーキ用抵抗器
とで直列接続された発電ブレーキ回路、及び少ブIくと
も1つ以上の電動機の界磁巻線をすべて直列接続し、そ
れを一括して制御できる界磁回路、を含んだ電襲、車の
    ・制御装置において: 回生負荷の減少をフィルタコンデンサ電圧から検知する
過電圧検知装R:前記検知時のモータ電流を記憶するメ
モリ装置;記憶された前記モータ電流と電機子抵抗及び
主平滑リアクトルの抵抗値を加えた抵抗値との積をモー
タ電圧から引いた値と、前記発電ブレーキ用抵抗器の抵
抗値と前記モータ電流との積の商を/から引いた数値を
基準値とし、通流率をフィードバック量として前記チョ
ッパ装置の通流率を減少させる電流リミッタ;及び、通
流率が前記数値と正の小さな定数との和以し− 下がなった所定状態を検知する検知装置;を備え以て前
記所定状態検知装置の検知時に前記発電ブレーキ用サイ
リスクをオンさせて前記発電ブレーキ回路を切換えるこ
とを特iとした構成を有している。
As a technical means for achieving the object of the present invention, the control device for an electric vehicle according to the present invention includes at least one armature circuit for a DC motor, and a short circuit that can individually control the current flow rate of the armature circuit. A power generation brake circuit connected in series with a power generation brake thyristor and a power generation brake resistor connected in parallel to the chopper device, and a field winding of at least one motor are all connected in series. In electric raid and vehicle control equipment that includes a field circuit that can be connected and controlled all at once: Overvoltage detection device R that detects a decrease in regenerative load from the filter capacitor voltage: A memory device for storing; a value obtained by subtracting from the motor voltage the product of the stored motor current and the resistance value of the armature resistance and the resistance value of the main smoothing reactor; the resistance value of the dynamic braking resistor; A current limiter that reduces the conduction rate of the chopper device by using a value obtained by subtracting the quotient of the product with the motor current from / as a reference value and using the conduction rate as a feedback amount; A detection device for detecting a predetermined state in which the sum of the sum and a constant is lowered; and when the predetermined state detection device detects the predetermined state, the power generation brake circuit is switched on by turning on the power generation brake circuit. It has the following configuration.

以下、本発明の好ましい実施例に沿って本発明を説明す
る。
Hereinafter, the present invention will be explained along with preferred embodiments of the present invention.

第1図は本発明の制御ブロック図の一実施例である。図
において、ioは抑速ブレーキノツチ指令信号及び電気
車速度信号を入力して該速度に対応した所望の回生ブレ
ーキ力に対応する通流率信号を発生1−る回虫ブレーキ
用速度−ブレーキカバターン回路、//はモータ電流1
M及び界磁電流工、を入力してこのときのトルクを検出
するトルク検出器、12は、回生ブレーキモードにおし
・て、パターン回路/θ及びトルク検出器//からの各
出力信号をそれぞれ非反転入力端子及び反転入力端子に
入力して比較し更にその差を増幅する比較増幅回路、/
3は比較増幅回路12に接続されて所望のブレーキ力を
現在のブレーキ力(トルク)とを回路/2で比較した結
果、両者に差があるときチョッパ装置CHO通流率γを
制御して所望ブレーキ力に近づけるための移相器である
FIG. 1 is an embodiment of a control block diagram of the present invention. In the figure, io inputs a restraining brake notch command signal and an electric vehicle speed signal and generates a conduction rate signal corresponding to a desired regenerative braking force corresponding to the speed. circuit, // is motor current 1
A torque detector 12 detects the torque at this time by inputting M and field current, and outputs each output signal from the pattern circuit /θ and the torque detector // in regenerative brake mode. a comparison amplification circuit that inputs the inputs to the non-inverting input terminal and the inverting input terminal, compares the signals, and amplifies the difference;
3 is connected to the comparison amplifier circuit 12, and as a result of comparing the desired braking force with the current braking force (torque) in circuit/2, if there is a difference between the two, the chopper device CHO conductivity γ is controlled to obtain the desired braking force. This is a phase shifter to approximate the braking force.

/弘は抑速ブレーキノツチ指令信号を入力して、これに
対応した界磁電流パターン信号を発生する回路、isは
回路ltからの所望の界磁電流信号と現在の界磁電流I
fとを比較して、モの差を増幅する比較増幅回路、lt
は回路/左からの差信号に応じてサイリスクTH,〜、
の点弧角αを制御して所望の界磁電流を発生する移相器
である。
/Hiro is a circuit that inputs a restraining brake notch command signal and generates a corresponding field current pattern signal, is is a desired field current signal from circuit lt and the current field current I
Comparison amplifier circuit that compares f and amplifies the difference between m and lt
is the circuit/according to the difference signal from the left, Cyrisk TH, ~,
This is a phase shifter that generates a desired field current by controlling the firing angle α.

このような第弘図の部分的構成により、ある抑速ブレー
キノツチ指令(第3図の場合は3ノツチ指令)が出され
、速度信号をもとに第2図(b)の特性を有する回生ブ
レーキ用速度−ブレーキカバターン回路IOの出力と、
トルク検出器/Iの出力とで比較増幅回路/コ及び移相
器13を介してチョッパCHの通流率γ制御するととも
に、界磁パターン回路2+(第一図(b)の例では/ノ
ツチで3ooA、λ〜3ノツチでkOoAのパターンと
なっている)と界磁電流工fとで、比較増幅回路lS及
び移相器16を介してサイリスクTH,〜7の通流率r
を制御している。第3図の例では、3ノツチの抑速ブレ
ーキ指令が発せられ、通流率γ−θ3.界磁電流If=
j 00 Aで回生ブレーキ制御が行lよりれでいる(
第3図、A点)。
With such a partial configuration in Fig. 2, a certain speed control brake notch command (in the case of Fig. 3, 3 notch command) is issued, and based on the speed signal, regeneration with the characteristics shown in Fig. 2 (b) is performed. Brake speed-brake cover turn circuit IO output;
The conduction rate γ of the chopper CH is controlled by the output of the torque detector/I via the comparison amplifier circuit/I and the phase shifter 13, and the field pattern circuit 2+ (/notch in the example of Fig. 1 (b)) is controlled. 3ooA at λ, and kOoA at λ~3 notches) and the field current f, the current conduction rate r of the sirisk TH,~7 is obtained through the comparison amplifier circuit IS and the phase shifter 16.
is controlled. In the example shown in FIG. 3, a 3-notch holding brake command is issued, and the conduction rate γ-θ3. Field current If=
j 00 A regenerative brake control is delayed from line l (
Figure 3, point A).

次に第を図における発生ブレーキ毒−ドに切換えるため
の回路構成について説明すると、/7はフィルタコンデ
ンサCFの両端電圧ECを入力して回生失効を検知する
過電圧検知装置、7gは過電圧検知装置/7に接続され
且つモータ電流工。
Next, we will explain the circuit configuration for switching to the generated brake poison mode in the figure. 7 and is connected to the motor electrician.

を入力して回生失効による過電圧が検知されたときのモ
ータ電流IM&を記憶するメモリ装置、/9はメモリ装
置/gに記憶されたIMil)に、発電ブレーキ用抵抗
器BHの抵抗値Rを掛ける増幅回路、20は電機子抵抗
に平滑りアクドルの抵抗値をjxlえた抵抗値R0を、
記憶されたIMυに掛ける増幅回路、21はモータ電圧
EMから増幅回路20の出力R8IM、を引いた値を入
力して、これを増幅回路/9の出力信号R・1M6で割
った商(EM RaIuo)/R−IM、をn出する割
算器、2.2は通流率γ信号及び割算器出力(Ey  
R□IMo) / R−IMoを/から引いた/  (
KM  RoIM、)/R4M、なる信号が等しくなる
ように比較増幅回路/コに信号を送ってトルク検出器/
lからの実際のブレーキ力信号とともにチョッパ装置C
HO通流率を制御するように働く電流リミッタ、コ3は
比較増幅回路/2からの通流率γ信号及び上記の信号(
/ (EM−Ro IM。)/R4M、)を入力して両
者がγ≦/  (EM −Ro 1M6 ) /R・工
M。+さなる関係に至った時を検知して発電ブレーキ用
サイリスタBTHをオンにさせる所定状態検知装置、そ
して21は比較増幅回路/、2に接続されて、その出力
された通流率が最小になったことを検知して電流リミッ
タ、2.2からの出力信号とともに比較増幅回路/Sへ
信号を送る最小通流率γmin検知装置である。
The memory device that stores the motor current IM& when overvoltage due to regeneration failure is detected by inputting , /9 is IMil stored in the memory device /g) is multiplied by the resistance value R of the dynamic braking resistor BH. The amplifier circuit 20 has a resistance value R0 obtained by adding the resistance value of the smooth sliding axle to the armature resistance by jxl,
The amplifier circuit 21 multiplies the stored IMυ by inputting the value obtained by subtracting the output R8IM of the amplifier circuit 20 from the motor voltage EM, and dividing this by the output signal R・1M6 of the amplifier circuit/9 (EM RaIuo )/R-IM, 2.2 is a divider that outputs the conduction rate γ signal and the divider output (Ey
R□IMo) / R-IMo is subtracted from / (
KM RoIM, )/R4M, sends a signal to the comparison amplifier circuit so that the signals become equal, and then outputs the signal to the torque detector/
Chopper device C along with the actual brake force signal from l.
A current limiter that works to control the HO conduction rate, Co3, receives the conduction rate γ signal from the comparison amplifier circuit/2 and the above signal (
/ (EM-Ro IM.)/R4M,) and both are γ≦/ (EM-Ro 1M6) /R・ENGM. + A predetermined state detection device that detects when the following relationship has been reached and turns on the thyristor BTH for the dynamic brake; This is a minimum conduction rate γmin detection device that detects that the current limiter 2.2 has changed and sends a signal to the comparison amplifier circuit/S together with the output signal from the current limiter 2.2.

斯から構成において、今、回生ブレーキから発電ブレー
キに切換える場合のモータ電圧8M1電流1.について
考えると、発電ブレーキモードにおいては、 FM=R(/−γ) I、。+ Rol、。
In this configuration, when switching from regenerative braking to generation braking, the motor voltage is 8M1 and the current is 1. Considering, in the dynamic braking mode, FM=R(/-γ) I. + Rol.

が成立する。holds true.

上記の式より通流率γ信号を求めると R−IM。If we calculate the conduction rate γ signal from the above formula, R-IM.

を得ることができる。can be obtained.

即ち、回生負荷の失効によりフィルタコンデンサCFの
電圧E。が上昇した時、発電ブレーキモードに移行する
までの短時間、モータ電流工ゆは、平均値で、110分
だけチョッパ装置CHに流れ(チョッパがオンのとき)
、(l−γ)I8分がダイオードDF及びフィルタコン
デンサCFを通って流れる(チョッパがオフのとき)。
That is, the voltage E across the filter capacitor CF due to deactivation of the regenerative load. rises, the motor current flows to the chopper device CH for an average of 110 minutes for a short period of time until the transition to dynamic braking mode (when the chopper is on).
, (l-γ)I8 flows through the diode DF and the filter capacitor CF (when the chopper is off).

従って、平均電流(l−γ)IMが発電ブレーキ用抵抗
器BRに流れた場合を想定したときの抵抗器BRの両端
電圧R(/−r)IMとR8IM  との相がモータ電
圧FMに等しくなればよいわけである。
Therefore, assuming that the average current (l-γ) IM flows through the dynamic brake resistor BR, the phase between the voltage R(/-r)IM and R8IM across the resistor BR is equal to the motor voltage FM. That's fine.

従って、過電圧検知装置/7が回生負荷失効(電圧工。Therefore, the overvoltage detection device/7 indicates that the regenerative load has expired.

の上昇)を検知した時のモータ電流工M。motor current engineer M when detecting the increase in

をメモリ装置/gに記憶した後、抵抗器BRの抵抗値R
倍だけ増幅し、モータ電圧EMからR8IMOを引いた
値をR・IM、で割った商(EM−RoIMO)/■(
・工M。をlから引いた値が通流率γ信号に等しくなる
ように電流リミッタ、22により比較増幅回路7.2に
負の極性で入力して通流率γを下りて行く。
After storing in the memory device/g, the resistance value R of the resistor BR
Amplify the motor voltage EM by R8IMO and divide it by RIM, quotient (EM-RoIMO)/■(
・Engineering M. The current limiter 22 inputs the negative polarity to the comparison amplifier circuit 7.2 so that the value obtained by subtracting 1 from l becomes equal to the conduction rate γ signal, so that the conduction rate γ decreases.

第3図の例では電流リミッタ、2.2により通流率γを
03から最小側にすれば、所定状B(γ工/−A点で発
電ブレーキモートに切換ゎることに1.cる。
In the example shown in Fig. 3, if the current limiter 2.2 is used to set the conduction rate γ from 03 to the minimum side, switching to the generating brake motor will occur at the predetermined state B (γ/-A point). .

ここで、検知装置、23に小さな定数εが含まれている
のは、電流リミッタココによる制御が多少バランいても
、実用上さしつかえない範囲で確実に検知装置、23を
動作させるためである。
Here, the reason why the small constant ε is included in the detection device 23 is to ensure that the detection device 23 operates within a practically acceptable range even if the control by the current limiter here is somewhat unbalanced.

尚、所定状態(γ≦l−(FM−Ro・工M。)/R・
IM。
In addition, the predetermined state (γ≦l-(FM-Ro・Engine M.)/R・
I.M.

+ε)になるように制御する場合、通流率γを小さくす
るだけで実現できる場合も勿論あるが、通流率γを最小
にしただけでは実現できない場合もあるので、そのとき
は、γmin検知装置、2&で通流率γが最小に1よっ
たことを検知し、電流リミッタ2.2の出力を比較増幅
回路lSに入力させることによって界磁電流を下げ、上
記の所定状態を達成することができる。
+ε), there are cases where this can be achieved simply by reducing the conduction rate γ, but there are also cases where this cannot be achieved simply by minimizing the conduction rate γ, so in that case, the γmin detection The device detects that the conduction rate γ has reached a minimum of 1 in the device 2&, and inputs the output of the current limiter 2.2 to the comparison amplifier circuit IS to lower the field current and achieve the above predetermined state. I can do it.

また、本発明は第1図の回路に限られろことなく電機子
回路がコ相以上の場合にも適用可能である。更に分巻電
動機(直巻電動機の他励制御を含む)或いは複巻電動機
でも適用可能である。界磁回路の電流制御方式はチョッ
パ制御、サイリスタブリッジによる位相制御、ダイオー
ドを含んだ混合ブリッジによる位相制御でも適用可能で
ある。
Furthermore, the present invention is not limited to the circuit shown in FIG. 1, but can be applied to cases where the armature circuit has co-phase or more. Furthermore, it is also applicable to a shunt-wound motor (including separately excited control of a series-wound motor) or a compound-wound motor. As the current control method of the field circuit, chopper control, phase control using a thyristor bridge, and phase control using a mixed bridge including diodes can be applied.

また位相制御の交流電源は却イH又は3相以上の多相で
あってもよい。
Further, the phase-controlled AC power source may be a high power source or a multiphase power source having three or more phases.

以上のように、本発明によ r’f回生失効により発電
ブレーキに切換えても、ブレーキ力に段差が生じず、乗
心地のよい運転が実現できるという効果がある。
As described above, the present invention has the advantage that even when switching to electric generation braking due to r'f regeneration failure, there is no difference in braking force, and driving with good riding comfort can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は本発明の制御装置と組み合わ
される一般的1r電気車の主回路図、第2図(al及び
(b)はそれぞれ発電ブレーキモード及び回生ブレーキ
モードにおり゛る速度対ブレーキ力特性曲線図、第3図
は回生ブレーキから発電ブレーキへ切換える際にブレー
キ力が段差を生じることを説明するための速度対ブレー
キ力特性曲線図、そしてf、y図は本発明に係る電気車
の制御装置の好ましい一実施例を示したブロック図、で
ある。 A・・電機子、CH・・チョッパ装置、BTH・・発電
ブレーキ用サイリスタ、BR・・発電ブレーキ用抵抗器
、F・・界磁巻線、/3・・移相器、/7・・過電圧検
知装置、7g・・メモリ装置、/9.コO・・増幅回路
、al・・割算器、22・・電流リミッタ1.23・・
所定状態検知装置。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人 大 岩 増 雄 幣1図 p 焔3図 焔2図 遠度 速度 「 手続補正書「自発」 特許庁長官殿 1、事件の表示   特願昭3s−タコク3コ号2、発
明の名称   電気車の制御装置3、補正をする省 代表者片山仁へ部 (1)明細書の発明の詳細な説明の欄 −パ°゛・、 、゛′・“゛)、 ・−)T 式  〆イに\ 乙 補正の内容 (1)  四層1偶第7頁第12行目の「検知」を「検
知」と補正する。 (2)  同第り頁第グ行目の「斯から」を「斯かる」
と補正する。 (3)  同第10頁第27行目の「ブレーキモート」
を「ブレーキモードjと補正する。
Figures 1 (a) and (b) are main circuit diagrams of a general 1R electric vehicle combined with the control device of the present invention, and Figures 2 (al and (b) are in the dynamic braking mode and regenerative braking mode, respectively. Figure 3 is a speed vs. brake force characteristic curve diagram to explain that the brake force varies when switching from regenerative braking to generation braking, and Figures f and y are diagrams showing the characteristics of the present invention. It is a block diagram showing a preferred embodiment of a control device for an electric vehicle according to the following. A: armature, CH: chopper device, BTH: thyristor for power generation brake, BR: resistor for power generation brake, F...Field winding, /3...Phase shifter, /7...Overvoltage detection device, 7g...Memory device, /9.O...Amplification circuit, al...Divider, 22... Current limiter 1.23...
Predetermined state detection device. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Yuhei 1 figure p Homura 3 figure Homura 2 figure Distance velocity ``Procedural amendment ``Spontaneous'' Commissioner of the Japan Patent Office 1, Indication of case Patent application Sho 3s - Takoku 3 Ko No. 2, Title of invention Electricity Vehicle control device 3, to Hitoshi Katayama, the representative of the Ministry who makes the corrections (1) Column for detailed explanation of the invention in the specification - Pa°゛・, ,゛′・“゛), ・-)T Formula 〆I \ B Details of the amendment (1) “Detection” in the 12th line of page 7 of the 4-layer 1-even is corrected to “detection”. (2) “Shikara” in the first page of the same page, “Shikaru”
and correct it. (3) “Brake motor” on page 10, line 27
is corrected as "brake mode J.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1つ以上の直流電動機用の電機子回路
、該電機子回路を個別に通流率制御できるチョッパ装置
、該チョッパ装置に並列接続された発電ブレーキ用サイ
リスクと発電ブレーキ用抵抗器とで直列接続された発電
ブレーキ回路、及び少を含んだ電気車の制御装置におい
て: 回生負荷の減少をフィルタコンデンサ電圧から検知する
過電圧検知装置;前記検知時のモータ電流を記憶するメ
モリ装置:記憶された前記モータ電流と電機子抵抗及び
主平滑りアクドルの抵抗値を加えた抵抗値との積をモー
タ電圧から引いた値と、前記発電ブレーキ用抵抗器の抵
抗値と前記モータ電流との積の商をlから引いた数値を
基準値とし、通流率をフィードバック量として前記チョ
ッパ装置の通流率を減少させる電流リミッタ;及び、通
流率が前記数値と正の小さな定数との和以下となった所
定状態を検知する検知装置;を備え、以て前記所定状態
検知装置の検知時に前記発電ブレーキ用サイリスクをオ
ンさせて前記発電ブレーキ回路に切換えることを特徴と
した電気車の制御装置。
(1) At least one armature circuit for a DC motor, a chopper device that can individually control the conduction rate of the armature circuit, a syrisk for a dynamic brake and a resistor for a dynamic brake connected in parallel to the chopper device. In a control device for an electric vehicle that includes a dynamic brake circuit connected in series with a power generating brake circuit and The value obtained by subtracting the product of the motor current and the resistance value of the armature resistance and the resistance value of the main flat sliding axle from the motor voltage, and the product of the resistance value of the dynamic brake resistor and the motor current. A current limiter that reduces the conduction rate of the chopper device by using a value obtained by subtracting the quotient from l as a reference value and using the conduction rate as a feedback amount; and when the conduction rate is less than or equal to the sum of the value and a small positive constant. A control device for an electric vehicle, comprising: a detection device for detecting a predetermined state in which the predetermined state has occurred, and the control device for an electric vehicle is characterized in that when the predetermined state detection device detects the predetermined state, the power generation brake cyrisk is turned on to switch to the power generation brake circuit.
JP9275283A 1983-05-24 1983-05-24 Controller of electric railcar Pending JPS59216403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275283A JPS59216403A (en) 1983-05-24 1983-05-24 Controller of electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275283A JPS59216403A (en) 1983-05-24 1983-05-24 Controller of electric railcar

Publications (1)

Publication Number Publication Date
JPS59216403A true JPS59216403A (en) 1984-12-06

Family

ID=14063145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275283A Pending JPS59216403A (en) 1983-05-24 1983-05-24 Controller of electric railcar

Country Status (1)

Country Link
JP (1) JPS59216403A (en)

Similar Documents

Publication Publication Date Title
US4335337A (en) Control system for electric motor vehicle
US5451846A (en) Low current compensation control for thyristor armature power supply
US4315203A (en) Control system for induction motor-driven car
US4392091A (en) Vehicle propulsion control apparatus and method
US4282466A (en) Transit vehicle motor effort control apparatus and method
US3859579A (en) Protection circuit for power converter systems
US4801855A (en) Method and system for controlling chopper
JPS59216403A (en) Controller of electric railcar
JP3186281B2 (en) AC electric vehicle control device
JP3438796B2 (en) DC electric vehicle drive control method
JPH0919065A (en) Circuit for synchronization changeover of inverter
GB2117195A (en) Electrical brake system for electric rolling stock
JP3824206B2 (en) Linear induction motor electric vehicle control device
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JPS63277402A (en) Electric rolling stock controller
JPH055835Y2 (en)
JPH08126400A (en) Vector controller for induction motor
JPS6332002B2 (en)
JP3323901B2 (en) Control device for linear motor electric vehicle
JPH03135304A (en) Controller for electric car
JPH027801A (en) Controller for electric rolling stock
JP2787519B2 (en) Method and apparatus for driving electric motor
JPS6335103A (en) Controlling device for electric train
JPH04156203A (en) Voltage control means for electric motive car
JPH0235523B2 (en)