JPS59216110A - Polarized beam splitter - Google Patents

Polarized beam splitter

Info

Publication number
JPS59216110A
JPS59216110A JP9167183A JP9167183A JPS59216110A JP S59216110 A JPS59216110 A JP S59216110A JP 9167183 A JP9167183 A JP 9167183A JP 9167183 A JP9167183 A JP 9167183A JP S59216110 A JPS59216110 A JP S59216110A
Authority
JP
Japan
Prior art keywords
layer
multilayer film
dielectric multilayer
refractive index
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9167183A
Other languages
Japanese (ja)
Other versions
JPH0242201B2 (en
Inventor
Sadaji Inoue
井上 貞二
Takao Matsudaira
松平 他家夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP9167183A priority Critical patent/JPS59216110A/en
Publication of JPS59216110A publication Critical patent/JPS59216110A/en
Publication of JPH0242201B2 publication Critical patent/JPH0242201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Abstract

PURPOSE:To obtain a polarized beam splitter which prevents variation in the transmittivity of a P wave by providing an intermediate layer which has an intermediate refractive index between the 1st and the 2nd dielectric multilayered films formed by laminating a material with a high refractive index and a material with a low refractive index alternately. CONSTITUTION:The intermediate layer 6 made of a dielectric material having the intermediate refractive index is formed on the reflecting surface of a prism between the 1st dielectric multilayered film 7 and the 2nd dielectric multilayered film 8 which are formed by laminating the layer (H layer) 4 made of the high refractive index material and the layer (L layer) 5 made of the low refractive index material alternately, and the other prism is joined with an adhesive. Thus, the polarized beam splitter which decreases the reflection factor of the P wave and prevents its variation is obtained.

Description

【発明の詳細な説明】 本発明は、偏光ビームスプリッタに関し、特に実質的に
透光性の誘電性物質よりなる多層膜〈以下、「誘電体多
層膜」という。)を有している偏光ビームスプリッタに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarizing beam splitter, and particularly to a multilayer film made of a substantially translucent dielectric material (hereinafter referred to as a "dielectric multilayer film"). ).

一般に、立方体の光学薄膜付偏光ビームスプリッタは第
1図のような構造である。すなわち、1及び2は三角柱
のガラスの基体、3は三角柱のガラスの基体1及び2に
より挾まれている誘電体多層膜である。この偏光ビーム
スプリッタは、第2図で示ずように、誘電体多層膜3に
より、P波は透過し、S波は反射することによって、P
波とS波とを分離する。
Generally, a cubic polarizing beam splitter with an optical thin film has a structure as shown in FIG. That is, 1 and 2 are triangular prism glass substrates, and 3 is a dielectric multilayer film sandwiched between the triangular prism glass substrates 1 and 2. As shown in FIG. 2, this polarizing beam splitter has a dielectric multilayer film 3 that transmits P waves and reflects S waves.
Separate waves and S waves.

従来、この種の偏光ビームスプリッタは、第3図に示す
誘電体多層膜を有していた。すなわち、4は硫化亜鉛(
屈折率は2.29 )のような高屈折率物質の層〈以下
、「H層」という。)、5はクリオライト(屈折率は1
.25 )のような低屈折率物質の層(以下、「L層」
という。)であり、前記11層4と前記り層5を交互に
積層して23層(第1図では7層しか示していない。)
とし、前記誘電体多層膜の両端の層は、前記H層4であ
った。
Conventionally, this type of polarizing beam splitter has had a dielectric multilayer film as shown in FIG. That is, 4 is zinc sulfide (
A layer (hereinafter referred to as "H layer") of a high refractive index material such as a material having a refractive index of 2.29. ), 5 is cryolite (refractive index is 1
.. A layer of a low refractive index material (hereinafter referred to as “L layer”) such as
That's what it means. ), and the 11 layers 4 and the above layers 5 are alternately laminated to form 23 layers (only 7 layers are shown in FIG. 1).
The layers at both ends of the dielectric multilayer film were the H layer 4.

前記誘電体多層膜は、三角柱のガラスの基体1又は2の
三角形の斜辺の面(以下、「斜面」という。)に、先ず
8層4を真空蒸着法等により付着し、その後1一層5.
1−1層4を交互に真空蒸着法等により積層し、最後の
H層5を積層した後、光学ボンドによってもう一方の三
角柱のガラスの斜面に接着して偏光プリズムを作成した
The dielectric multilayer film is formed by first depositing 8 layers 4 on the hypotenuse surface of the triangular prism glass substrate 1 or 2 (hereinafter referred to as the "slope") by vacuum evaporation, and then depositing 8 layers 4 on the triangular prism glass substrate 1 or 2.
The 1-1 layers 4 were alternately laminated by vacuum evaporation or the like, and the final H layer 5 was laminated, and then adhered to the slope of the glass of the other triangular prism using an optical bond to create a polarizing prism.

従来の偏光ビームスプリッタにおいて、入射光をP波と
S波に高効率で分離するために、誘電体多層膜の膜構成
等は、人QJ光のP波の反射率が最も少なくかつS波の
反射率の高い波長範囲に入射光の波長が含まれるように
適宜選択されていた。
In conventional polarizing beam splitters, in order to separate the incident light into P waves and S waves with high efficiency, the film structure of the dielectric multilayer film has the lowest reflectance for the P wave of human QJ light and the lowest reflectance for the S wave. The wavelength was appropriately selected so that the wavelength of the incident light was included in the wavelength range with high reflectance.

それにもかかわらず、例えば、@e−Neレーザー用の
第6図のAで示すにうに前記従来の偏光ビームスプリン
タのP波の反射率は、所望する633nmの波長の近傍
で必ずしも最小の値を示さない場合がある。すなわち、
従来の偏光ビームスプリンタでは、Δλ=620〜65
0nmの波長範囲で、前記反射率が波長に依らずほぼ零
であることが望ましいが、前記波長範囲Δλ内で、最大
4%のP波の反射が存在し、しかも前記P波の反射率は
約3%も変動するという欠点があった。
Nevertheless, the P-wave reflectance of the conventional polarized beam splinter shown at A in FIG. 6 for the @e-Ne laser does not necessarily have a minimum value near the desired wavelength of 633 nm. It may not be shown. That is,
In a conventional polarized beam splinter, Δλ=620-65
In the wavelength range of 0 nm, it is desirable that the reflectance is almost zero regardless of the wavelength, but within the wavelength range Δλ, there is a maximum of 4% reflection of P waves, and the reflectance of the P waves is There was a drawback that it fluctuated by about 3%.

このことにより、所望する波長用の偏光ビームスプリッ
タの製造歩留が劣化し、かつ入射光の入射角がわずかに
ずれるだけでP波の反射特性が変動するという欠点があ
つlC0 本発明は、前記のような欠点を除去するためになされた
もので、前記誘電体多層膜3がH層とL層とを交互に積
層した第1の誘電体多層膜及び第2の誘電体多層膜、さ
らに前記第1の誘電体多層膜と第2の誘電体多層膜との
間に、誘電体物質の中間層を設け、入射光の波長が含ま
れる波長範囲のP波の反射率を低下し、及びP波の反射
率の変動を極ツノ防止する偏光ビームスプリッタを提供
することを目的としている。
As a result, the manufacturing yield of a polarizing beam splitter for a desired wavelength deteriorates, and the P-wave reflection characteristics change even if the angle of incidence of the incident light deviates slightly. The dielectric multilayer film 3 includes a first dielectric multilayer film and a second dielectric multilayer film in which H layers and L layers are alternately laminated; An intermediate layer of dielectric material is provided between the first dielectric multilayer film and the second dielectric multilayer film to reduce the reflectance of P waves in a wavelength range including the wavelength of the incident light, and The object of the present invention is to provide a polarizing beam splitter that significantly prevents fluctuations in wave reflectance.

以下、本発明の一実施例を図に基づいて詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

(実施例1) 第4図に基づいて説明する。4はH層(
例えば、硫化亜鉛の層。)、5はL層(例えば、クリオ
ライ1〜。)、6は前記1−1層4と前記り層5との中
間の屈折率を有する誘電体物質層(例えば、゛屈折率1
.46の二酸化ケイ素の層。以下、M層という。)、7
は第1の誘電体多層膜で、前記1−1層4(II数は6
層)と前記り層5(層数は5層)を交互に積層し11層
をなし、その両端は前記H層4とし、その両端の一方の
前記1」層4は、前記M層6の一表面に接し、その両端
のもう一方の前記1−11m 4は、第1図の1に示す
ような三角柱のガラスの斜面に11着している。8は、
第2の誘電体多層膜で、前記第1の誘電体−多層膜7と
実質的に同一の構成をし、その両端の一方の1」層4は
、前記第1の誘電体多層膜7が接している前記M層6の
一表面の反対の表面に接して、その両端のもう一方の8
層4は、第1図の2に示すような三角柱のガラスの斜面
に光学ボンド(例えば、3021、住友スリーエム株式
会社、商品名。)により接着されている。前記り層5、
前記H層4、前記M層6は、真空蒸着法により積層した
。さらに、前記各層の厚みは、前記り層5及び前記M層
6は、光学的II!厚でλ/4(λ:入射光の波長で、
本実施例では、入射光は633nmのレーザ光である。
(Example 1) This will be explained based on FIG. 4. 4 is the H layer (
For example, a layer of zinc sulfide. ), 5 is an L layer (for example, Cryolite 1~), and 6 is a dielectric material layer having an intermediate refractive index between the above-mentioned 1-1 layer 4 and the above-mentioned layer 5 (for example, "Refractive index 1");
.. 46 layers of silicon dioxide. Hereinafter, it will be referred to as the M layer. ), 7
is the first dielectric multilayer film, and the 1-1 layer 4 (II number is 6
layer) and the above-mentioned layer 5 (the number of layers is 5 layers) are laminated alternately to form 11 layers, both ends of which are the above-mentioned H layer 4, and the above-mentioned 1'' layer 4 at one of both ends is the above-mentioned M layer 6. The other 1-11 m 4, which is in contact with one surface and at both ends thereof, is attached to the slope of a triangular prism glass as shown in 1 in FIG. 8 is
The second dielectric multilayer film has substantially the same structure as the first dielectric multilayer film 7, and the 1'' layer 4 at one of its ends is different from the first dielectric multilayer film 7. In contact with the surface opposite to one surface of the M layer 6 in contact with the other 8 at both ends thereof.
The layer 4 is bonded to the slope of the triangular prism glass as shown in 2 in FIG. 1 with an optical bond (for example, 3021, manufactured by Sumitomo 3M Ltd., trade name). The above layer 5,
The H layer 4 and the M layer 6 were laminated by vacuum evaporation. Further, the thickness of each layer is as follows: the thickness of the above layer 5 and the above M layer 6 is optical II! The thickness is λ/4 (λ: wavelength of incident light,
In this example, the incident light is a 633 nm laser beam.

以下同様。)。前記1−1層4は、前記光学ボンドに接
着しているI」層4及び前記三角柱のガラスの斜面に付
着している14層4がλ/8でその他の+」層4はλ/
4である。本実施例によるP波の反射率は、第6図Bに
示すような曲線となり、入射光θ33nlllのレーザ
光の含まれる波長範囲△λ(約620〜650nm )
で、最大的1%の反射率、反射率の変動も約1%どなっ
た。
Same below. ). In the 1-1 layer 4, the I'' layer 4 adhering to the optical bond and the 14 layer 4 adhering to the slope of the glass of the triangular prism are λ/8, and the other +'' layer 4 is λ/8.
It is 4. The reflectance of the P wave according to this example is a curve as shown in FIG.
The maximum reflectance was 1%, and the variation in reflectance was also about 1%.

(実施例2) 第5図に基づいて説明する。4゜6は、
前記実施例1と同一物質、同一層である。
(Example 2) This will be explained based on FIG. 5. 4°6 is
The same material and the same layer as in Example 1 are used.

5はL層(例えば、チオライト、屈折率は1.33 )
、7は第1の誘電体多層膜で、前記1−1層4(層数は
5層)と前記り層5(層数は5層)を交互に積層し10
層をなし、前記14層の一層は、前記M層6の一表面に
接している。8は第2の誘電体多層膜で、前記第1の誘
電体多層膜と同様の構成をなし、H層の一層は、前記M
層6のもう一方の表面に接している。前記H層4、前記
M層6、前記り層5は、各々真空蒸着法により積層され
、第1の誘電体多層It! 7又は第2の誘電体多層膜
8のM層6より最もIll!すれた位置にある1層5は
、第1図1又は2に示す三角柱のガラスの斜面に付着さ
れ、もう一方の前記り層5は光学ボンド(例: 304
1、住友スリーエム株1式会社、商品名。)により、第
1図の1又は2に示づ三角柱のガラスの斜面に接着する
。前記H層4、前記M層6は、光学的膜厚でλ/4で、
前記り層5は、前記三角柱のガラス1又は2に付着又は
接着された1層5が、光学的膜厚でλ/10、その他の
1層5がλ/4である。
5 is L layer (for example, thiolite, refractive index is 1.33)
, 7 is a first dielectric multilayer film, in which the 1-1 layer 4 (the number of layers is 5) and the above-mentioned layer 5 (the number of layers is 5) are laminated alternately.
One layer of the 14 layers is in contact with one surface of the M layer 6. Reference numeral 8 denotes a second dielectric multilayer film, which has the same structure as the first dielectric multilayer film, and one layer of the H layer is a second dielectric multilayer film.
It is in contact with the other surface of layer 6. The H layer 4, the M layer 6, and the above layer 5 are each laminated by a vacuum evaporation method to form the first dielectric multilayer It! 7 or the M layer 6 of the second dielectric multilayer film 8. One layer 5 at the side is attached to the slope of the glass of the triangular prism shown in FIG.
1. Sumitomo 3M Ltd. 1 company, product name. ) to adhere to the slope of the glass of the triangular prism shown in 1 or 2 of FIG. The H layer 4 and the M layer 6 have an optical thickness of λ/4,
Among the layers 5, one layer 5 attached or bonded to the triangular prism glass 1 or 2 has an optical thickness of λ/10, and the other layer 5 has an optical thickness of λ/4.

以上、実施例1及び2において、第1の誘電体層のガラ
ス等の基体に付着した層と、第2の誘電体層の光学ボン
ド等に接着した層が同一の屈折率を有する物質で構成さ
れていたが、これは、第1図の三角柱のガラス等の基体
1又は2のいづれか任意の一方より入射できるようにし
たためであり、何ら、同一の屈折率を有する物質に限定
される必要はない。望ましくは、同一の屈折率のト1層
である。
As described above, in Examples 1 and 2, the first dielectric layer, which is attached to a substrate such as glass, and the second dielectric layer, which is attached to an optical bond, are made of a substance having the same refractive index. However, this was done so that the light could be incident from any one of the substrates 1 and 2, such as triangular prism glass in Fig. 1, and there is no need to limit the incidence to materials having the same refractive index. do not have. Preferably, the two layers have the same refractive index.

次に、前記実施例1及び2のH層4は硫化亜鉛、し@は
クリオライト(又はチオライト)、MISは二酸化ケイ
素を使用したが、何らこれに限定されることなく、H層
4は二酸化チタン、五酸化タンタル、二酸化ジルコン等
、11!15はフッ化マグネシウム等、M層6はフッ化
セリウム、アルミナ等より選択し組み合わせればよい。
Next, in Examples 1 and 2, zinc sulfide was used for the H layer 4, cryolite (or thiolite) was used for the H layer 4, and silicon dioxide was used for the MIS, but the H layer 4 was not limited thereto. Titanium, tantalum pentoxide, zirconium dioxide, etc., 11!15 may be selected from magnesium fluoride, etc., and M layer 6 may be selected from cerium fluoride, alumina, etc. and combined.

すなわち、屈折率が相対的に高屈折率、低屈折率及び、
それらの屈折率の中間の屈折率を有し、実質的に透光性
の誘電性を有する物質を組み合わせればよい。次に、前
記実施例1及び2では、H層4.1層5は、各々同一物
質で形成されたが、これに限らず実質的に同一の屈折率
を有する物質を用いても同様の効果がある。次に、前記
実施例1及び2では、第1の誘電体多層膜と第2の誘電
体多層膜の層数が同一であるが、異なっていてもよい。
That is, the refractive index is relatively high refractive index, low refractive index, and
A material having a refractive index intermediate between these refractive indexes and having substantially light-transmitting dielectric properties may be used in combination. Next, in Examples 1 and 2, the H layers 4, 1 and 5 were formed of the same material, but the same effect is obtained even if materials having substantially the same refractive index are used. There is. Next, in Examples 1 and 2, the first dielectric multilayer film and the second dielectric multilayer film have the same number of layers, but they may be different.

望ましくは、第1の誘電体多層膜と第2の誘電体多層膜
は同一の層数又は1〜3層の層数の差異である。さらに
、三角柱のガラス等の基体に接着又は付着される1層又
はM層は、光学的膜厚λ/6〜λ/12がよい。
Desirably, the first dielectric multilayer film and the second dielectric multilayer film have the same number of layers or a difference in the number of layers of 1 to 3 layers. Furthermore, the optical thickness of one layer or M layers to be adhered or adhered to a triangular prism-shaped substrate such as glass is preferably from λ/6 to λ/12.

以上のように、本発明によれば、所望の入射光の含まれ
る波長範囲のP波の反射率をさらに低下でき、及び反射
率の変動を低下させることかできるので、P波の透過率
変動を防止する効果のある偏光ビームスプリッタが得ら
れた。
As described above, according to the present invention, it is possible to further reduce the reflectance of P waves in the wavelength range that includes the desired incident light, and also to reduce the fluctuations in the reflectance. A polarizing beam splitter that is effective in preventing this was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一般の偏光ビームスプリッタの斜視図、第2
図は前記第1図の平面図と入射光、P波、S波の関係を
示す概略図、第3図は従来の誘電体多層膜の断面図、第
4図は、本発明に使用される誘電体多層膜の一実施例を
示す断面図、第5図は本発明に使用される誘電体多層膜
の他の実施例を示す断面図、第6図は波長とP波の反射
率の関係を示す図。 1.2・・・偏光ビームスプリッタの基体、3・・・誘
電体多層膜、4・・・H層、5・・・L層、6・・・M
層、7・・・第1の誘電体多層膜、8・・・第2の誘電
体多層膜 第3図 第4図 第5図 第6図 手  続  補  正  出  (自発)1.事件の表
示  昭和58年特訂願第9167192、発明の名称
  偏光ビームスプリッタ3゜補正をする者 事件との関係 待11出願人 住所 東京都新宿区西新宿1丁目13番12号〒160
  置  03(348)1221ホ ヤ ガラス 名称 株式会社 保 谷 硝 子 とあるを「最後の1−1層4を」と訂正する。 (2) 明細m第9頁8行目に「又はM層は、」どある
を1又は1」層は、」と補正する。 ν人上−
Figure 1 is a perspective view of a general polarizing beam splitter, and Figure 2 is a perspective view of a general polarizing beam splitter.
The figure is a schematic diagram showing the relationship between the plan view of FIG. 1 and the incident light, P waves, and S waves, FIG. 3 is a cross-sectional view of a conventional dielectric multilayer film, and FIG. 4 is a diagram showing the relationship between the incident light, P waves, and S waves. A cross-sectional view showing one embodiment of the dielectric multilayer film, FIG. 5 is a cross-sectional view showing another example of the dielectric multilayer film used in the present invention, and FIG. 6 shows the relationship between wavelength and P-wave reflectance. Diagram showing. 1.2... Base of polarizing beam splitter, 3... Dielectric multilayer film, 4... H layer, 5... L layer, 6... M
Layer, 7...First dielectric multilayer film, 8...Second dielectric multilayer film Figure 3 Figure 4 Figure 5 Figure 6 Procedure Correction (Spontaneous) 1. Display of the case: 1981 Special Edition Application No. 9167192, Title of the invention: Person who corrects polarizing beam splitter 3° Relationship to the case: 11 Applicant Address: 1-13-12 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160
Address: 03 (348) 1221 Hoya Glass Name Hoya Glass Co., Ltd. Correct the text to read "Last 1-1 layer 4." (2) In the 8th line of page 9 of the specification M, amend "or M layer" to "1 or 1 layer". νHuman-

Claims (1)

【特許請求の範囲】 (1) 第1の基体、誘電体多層膜及び第2の基体より
なる偏光ビームスプリッタにおいて、前記誘電体多層膜
は、第1の誘電体多層膜、中間層、第2の誘電体多層膜
を順次積層し、前記第1の誘電体多層膜及び前記第2の
誘電体多層膜が、各々実質的に透光性を有する高屈折率
物質、低屈折率物質を交互に積層し、前記中間層は、前
記高屈折率物質と前記低屈折率物質の中間の屈折率を有
する実質的に透光性を有する物質であり、前記中間層の
表裏両面に接する層が、高屈折率物質であることを特徴
とする偏光ビームスプリッタ。 (2、特許請求の範囲第1項にJ3いて、前記第1の誘
電体多層膜及び前記第2の誘電体多層膜の最も前記中間
層より離れた各々の誘電体層を除く前記第1の誘電体多
層膜及び前記第2の誘電体多層膜を構成する誘電体層、
前記中間層は、光、学的膜厚が実質的に、’!/4(λ
:入射光の波長。)であることを特徴とする偏光ビーム
スプリッタ。 (3) 特許請求の範囲第1項又は第2項において、前
記第1の誘電体多層膜及び前記第2の誘電体多層膜の最
も前記中間層より離れた各々の誘電体層が同一物質より
なることを特徴とする偏光ビームスプリッタ。
[Scope of Claims] (1) In a polarizing beam splitter comprising a first substrate, a dielectric multilayer film, and a second substrate, the dielectric multilayer film includes a first dielectric multilayer film, an intermediate layer, a second dielectric multilayer film, and a second substrate. dielectric multilayer films are sequentially laminated, and the first dielectric multilayer film and the second dielectric multilayer film are made of alternately a high refractive index material and a low refractive index material each having substantially light-transmitting properties. The intermediate layer is a substantially translucent material having a refractive index intermediate between the high refractive index material and the low refractive index material, and the layers in contact with both the front and back surfaces of the intermediate layer are high refractive index materials. A polarizing beam splitter characterized by being made of a refractive index material. (2. J3 in Claim 1, except for each dielectric layer of the first dielectric multilayer film and the second dielectric multilayer film that is farthest from the intermediate layer) a dielectric layer constituting a dielectric multilayer film and the second dielectric multilayer film;
The intermediate layer has an optical film thickness of substantially '! /4(λ
: Wavelength of incident light. ) A polarizing beam splitter characterized by: (3) In claim 1 or 2, each dielectric layer of the first dielectric multilayer film and the second dielectric multilayer film that is farthest from the intermediate layer is made of the same material. A polarizing beam splitter characterized by:
JP9167183A 1983-05-25 1983-05-25 Polarized beam splitter Granted JPS59216110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9167183A JPS59216110A (en) 1983-05-25 1983-05-25 Polarized beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9167183A JPS59216110A (en) 1983-05-25 1983-05-25 Polarized beam splitter

Publications (2)

Publication Number Publication Date
JPS59216110A true JPS59216110A (en) 1984-12-06
JPH0242201B2 JPH0242201B2 (en) 1990-09-21

Family

ID=14032940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9167183A Granted JPS59216110A (en) 1983-05-25 1983-05-25 Polarized beam splitter

Country Status (1)

Country Link
JP (1) JPS59216110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130104A (en) * 1987-11-17 1989-05-23 Fujitsu Ltd Polarized light separating element
JPH01315704A (en) * 1988-04-08 1989-12-20 Alcatel Cit Dielectric laminate analyzer
JPH0363101U (en) * 1989-10-24 1991-06-20
US5048030A (en) * 1988-12-28 1991-09-10 Fuji Photo Film Co., Ltd. Light amplifying device
US5453859A (en) * 1993-06-03 1995-09-26 Matsushita Electric Industrial Co., Ltd. Polarization beam splitter and projection display apparatus
CN109416423A (en) * 2016-07-01 2019-03-01 奥林巴斯株式会社 Polarization separation element, optical system and optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130104A (en) * 1987-11-17 1989-05-23 Fujitsu Ltd Polarized light separating element
JPH01315704A (en) * 1988-04-08 1989-12-20 Alcatel Cit Dielectric laminate analyzer
US5048030A (en) * 1988-12-28 1991-09-10 Fuji Photo Film Co., Ltd. Light amplifying device
JPH0363101U (en) * 1989-10-24 1991-06-20
US5453859A (en) * 1993-06-03 1995-09-26 Matsushita Electric Industrial Co., Ltd. Polarization beam splitter and projection display apparatus
CN109416423A (en) * 2016-07-01 2019-03-01 奥林巴斯株式会社 Polarization separation element, optical system and optical device
CN109416423B (en) * 2016-07-01 2021-03-09 奥林巴斯株式会社 Polarization separation element, optical system, and optical apparatus

Also Published As

Publication number Publication date
JPH0242201B2 (en) 1990-09-21

Similar Documents

Publication Publication Date Title
US4367921A (en) Low polarization beam splitter
JPH01315704A (en) Dielectric laminate analyzer
JPS59216110A (en) Polarized beam splitter
JPH08254611A (en) Beam splitter
JPH03284705A (en) Polarized beam splitter
JPH0528361B2 (en)
JPS60113203A (en) Nonpolarized light beam splitter
JPH08286034A (en) Polarized light beam splitter
JPH11264904A (en) Prism type optical element
JP2007212694A (en) Beam splitter
JP5458545B2 (en) Method for manufacturing optical article
JPH0682623A (en) Light beam separating element and its production
JPS5922022A (en) Beam splitter
JPH0227301A (en) Adhesive structure for optical parts
JPS59107304A (en) Semi-transmitting mirror
JPS6028603A (en) Prism type beam splitter
JPH11142623A (en) Prism type beam splitter
JPH02193104A (en) Beam splitter for infrared
JP3356793B2 (en) Polarizing beam splitter
JPS6239401B2 (en)
JPH07225316A (en) Polarization beam splitter
JPS62127701A (en) Antireflection film
JPS6315562B2 (en)
JP2775103B2 (en) Polarizing prism
JP2001004840A (en) Polarizing beam splitter